APPLICATIONS OF GOLDMAN-MILLSON THEORY TO NAHT

PETER DALAKOV

ABSTRACT. These are my notes for the talk on Goldman-Millson theory.

First we fix notation. Let G be a complex reductive Lie group, $\mathfrak{g} = \text{Lie}G$, X-smooth projective variety. Many of the statements that follow will actually work for a compact Kähler X.

1. Some examples

Hiro told us that every deformation problem in characteristic zero is goverened by a dgla and discussed the Betti deformation space. Let us look at two other relevant examples.

Example

Let (P, φ) be a principal *G*-Higgs bundle, $\varphi \in H^0(X, \mathrm{ad}P)$, $\varphi \wedge \varphi = 0$. Then the deformations of (P, φ) are controlled by

$$L^{\bullet}_{Dol}(P,\varphi) = \left(A^{\bullet}(\mathrm{ad}P), \overline{\partial}_{P} + \mathrm{ad}\varphi\right)$$

For simplicity, we will usually write L^{\bullet}_{Dol} for $L^{\bullet}_{Dol}(P,\varphi)$ and $\overline{\partial}$ for $\overline{\partial}_{P}$, the Dolbeault operator of P.

If we know P and φ reasonably well, we can be fairly explicit in working with this complex. Notice that L_{Dol}^{\bullet} is the total complex of the Dolbeaul resolution of certain complex of holomorphic vector bundles.

In particular, for dim X = 1, we have

$$L_{Dol}(P,\varphi) = A^{0,0}(\mathrm{ad}P) \bigoplus A^{1,0}(\mathrm{ad}P) \oplus A^{0,1}(\mathrm{ad}P) \bigoplus A^{1,1}(\mathrm{ad}P),$$

which is the total complex of

$$\begin{array}{c|c} A^{0,1}(\mathrm{ad}P) & \xrightarrow{\mathrm{ad}\varphi} & A^{1,1}(\mathrm{ad}P) \\ \hline \overline{\partial} & & & \uparrow \overline{\partial} \\ A^{0,0}(\mathrm{ad}P) & \xrightarrow{\mathrm{ad}\varphi} & A^{1,0}(\mathrm{ad}P) \end{array}$$

This is Dolbeault resolution of the complex $adP \xrightarrow{ad\varphi} adP \otimes \Omega^1_X$ introduced by Biswas and Ramanan.

Example

Let (P, D) be a principal *G*-bundle with a flat connection D = d' + d''. As usual, if we want to stay entirely in the holomorphic/analytic category, we treat this data as a holomorphic flat connection d'' on the holomorphic principal *G*-bundle (P, d''). Then the controlling dgla is $L_{DR}^{\bullet}(P,D) = (A^{\bullet}(adP), D)$. For instance, for a curve this is

$$\begin{array}{c} A^{0,1}(\mathrm{ad}P) \xrightarrow{d} A^{1,1}(\mathrm{ad}P) \\ \xrightarrow{d''} & \uparrow d'' \\ A^{0,0}(\mathrm{ad}P) \xrightarrow{d'} A^{1,0}(\mathrm{ad}P). \end{array}$$

If the Higgs and flat bundle are related by a harmonic metric, we have, as usual,

$$D = d' + d'' = \overline{\partial}_P + \partial + \mathrm{ad}\varphi + \mathrm{ad}\overline{\varphi} = D^+ + \theta = D' + D'',$$

where $D^+ = \overline{\partial}_P + \partial$ is the metric-compatible piece of $D, \theta = \varphi + \overline{\varphi}, D'' = \overline{\partial} + \mathrm{ad}\varphi, D' = \partial + \mathrm{ad}\overline{\varphi}.$

If we fix a point $x \in X$, we can look at the evaluation map $\epsilon : A^0(\mathrm{ad}P) \to \mathfrak{g}$. This gives us a *deformation diagram*, also known as \mathfrak{g} -augmented dgla, i.e., a pair (L^{\bullet}, ϵ) where $\epsilon : L^0 \to \mathfrak{g}$ is a morphism of dglas. The deformation diagram is *rigid* if $\epsilon : H^0(L^{\bullet}) \hookrightarrow \mathfrak{g}$. We are also going to assume that L^{\bullet} is non-negatively graded and dim $H^i(L^{\bullet}) < \infty$.

2. PROREPRESENTABILITY RESULTS

As Hiro explained, to a dgla we can assign the corresponding functors from $\operatorname{Art}_{\mathbb{C}}$ to groupoids (DGM) and to Sets (IsoDGM). In the terminology of Marco Manetti, these are the functors MC and Def_L . One then is interested in the prorepresentability of the deformation functor or, if less lucky, in having a hull for IsoDGM or pro-representing a different functor (see below).

Theorem 2.1. If (L^{\bullet}, ϵ) is formal, rigid and $\epsilon : L^0 \to \mathfrak{g} \to 0$, then $IsoDGM(\ker \epsilon)$ is prorepresented by the germ at the origin of

$$C_{H(L)} \times \mathfrak{g}/\epsilon(H^0),$$

where $C_{H(L)}$ is the cone in H^1 given by the cup product.

Corollary 2.1. Given a formal dgla L^{\bullet} with $H^0(L^{\bullet})$, $IsoDGM(L^{\bullet})$ is prorepresented by the germ at the origin of $C_{H(L)}$.

The corollary follows from the Theorem by taking $\mathfrak{g} = 0$ and $\epsilon = 0$.

Notation: If we have a transformation groupoid (X, G) and a set Y with Gaction, we define a new transformation groupoid, $(X, G) \bowtie Y := (X \times Y, G)$, where G acts on the product by the diagonal action.

The proof of the theorem uses the following Lemma, which is also often used in applications.

Lemma 2.1. If $((L^{\bullet}, d = 0), \epsilon)$ is rigid, then $C_{H(L)} \times \mathfrak{g}/\epsilon(L^0)$ prorepresents the functor $IsoDGM(L, \epsilon,) := IsoDGM(L) \bowtie \exp(\mathfrak{g} \otimes \mathfrak{m}).$

It is not true that $IsoDGM(L^{\bullet})$ is always prorepresentable! However, every splitting, δ , of L^{\bullet} gives a hull $Kur^{\delta} \to IsoDGM(L^{\bullet})$.

Intuitively: In abelian Hodge theory $\delta = Gd^*$, where G is the Green operator.

Formally, $\delta \in Hom^{-1}(L^{\bullet}, L^{\bullet})$, such that $\delta^2 = 0$, $\delta d\delta = \delta$, $d\delta d = d$. Then this gives a decomposition $L^i = B^i \oplus \mathcal{H}^i \oplus C^i = imd \oplus \ker d \cap \ker \delta \oplus im\delta$. One then shows that the functor Kur^{δ} is prorepresented by the germ of the origin of the space

$$\mathcal{K} = \ker \left(\eta \mapsto pr_{\mathcal{H}}[\Phi^{-1}(\eta), \Phi^{-1}(\eta)] \right) \subset \mathcal{H}^1,$$

 $\mathbf{2}$

where Φ is the Kuranishi map $\Phi(x) = x + \frac{1}{2}\delta[x, x]$.

 \mathcal{K} is invariant under quasi-isomorphisms, in particular, if (L^{\bullet}, d) is formal, $\mathcal{K} = C_{H(L)}$.

A version of the above statements is proved in Simpson-Eyssidieux:

If (L^{\bullet}, ϵ) is *rigid*, $IsoDGM(L, \epsilon, \cdot)$ is prorepresented by the germ at the origin of $\ker (\mathcal{H}^1 \ni \eta \mapsto pr_{\mathcal{H}}[\eta, \eta] \in \mathcal{H}^2)$.

3. First Applications

Theorem 3.1. Suppose (P,p) is a point in a closed orbit of $R_{DR/Dol}(X, x, G)$ and $C \subset H^1(L_{DR/Dol}^{\bullet})$ is the corresponding quadratic cone. Then the functor $IsoDGM(L_{DR/Dol}^{\bullet}, \epsilon,)$ is prorepresented by $C \times h^{\perp}$, where h^{\perp} is the orthogonal complement to $\epsilon(A^0(adP)) \subset \mathfrak{g}$. Consequently, the completions of the moduli spaces at the origin satisfy:

$$\widehat{R_{Dol}(X, x, G)} \simeq \widehat{R_{Dol}(X, x, G)}, \ \widehat{M_{Dol}(X, G)} \simeq \widehat{M_{DR}(X, G)}$$

Idea of Proof:

Prove formality and then apply the GM theorem. For example, starting with a Higgs bundle, pick an HYM metric on (P, p), and write the usual decomposition:

 $D = D' + D'' = \overline{\partial}_P + \partial + \mathrm{ad}\varphi + \mathrm{ad}\overline{\varphi}, \ D' = \partial + \mathrm{ad}\overline{\varphi}, \ D'' = \overline{\partial} + \mathrm{ad}\varphi.$

There are natural morphisms of dgla's

$$(L^{\bullet}_{Dol},\epsilon) {\scriptstyle{\checkmark}} ((\ker D',D''),\epsilon) {\scriptstyle{\longrightarrow}} ((\mathcal{H}^{\bullet},0),\epsilon).$$

By the "principle of two types" $(\partial \overline{\partial}$ -lemma), this is a quasi-isomorphism. A similar argument works for the De Rham deformation theory.

4. Relative GM theory

Next we need a relative version of GM theory in order to deal with R_{Hod} . Consider (L^{\bullet}, d) : a dgla over $\mathbb{C}[\lambda]$, where the L^i are flat $\mathbb{C}[\lambda]$ -modules. We can assign to it a functor $\operatorname{Art}_{\mathbb{C}[\lambda]} \to Gpds$, using the same formulas as before. (Here $\operatorname{Art}_{\mathbb{C}[\lambda]}$ denotes the category of local Artin $\mathbb{C}[\lambda]$ -algebras.) That is, for a given $B \in \operatorname{Art}_{\mathbb{C}[\lambda]}$, the objects of our groupoid are elements $\eta \in L^1 \otimes_{\mathbb{C}[\lambda]} \mathfrak{m}_B$, satisfying $d\eta + \frac{1}{2}[\eta, \eta] = 0$, and the morphisms between two objects η, η' are determined by $\eta' = ds + e^s \eta e^{-s}$.

If P is a flat principal G-bundle with harmonic K-reductions P_K (where $K \subset G$ is the maximal compact), we consider the dgla

$$L^{\bullet}_{Hod}(P) = (A^{\bullet}(\mathrm{ad}P) \otimes_{\mathbb{C}} \mathbb{C}[\lambda], \lambda D' + D'')$$

One then shows:

- L^{\bullet}_{Hod} gives the deformation theory of \mathcal{M}_{Hod} near the twistor line of P. For that one has to check that if $B \in \operatorname{Art}_{\mathbb{C}[\lambda]}$, then $L^{\bullet}_{Hod}(B)$ is the groupoid with objects maps $Spec(B) \to \mathcal{M}_{Hod}$ plus an isomorphism of the induced map $Spec(B/\mathfrak{m}) \to \mathcal{M}_{Hod}$ with $Spec(B/\mathfrak{m}) \to \mathbb{A}^1 \to \mathcal{M}_{Hod}$ (the second arrow being the preferred section determined by P).
- L^{\bullet}_{Hod} is formal over $\mathbb{C}[\lambda]$: this involves the same strategy as above. By proving a statement about harmonic elements being a product, one gets

$$\widehat{R_{Hod}}(X, x, G) \simeq \widehat{R_{Dol}}(X, x, G) \widehat{\times} \mathbb{A}^1,$$

and similary for M_{Hod} and M_{Dol} .

PETER DALAKOV

- In fact (using Artin's Approximation Theorem) one shows that the above holds etale locally trivially. Namely, given $P \in M_{Hod}(X, G)_{\lambda}$, there exists an etale neighbourhood $U \to M_{Hod}(X, G)$ of P, and and etale morphism $U \to M_{Hod}(X, G)_{\lambda} \times \mathbb{A}^1$.
- The above implies the *isosingularity principle*: Given a point $y \in R_{Dol}(X, x, G)$, there exist $z \in R_{DR}(X, x, G)$, together with isomorphic etale neighbourhoods. The local systems corresponding to y and z have isomorphic semisimplifications.

4