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PETER DALAKOV

Abstract. These are my notes for the talk on Goldman-Millson theory.

First we fix notation. Let G be a complex reductive Lie group, g = LieG, X–
smooth projective variety. Many of the statements that follow will actually work
for a compact Kähler X.

1. Some examples

Hiro told us that every deformation problem in characteristic zero is goverened
by a dgla and discussed the Betti deformation space. Let us look at two other
relevant examples.

Example
Let (P,ϕ) be a principal G-Higgs bundle, ϕ ∈ H0(X, adP ), ϕ ∧ ϕ = 0. Then the
deformations of (P,ϕ) are controlled by

L•Dol(P,ϕ) =
(
A•(adP ), ∂P + adϕ

)
.

For simplicity, we will usually write L•Dol for L•Dol(P,ϕ) and ∂ for ∂P , the Dol-
beault operator of P .

If we know P and ϕ reasonably well, we can be fairly explicit in working with
this complex. Notice that L•Dol is the total complex of the Dolbeaul resolution of
certain complex of holomorphic vector bundles.

In particular, for dimX = 1, we have

LDol(P,ϕ) = A0,0(adP )
⊕

A1,0(adP )⊕A0,1(adP )
⊕

A1,1(adP ),

which is the total complex of

A0,1(adP )
adϕ // A1,1(adP )

A0,0(adP )

∂

OO

adϕ // A1,0(adP )

∂

OO
.

This is Dolbeault resolution of the complex adP
adϕ //adP ⊗ Ω1

X introduced by
Biswas and Ramanan.

Example
Let (P,D) be a principal G-bundle with a flat connection D = d′+ d′′. As usual, if
we want to stay entirely in the holomorphic/analytic category, we treat this data
as a holomorphic flat connection d′′ on the holomorphic principal G-bundle (P, d′′).
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Then the controlling dgla is L•DR(P,D) = (A•(adP ), D). For instance, for a curve
this is

A0,1(adP ) d′
// A1,1(adP )

A0,0(adP )

d′′

OO

d′
// A1,0(adP ).

d′′

OO

If the Higgs and flat bundle are related by a harmonic metric, we have, as usual,

D = d′ + d′′ = ∂P + ∂ + adϕ+ adϕ = D+ + θ = D′ +D′′,

where D+ = ∂P +∂ is the metric-compatible piece of D, θ = ϕ+ϕ, D′′ = ∂+ adϕ,
D′ = ∂ + adϕ.

If we fix a point x ∈ X, we can look at the evaluation map ε : A0(adP ) → g.
This gives us a deformation diagram, also known as g-augmented dgla, i.e., a pair
(L•, ε) where ε : L0 → g is a morphism of dglas. The deformation diagram is rigid
if ε : H0(L•) ↪→ g. We are also going to assume that L• is non-negatively graded
and dimHi(L•) <∞.

2. Prorepresentability Results

As Hiro explained, to a dgla we can assign the corresponding functors from
ArtC to groupoids (DGM) and to Sets (IsoDGM). In the terminology of Marco
Manetti, these are the functors MC and DefL. One then is interested in the pro-
representability of the deformation functor or, if less lucky, in having a hull for
IsoDGM or pro-representing a different functor (see below).

Theorem 2.1. If (L•, ε) is formal, rigid and ε : L0 → g→ 0, then IsoDGM(ker ε)
is prorepresented by the germ at the origin of

CH(L) × g/ε(H0),

where CH(L) is the cone in H1 given by the cup product.

Corollary 2.1. Given a formal dgla L• with H0(L•), IsoDGM(L•) is prorepre-
sented by the germ at the origin of CH(L).

The corollary follows from the Theorem by taking g = 0 and ε = 0.
Notation: If we have a transformation groupoid (X,G) and a set Y with G-

action, we define a new transformation groupoid, (X,G) ./ Y := (X×Y,G), where
G acts on the product by the diagonal action.

The proof of the theorem uses the following Lemma, which is also often used in
applications.

Lemma 2.1. If ((L•, d = 0), ε) is rigid, then CH(L) × g/ε(L0) prorepresents the
functor IsoDGM(L, ε, ) := IsoDGM(L) ./ exp(g⊗m).

It is not true that IsoDGM(L•) is always prorepresentable! However, every
splitting, δ, of L• gives a hull Kurδ → IsoDGM(L•).

Intuitively: In abelian Hodge theory δ = Gd∗, where G is the Green operator.
Formally, δ ∈ Hom−1(L•, L•), such that δ2 = 0, δdδ = δ, dδd = d. Then this

gives a decomposition Li = Bi ⊕ Hi ⊕ Ci = imd ⊕ ker d ∩ ker δ ⊕ imδ. One then
shows that the functor Kurδ is prorepresented by the germ of the origin of the
space

K = ker
(
η 7→ prH[Φ−1(η),Φ−1(η)]

)
⊂ H1,
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where Φ is the Kuranishi map Φ(x) = x+ 1
2δ[x, x].

K is invariant under quasi-isomorphisms, in particular, if (L•, d) is formal, K =
CH(L).

A version of the above statements is proved in Simpson-Eyssidieux:
If (L•, ε) is rigid, IsoDGM(L, ε, ) is prorepresented by the germ at the origin of
ker
(
H1 3 η 7→ prH[η, η] ∈ H2

)
.

3. First Applications

Theorem 3.1. Suppose (P, p) is a point in a closed orbit of RDR/Dol(X,x,G)
and C ⊂ H1(L•DR/Dol) is the corresponding quadratic cone. Then the functor
IsoDGM(L•DR/Dol, ε, ) is prorepresented by C × h⊥, where h⊥ is the orthogonal
complement to ε(A0(adP )) ⊂ g. Consequently, the completions of the moduli spaces
at the origin satisfy:

̂RDol(X,x,G) ' ̂RDol(X,x,G), ̂MDol(X,G) ' ̂MDR(X,G)

Idea of Proof:
Prove formality and then apply the GM theorem. For example, starting with a
Higgs bundle, pick an HYM metric on (P, p), and write the usual decomposition:

D = D′ +D′′ = ∂P + ∂ + adϕ+ adϕ, D′ = ∂ + adϕ, D′′ = ∂ + adϕ.

There are natural morphisms of dgla’s

(L•Dol, ε) ((kerD′, D′′), ε)oo //((H•, 0), ε) .

By the “principle of two types” (∂∂-lemma), this is a quasi-isomorphism. A similar
argument works for the De Rham deformation theory.

4. Relative GM theory

Next we need a relative version of GM theory in order to deal with RHod. Con-
sider (L•, d): a dgla over C[λ], where the Li are flat C[λ]-modules. We can assign
to it a functor ArtC[λ] → Gpds, using the same formulas as before. (Here ArtC[λ]

denotes the category of local Artin C[λ]-algebras.) That is, for a given B ∈ ArtC[λ],
the objects of our groupoid are elements η ∈ L1⊗C[λ]mB , satisfying dη+ 1

2 [η, η] = 0,
and the morphisms between two objects η, η′ are determined by η′ = ds+ esηe−s.

If P is a flat principal G-bundle with harmonic K-reductions PK (where K ⊂ G
is the maximal compact), we consider the dgla

L•Hod(P ) = (A•(adP )⊗C C[λ], λD′ +D′′)

One then shows:
• L•Hod gives the deformation theory ofMHod near the twistor line of P . For

that one has to check that if B ∈ ArtC[λ], then L•Hod(B) is the groupoid
with objects maps Spec(B) →MHod plus an isomorphism of the induced
map Spec(B/m) → MHod with Spec(B/m) → A1 → MHod (the second
arrow being the preferred section determined by P ).
• L•Hod is formal over C[λ]: this involves the same strategy as above. By

proving a statement about harmonic elements being a product, one gets

R̂Hod(X,x,G) ' R̂Dol(X,x,G)×̂A1,

and similary for MHod and MDol.
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• In fact (using Artin’s Approximation Theorem) one shows that the above
holds etale locally trivially. Namely, given P ∈ MHod(X,G)λ, there exists
an etale neighbourhood U → MHod(X,G) of P , and and etale morphism
U →MHod(X,G)λ × A1.
• The above implies the isosingularity principle: Given a point y ∈ RDol(X,x,G),

there exist z ∈ RDR(X,x,G), together with isomorphic etale neighbour-
hoods. The local systems corresponding to y and z have isomorphic semisim-
plifications.
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