APPLICATIONS OF GOLDMAN-MILLSON THEORY TO NAHT

PETER DALAKOV

ABSTRACT. These are my notes for the talk on Goldman-Millson theory.

First we fix notation. Let G be a complex reductive Lie group, g = LieG, X—
smooth projective variety. Many of the statements that follow will actually work
for a compact Kahler X.

1. SOME EXAMPLES

Hiro told us that every deformation problem in characteristic zero is goverened
by a dgla and discussed the Betti deformation space. Let us look at two other
relevant examples.

Example
Let (P, ) be a principal G-Higgs bundle, ¢ € H°(X,adP), ¢ A ¢ = 0. Then the
deformations of (P, ¢) are controlled by

Dor(P @) = (A*(adP),dp + adyp) .

For simplicity, we will usually write L%, , for L%, ,(P,¢) and 0 for dp, the Dol-
beault operator of P.

If we know P and ¢ reasonably well, we can be fairly explicit in working with
this complex. Notice that LY, ; is the total complex of the Dolbeaul resolution of
certain complex of holomorphic vector bundles.

In particular, for dim X = 1, we have

Lpa(P,¢) = A% (adP) P A" (adP) & A*! (adP) P AV (ad P),

which is the total complex of

A1 (adP) 2% A1 (ad P) .

] B
A00(ad P) 2% AL0(a P)

This is Dolbeault resolution of the complex adPiadP ® QL introduced by
Biswas and Ramanan.
Example
Let (P, D) be a principal G-bundle with a flat connection D = d' + d”. As usual, if
we want to stay entirely in the holomorphic/analytic category, we treat this data
as a holomorphic flat connection d” on the holomorphic principal G-bundle (P, d").
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Then the controlling dgla is LY,z (P, D) = (A®*(adP), D). For instance, for a curve
this is
A%l (adP) —L> AVl (adP)

d//T Td//

A%0(adP) —L> ALO(adP).
If the Higgs and flat bundle are related by a harmonic metric, we have, as usual,
D=d+d" =0p+0+adp+adp=D"+0=D+D",

where Dt = 9p + 0 is the metric-compatible piece of D, § = ¢ +3, D" = 9+ ady,
D' =0+ adp.

If we fix a point 2 € X, we can look at the evaluation map € : A°(adP) — g.
This gives us a deformation diagram, also known as g-augmented dgla, i.e., a pair
(L*,¢€) where € : LY — g is a morphism of dglas. The deformation diagram is rigid
if e : H(L®) — g. We are also going to assume that L°® is non-negatively graded
and dim H*(L®) < oc.

2. PROREPRESENTABILITY RESULTS

As Hiro explained, to a dgla we can assign the corresponding functors from
Artc to groupoids (DGM) and to Sets (IsoDGM). In the terminology of Marco
Manetti, these are the functors MC and Def;,. One then is interested in the pro-
representability of the deformation functor or, if less lucky, in having a hull for
IsoDGM or pro-representing a different functor (see below).

Theorem 2.1. If (L®,¢) is formal, rigid and € : L° — g — 0, then IsoDGM (ker €)
is prorepresented by the germ at the origin of

Cr(r) X Q/E(Ho)a
where Cy(r) is the cone in H' given by the cup product.

Corollary 2.1. Given a formal dgla L* with H°(L®), IsoDGM (L®) is prorepre-
sented by the germ at the origin of Cg(ry.

The corollary follows from the Theorem by taking g =0 and € = 0.

Notation: If we have a transformation groupoid (X,G) and a set Y with G-
action, we define a new transformation groupoid, (X, G) <Y := (X x Y, G), where
G acts on the product by the diagonal action.

The proof of the theorem uses the following Lemma, which is also often used in
applications.

Lemma 2.1. If (L*,d = 0),¢€) is rigid, then Cyry x g/e(L°) prorepresents the
functor IsoDGM (L, e, ) := [soDGM (L) <1 exp(g ® m).

It is not true that IsoDGM(L®) is always prorepresentable! However, every
splitting, 5, of L* gives a hull Kur® — IsoDGM(L®).

Intuitively: In abelian Hodge theory 6 = Gd*, where G is the Green operator.

Formally, § € Hom~*(L®, L*®), such that 6> = 0, 6d§ = &, déd = d. Then this
gives a decomposition L' = B @ H! & C* = imd @ kerd Nker § @ imd. One then
shows that the functor Kur® is prorepresented by the germ of the origin of the
space

K = ker (17— pry[®~"(n), @~ (n)]) € H',
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where @ is the Kuranishi map ®(z) = z + 16[z, ].

K is invariant under quasi-isomorphisms, in particular, if (L®,d) is formal, K =
Cr(r)-

A version of the above statements is proved in Simpson-Eyssidieux:
If (L®,¢) is rigid, IsoDGM (L,e, ) is prorepresented by the germ at the origin of
ker (H* 3 n— pry[n,n] € H?).

3. FIRST APPLICATIONS

Theorem 3.1. Suppose (P,p) is a point in a closed orbit of Rpr/po(X,z,G)
and C C Hl(L.DR/Dol> is the corresponding quadratic cone. Then the functor
ISODGM(LEJR/DOZ,G, ) is prorepresented by C' x h*, where h* is the orthogonal

complement to e(A°(adP)) C g. Consequently, the completions of the moduli spaces
at the origin satisfy:

Rpo(X,2,G) =~ Rpa (X, 7, G), Mpo(X,G) =~ Mpr(X,G)
Idea of Proof:
Prove formality and then apply the GM theorem. For example, starting with a
Higgs bundle, pick an HYM metric on (P,p), and write the usual decomposition:

D=D +D"=0p+0+adp+adp, D' =0+adp, D"’ =0+ adp.
There are natural morphisms of dgla’s
(Lbou 6)%((1{61' Dlv D//)a G)H((H.a 0)7 6) .

By the “principle of two types” (90-lemma), this is a quasi-isomorphism. A similar
argument works for the De Rham deformation theory.

4. RELATIVE GM THEORY

Next we need a relative version of GM theory in order to deal with Ry,q. Con-
sider (L®,d): a dgla over C[)], where the L are flat C[\]-modules. We can assign
to it a functor Artcpy) — Gpds, using the same formulas as before. (Here Artcpy
denotes the category of local Artin C[\]-algebras.) That is, for a given B € Artc(y,
the objects of our groupoid are elements € L* ®c[\mB, satisfying dn+ % [n,m] =0,
and the morphisms between two objects 7, 1 are determined by 7’ = ds + e*ne™5.

If P is a flat principal G-bundle with harmonic K-reductions Pk (where K C G
is the maximal compact), we consider the dgla

%0a(P) = (A*(adP) ®c C[A, AD' + D")
One then shows:

o L%, gives the deformation theory of M p,q near the twistor line of P. For
that one has to check that if B € Artcpy), then Ly ,(B) is the groupoid
with objects maps Spec(B) — Mpoq plus an isomorphism of the induced
map Spec(B/m) — Mpoq with Spec(B/m) — Al — Mpy,q (the second
arrow being the preferred section determined by P).

o L%, is formal over C[A]: this involves the same strategy as above. By
proving a statement about harmonic elements being a product, one gets

Rioa(X,2,G) ~ Rpoy(X, 2, G) XA,

and similary for My,q and Mp,,;.
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e In fact (using Artin’s Approximation Theorem) one shows that the above
holds etale locally trivially. Namely, given P € Mp,q(X, G), there exists
an etale neighbourhood U — Mp,q(X,G) of P, and and etale morphism
U— MHod(Xa G))\ X Al.

e The above implies the isosingularity principle: Given a point y € Rpyi (X, x, G),
there exist z € Rpgr(X,x, ), together with isomorphic etale neighbour-
hoods. The local systems corresponding to y and z have isomorphic semisim-
plifications.
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