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CONSTRUCTING VARIATIONS OF HODGE STRUCTURE 
USING YANG-MILLS THEORY AND APPLICATIONS 

TO UNIFORMIZATION 

CARLOS T. SIMPSON 

1. INTRODUCTION 

The fundamental group is one of the most basic topological invariants of a 
space. The aim of this paper is to present a method of constructing representa- 
tions of fundamental groups in complex geometry, using techniques of partial 
differential equations. A representation of the fundamental group of a manifold 
is the same thing as a vector bundle over the manifold with a connection whose 
curvature vanishes, and this condition amounts to a differential equation. On 
the other hand, the natural objects of geometry over a complex manifold are 
the holomorphic vector bundles and holomorphic maps between them. We will 
adopt a philosophy based on algebraic geometry, that these holomorphic objects 
are understandable, and this leads us to try to produce flat connections starting 
from holomorphic data. 

Briefly, the results are as follows. We solve the Yang-Mills equations on 
holomorphic vector bundles with interaction terms, over compact and some 
noncompact complex Kahler manifolds, yielding flat connections when certain 
Chern numbers vanish. An application in the compact case gives necessary and 
sufficient conditions for a variety to be uniformized by any particular bounded 
symmetric domain. 

The first such construction was the theorem of Narasimhan and Seshadri 
relating holomorphic vector bundles and unitary connections on a curve. It was 
later extended to higher dimensions by Donaldson, Uhlenbeck, and Yau. Their 
work serves as a paradigm for what we will prove, so it is worth describing first. 
Let X be a compact complex manifold. One can produce unitary connections 
using holomorphic vector bundles as follows. There is a natural operator a 
which reflects the holomorphic structure of a bundle E. Given a metric on E., 
there is an operator a defined by the condition that the sum D = a + a is 
a connection which preserves the metric. The curvature of D is a two-form 
F = D2 with coefficients in the endomorphisms of E. The equation F = 0 is 
usually overdetermined, but there is a natural intermediate equation, itself of 
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interest in mathematical physics. Assume that X has a Kahler metric co. A 
metric on E is called Hermitian-Yang-Mills if the component of its curvature 
in the direction of co is a scalar multiple of the identity, an equation we write 
AF =A - Id. 

The condition needed to get a solution comes from a central concept in the 
theory of holomorphic bundles, the notion of stability defined by Mumford [24, 
37]. A holomorphic bundle is stable if for every proper subsheaf V c E, 

deg(V) deg(E) 
rk(V) rk(E) 

The degree of a bundle is the product of its first Chern class with the appropriate 
multiple of the cohomology class of w, so the notion of stability may depend 
on the choice of co. If this seems to take us from the realm of geometry, it 
should be pointed out that when X is a projective variety the class of w is 
the same as the hyperplane section, and degrees and Chern classes may then be 
calculated as intersections of algebraic cycles. 

The fundamental theorem is that an irreducible holomorphic vector bundle 
has a Hermitian-Yang-Mills metric if and only if it is stable. This was proved 
for curves by Narasimhan-Seshadri [25], for surfaces by Donaldson [7], and in 
general by Uhlenbeck-Yau [30]. Donaldson gave a simplified proof for projec- 
tive varieties in [8]. The application to constructing flat connections is based on 
the fact that if the Chern classes of E vanish then any Hermitian-Yang-Mills 
metric is flat [34, 35, 36]. In fact only certain classes have to be checked: it 
is enough that cl (E) = 0 and c2(E).[ ]n-2 = 0. The irreducible flat unitary 
connections are given by stable bundles with such Chern classes vanishing. 

The origin of the present work was an attempt to parametrize certain other 
flat connections, the variations of Hodge structure defined by Griffiths. A com- 
plex variation of Hodge structure [10, 11, 5] is a C? vector bundle V with 
a decomposition V = Ep+q=w VP,q a flat connection D satisfying Griffiths' 
transversality condition 

D p,q -+Aol ( VP+I,q-1l) A1 ?( VP,q) G) A0 ( VP,q) ) A '( VP ),q 

and a polarization. A' J denotes differential forms of type (i , j) on X, with 
coefficients in the indicated bundle. A polarization is a parallel Hermitian form 
which makes the Hodge decomposition orthogonal, and which on Vp,q is pos- 
itive definite if p is even and negative definite if p is odd. Griffiths came up 
with this definition to encapsulate some facts about the monodromy and varia- 
tion of period matrices in holomorphic families of complex manifolds. When a 
variation of Hodge structure comes from a family of manifolds, there is a lattice 
in V preserved by the connection, coming from the integral cohomology of the 
members of the family. Griffiths included the existence of such a lattice as part 
of his definition, but we leave that condition out. Dropping that requirement 
means that there are many more complex variations of Hodge structure, and in 
particular a variation can be perturbed or changed in a continuous family. This 
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leads to the question of whether there is a naturally associated geometric object 
which can serve as a parameter. 

After considering the set of infinitesimal deformations of a variation, it be- 
comes evident that one should make the following definition. A system of 
Hodge bu,;idles is a direct sum of holomorphic bundles Ep q together with maps 
6 : Ep q - Ep 1 q+I 0 I1 such that 0 A 0 = 0. From a variation of Hodge x 
structure, a system of Hodge bundles is obtained in a natural way: different com- 
ponents of the connection D give holomorphic structures a on the VP ,q, and 
holomorphic maps 0. If a variation of Hodge structure comes from a family 
of varieties, the associated system of Hodge bundles is easier to calculate than 
the variation itself. Our aim is to see how to construct a variation of Hodge 
structure starting from a system of Hodge bundles. A variation gives a holo- 
morphic map from the universal cover of X to the classifying space for Hodge 
structures [10], which is sometimes a Hermitian symmetric space. Thus one 
application of the construction is to give a criterion for uniformization, which 
we will discuss below. This paper accomplishes the construction of variations 
of Hodge structure when X is a compact Kahler manifold or a quasiprojective 
curve, and some progress is made in the higher dimensional noncompact case. 
For now, fix the assumption that X is compact. 

The basic idea is to develop the theory of Narasimhan-Seshadri, Donaldson, 
and Uhlenbeck-Yau to apply to this situation. Notice that the Hermitian form 
preserved by the flat connection of a variation is not in general positive definite, 
so the structure group is noncompact and the construction of unitary connec- 
tions does not directly apply. However, a variation with V = V 00 is unitary, 
and a system of Hodge bundles with E = E 00 is just a holomorphic bundle, 
and with this in mind the previous results may be taken as a model. A metric on 
a system of Hodge bundles is a direct sum of metrics on the Ep q, and any such 
metric gives rise to a connection which preserves the associated indefinite form. 
We try to solve the Hermitian-Yang-Mills equations AF = A * Id. Again the 
geometric condition is that of stability, which is the same as before except that 
only subsystems of Hodge sheaves, in other words subobjects compatible with 
0 and the direct sum, are considered. The resulting theorem (Proposition 8. 1) 
is that the irreducible complex variations of Hodge structure correspond exactly 
to the stable systems of Hodge bundles with cl (E) = 0 and C2(E). [4W]n-2 = 0. 
When X is a compact curve this theorem is due to Beilinson and Deligne. 
Generalizing [25] had yielded a partial result, that existence of variations is 
preserved in families of stable systems, at which point Deligne explained their 
stronger result to me; this conversation provided one of the starting points for 
trying to treat the higher dimensional case. 

In a recent paper Hitchin treats a somewhat more general situation for bun- 
dles of rank 2 on a curve [14]. He looks at pairs consisting of a holomorphic 
bundle E and a map 0: E -+E Q which he calls the Higgs field. He solves 
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the Yang-Mills equations with this interaction term to establish a correspon- 
dence between stable pairs of degree zero and irreducible local systems of rank 
2. We will adopt Hitchin's setting as the most general one for our treatment, and 
define a Higgs bundle on a complex manifold X to be a pair (E, 0), usually 
also making the integrability requirement 0 A 0 = 0. In extending the previous 
work, the definition of stability of a Higgs bundle E is made by considering 
sub-Higgs sheaves F c E, in other words subsheaves preserved by 0. The 
analogue of the 0-operator on a holomorphic bundle is the operator containing 
all of the data of a Higgs bundle, namely D" = a + 0 . For any choice of metric 
on E there is an operator D' = a + 0 with a defined as before and 6 defined 
by (Oe, f ) = (e, Of ) . This yields a connection D = D' + D" which will not 
in general preserve the metric. The connection has a curvature F, and the 
Hermitian-Yang-Mills equation is once again AF = A Id. We may now state 
the main result of the paper. It occurs in ?3 as Theorem 1 and Proposition 3.4. 

Theorem. Every stable Higgs bundle E has a Hermitian-Yang-Mills metric. If 
6A A = 0, and cl(E) = 0 and c2(E).[ ]n 2 = 0 then the connection is flat. 

The results on variations of Hodge structure follow from this, because a 
system of Hodge bundles is a Higgs bundle with the extra structure of a Hodge 
decomposition, and the connection constructed will be compatible with this 
extra structure. 

In fact it turns out that all irreducible flat connections are constructed by this 
theorem, as shown in Hitchin's case in the postscript written by Donaldson [9]. 
In general Corlette [3] shows that any irreducible flat bundle admits a harmonic 
metric (and Donaldson's argument works too). The Siu-Bochner formula that 
Corlette uses in ?5 of [3] implies that a flat bundle with harmonic metric comes 
from a Higgs bundle in the above way. 

The technique used to prove the main theorem is a combination of the tech- 
niques of Donaldson [7, 8], and Uhlenbeck-Yau [30]. In ?5 we define Donald- 
son's functional, which is an integral of secondary characteristic classes. We 
then give an estimate (5.3) for the size of a metric in terms of the functional, 
using the method of Uhlenbeck-Yau. This is where the stability assumption 
comes in. In ?6 we construct a solution of the nonlinear heat equation, which 
in the limit approaches the desired metric because of the estimate from ?5. 

We come now to the question of uniformization. The simplest nontrivial 
example of a system of Hodge bundles of degree zero on a curve X is obtained 
by choosing a square-root Q1/2 of the canonical bundle, and setting 

x~~~~~ 
E =' Q 1/2 E =' Qx 1I 

with the obvious isomorphism 0. If the genus of X is g > 2 then the degree 
of the only possible saturated subsystem, E?" , is < 0 so E is stable. Thus E 
gives rise to a variation of Hodge structure. The classifying map for this varia- 
tion is an isomorphism between the universal cover of X and the unit disc, and 
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the monodromy representation is one of the 22g liftings of the representation 
in PSU(l , 1) given by the uniformization, to 7r1 (X) -* SU( l 1) . 

One of the motivations for proving the main theorem in higher dimensions 
was the hope of similarly obtaining results about uniformization of higher di- 
mensional varieties. We obtain a general result for compact Kahler manifolds 
by introducing the notions of principal variation of Hodge structure and system 
of Hodge bundles. These will be explained in ??8 and 9. Theorem 2 is that X 
is uniformized by a Hermitian symmetric space if and only if a uniformizing 
principal system of Hodge bundles of the type corresponding to that space ex- 
ists, is stable, and has a second Chern class equal to zero. If X is projective 
then these conditions are algebraic, so a corollary is Kazhdan's theorem that the 
property of being uniformized is preserved by Galois conjugation. 

The statement can be simplified in some cases. For questions of uniformiza- 
tion by the unit ball, one considers the system of Hodge bundles whose compo- 
nents are Q1 and x, with the obvious map 0 . If this system is stable then 
it satisfies the Bogomolov-Gieseker inequality 

(2c2 (X) _- n 1 cI (X)2) []n2 > 0 

and if equality holds, then X is covered by the unit ball. When X is a surface 
of general type, this yields a proof of the theorem of Yau and Miyaoka that 
c2 < 3c2 and if equality holds then the surface is uniformized by the ball. For 
products of discs one obtains the following statement: if the tangent bundle is a 

(X2 n2 direct sum of line bundles of degrees < 0, and if (2c2 (X) - c (X) ).[]n-2 = 0, 
then X is covered by a product of copies of the unit disc. 

Deligne-Beilinson and Hitchin gave proofs of the uniformization theorem for 
curves from their results. The uniformization results in ?9 are similar to results 
already known by the technique of Kahler-Einstein metrics [31, 18]. 

So far we have been discussing the case of a compact complex manifold X. 
However it turns out that the proof of the theorem works as well for some 
noncompact X. The assumptions needed on X and the growth of the metric 
co are explained in ?2. Essentially X is a Zariski open subset of a compact 
manifold X and the metric wo extends smoothly to X. 

As before we start with a Higgs bundle E on X, but now an additional 
set of initial data is needed, in the form of an initial metric on E with AF 
bounded. These initial data are necessary because knowledge of the analytic ob- 
ject E alone does not uniquely determine the connection to be constructed. An 
initial metric determines growth conditions at infinity, and we consider other 
metrics which are bounded with respect to the initial one. It also allows us 
to define Chern classes of E and of subsheaves of E, by integrating Chern 
forms obtained from the initial curvature. In particular there is a notion of 
stability. The main theorem is the same as before, that if E is stable then there 
is a Hermitian-Yang-Mills metric in the class of metrics being considered, and 
if furthermore the determinant of E is flat and c2(E).[(w]n-2 = 0 then there 
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is a flat metric bounded with respect to the initial one (Theorem 1, Proposi- 
tion 3.4, and Corollary 3.6). The main points in extending the proof from the 
compact case are that Stokes' theorem still holds, allowing us to define Don- 
aldson's functional; that the equivalence between Ll and C0 estimates can be 
obtained from the compactification X; and that we can solve the heat equation 
with boundary conditions on exhausting compact subsets X,P, then take the 
limit as o -* oo0. 

Unfortunately this theorem does not represent the final desired goal. Re- 
member that we are seeking to relate flat or Hermitian-Yang-Mills connections 
to the natural holomorphic objects of complex geometry, preferably over a com- 
pact space. The choice of initial metric falls outside of this class of objects, so 
what remains to be done is to relate the initial metric to some extra holomor- 
phic data on the completion X. There are four related problems: to construct 
initial metrics; to characterize the metrics by data on an extension of the bundle 
to X; to show that the metrics constructed represent all possible choices; and 
to calculate the Chern classes of E and its subobjects in terms of the holo- 
morphic data on the extension to X, thereby analyzing the notion of stability. 
Once these are accomplished then the theory will be satisfactorily extended to 
noncompact varieties, and we can expect to get uniformization results as well. 
(The Kahler-Einstein technique for obtaining uniformization results has been 
partially extended to the noncompact case [17], but in this case also the choice 
of initial metric is not completely understood.) 

The above program is carried out for the problem of constructing variations 
of Hodge structure on a noncompact curve, in ? 10. The results give an indica- 
tion, albeit incomplete, of what the answer should look like in general. Suppose 
for example X = X - x. Then a regular system of Hodge bundles on X is 
defined to be a system of Hodge bundles E on X together with an extension of 
E to X and a filtration of the fiber Ep q by subspaces Ep q for 0 < ce < 1, 
such that 0 : E E, X Q (logx) . (The logarithmic differentials are those 
generated by dz/z at x.) The space E(, represents sections whose norms 
grow like lzlj in the initial metric near x. Theorem 3 states that these data 
on X characterize metrics on E over X with bounded curvature, and that the 
degree of E or a subsystem is calculated by taking the indices a into account 
in an obvious way. The result is similar to but weaker than Schmid's norm esti- 
mates [27]. Our proof, which is simpler and more in keeping with the methods 
of this paper, uses the curvature properties of the classifying space for Hodge 
structures [12] used by Schmid, and work of Cornalba and Griffiths on growth 
properties of metrics [4]. Finally in Theorem 4 we combine this with Theorem 
1 to obtain an equivalence between the regular systems of Hodge bundles which 
are direct sums of stable ones of degree zero, and the complex variations of 
Hodge structure on X. 

Some of the results of this paper for compact X have been announced in 
the note [29]. 
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2. ASSUMPTIONS ON X 

Let X be a complex manifold of dimension n, with a Kahler metric W. 
Let A denote the adjoint of wedging with w. We will make the following 
assumptions: 

Assumption 1. X has finite volume. 

Assumption 2. There exists an exhaustion function b with Aq bounded. Take 
>0. 

In Proposition 3.5 and Corollary 3.6 we will need the stronger assumption 
that 0 is plurisubharmonic and aOq is bounded, in other words 

O<VZT < C@. 

Assumption 3. There is an increasing function a: [0, oo) --+ [0, oo) with a(O) = 
O and a(x) = x for x > 1, such that if f is a bounded positive function on X 
with A(f) < B then 

sup ifI < C(B)a (f If l) 
Furthermore, if A(f) < 0 then A(f) = 0. 

These will be the only facts we will need, although the situations envisioned 
are those provided for by the following propositions. 

Proposition 2.1. If X is compact then it satisfies the above assumptions. 

Proof. The first two assumptions are clear, so we just have to show the third, 
following Donaldson [8]. For future reference we will treat the case where B is 
a function in Lp for p > n instead of just a constant. First work on a ball U 
of radius 1, and suppose Af < b. Let w be the function with Aw = b, and 

wlu = 0. The elliptic estimates together with L2p c C0 give w(O) < Cub lLb 
Subtract from f the harmonic function with the same boundary values and 
apply the maximum principle to get 

f (0) < w(O) + f? < CIblLp? + 
ou ou 

Dilating this to a ball U(x, r) of radius r on which Af < B, we get 

2(2< r2-2n/p 
1 f 

/ f (x) ? IIILI + r2n- JOl(x ,r) 
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Given R there will be some r between R and 2R such that R Lu(x ,r) f < 
Ilf IIL(X) . Therefore since f is positive, 

supIfl I CR2'2n'flBflLp + IlflB L( 

If flfflL < R2n+2-2nlp then supIfI < CR2>2n/P(1 + flBflLp), and in any case 
sup f| I C(flBIILP + flfHlLI)* 

Proposition 2.2. Suppose X is a Zariski open subset of a smooth compact Kahler 
manifold X, and suppose the metric co is the restriction of a smooth metric on 
X. Then the above assumptions hold for (X, co). If X - X is an ample divisor 
then we may assume that q is plurisubharmonic and aOq is bounded. 

Proof. Assumption 1 is clear. Stratify X = X U Ua Ya with Ya smooth. Let 
Ta be the positive distribution given by T (g) = fy g and let a be a solution 
to 

AO = T -C 

on X. Here Ca = vol(Ya)/vol(X). We may assume qc, positive. Near each 
point of Ya, the function oca is an exhaustion function for X. Therefore 
0 = Za Oca is an exhaustion function for X, and its laplacian is a constant on 
X. If Y = X - X is an ample divisor, we can choose a smooth metric with 
positive curvature on the line bundle L = &(Y) over X. Let q = -log 1. 
Then aOq is the curvature of Llx so 0 < /4TOOq < Cw. 

To prove Assumption 3 it suffices to show that if f is a bounded function 
on X which satisfies A(f) < B then considered as a function on X it satisfies 
A(f ) < B weakly (then use Proposition 2. 1). In fact we will show this when B is 
an L1 function, not just a constant. Proceed by induction on the stratification, 
so we may assume that Y = X - X is smooth, of complex codimension k say. 
We have to show that for a nonnegative function q compactly supported on a 
small ball around a point on Y, 

f fA(q) ? f 
Let V be the Greens function for the distribution Ty, so y(x) is approxi- 
mately d(x, y)2-2k or - logd(x, Y) if k = 1; we may assume V > 0; and 
AV = 0 on X. Note that this exists in the neighborhood where q is supported. 
For each N let vYN be a truncation of V so that VYN N near Y. We may 
assume f A/Nl < c 
and 

J dyINI < C. 

Now 
f 1- 

I 
VNA A 
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as N 00 and on the other hand, 

I fA ( (1-N ) 1- B 
since (1 - NYN)q is supported away from Y. The difference between these 
two is 

f| AVN -2f{(d VN,d? ) --+ O 

as N o 0, since f is bounded. This proves the proposition. 

Remark. The conclusion Af < B weakly holds under the assumption that 
f -I 0 as x -- Y instead of the condition that f is bounded. This is because 
we can assume AVN and dyN are supported on y(x) < 2N, so the supremum 
of f on the support of AVN or dvyN goes to 0 as N - oo. 

Proposition 2.3. If Y is a finite unramified cover of X, with the pullback metric, 
and if the above assumptions hold for Y then they hold for X. 

Proof. Let ox = Try/x(qy). The rest is clear. 

Proposition 2.4. If X is a quasiprojective curve and X is its completion, and if 
w is a metric on X which locally on X looks like v(z)dz A df with 

flv(z)lP < 0 

for some p > 1 then the assumptions hold for (X, w). 

Proof. The volume is finite since v is integrable. To construct the exhaustion 
function q, use a Greens function near each of the punctures, to get a function 
whose laplacian is compactly supported on X. To prove Assumption 3, let A0 
denote the laplacian with respect to the euclidean metric dz A d-z on X (near a 
puncture). Thus A0 = vA. If f is a function with A(f) < B then AO(f) < Bv 
on X. The argument in Proposition 2.2 shows that AO(f) < Bv weakly on X. 
Now proceed as in Proposition 2.1. 

Remark. I do not think Assumption 3 is true if one assumes only that the metric 
is integrable; for example I do not think it is true for a metric which looks like 
the Poincare metric at the punctures. However one could obtain a bound which 
is not uniform on X. 

3. METRICS ON HIGGS BUNDLES 

Let X be as above. Following [14] we define a Higgs bundle on X to be a 
holomorphic vector bundle E together with a map 0: E --E ? Q. Let D" 
denote the operator a + 0 . If H is a metric on E then we get an operator OH 

so that dH = a + H is the metric connection on E, and we can define OH by 

( U, IV)H = (U, IHV)H- 
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Set 
DH = H + OH 

and then 
DH =D +DH 

is a connection on E. Let FH denote its curvature, and let FH1 denote the 
trace-free part of FH. 

Lemma 3.1. The following formulas from the usual case still hold: 
(a) VCT[A , D"] = (DH)* and VT[A, DH] = -(D"); 
(b) if s and h are selfadjoint sections of End(E) then 

2 
ID"(s)hl' = -XVTATr(D (s) * h DHs); 

(c) if H = Kh for a positive selfadjoint h then 

DH = DK + h DK(h) 
AK(h) = hV (AFH- AFK) + V'-TAD"(h)h'DK(h) 

where the laplacian is A' = (D') *D = V/Z4AD D; and 
(d) if H=Kh then 

AlogTr(h) < 2(QAFH IH + IAFKIK) 

In (c) and (d), if det(h) = 1 then the curvatures can be replaced by the trace-free 
curvatures F 

Proof. Write 0 = E Aidzi in normal coordinates. Then OH = EA* d1 and 
-[A, dzi] = (d 1)* which gives (a). For (b) note that if s is selfadjoint then 

[A',s]=-[A, s] so 

-,V/-ATr([A1 Is]dz h2 A [A',s]dz1) = 2Tr([A1,s]h([A1 ,s]h)*) 

= IA(s)hdzl2. 
For the first part of (c), 

OH=h OKh OK + h [OK,h]. 

The second formula follows from the first, using AF = A(D"D' + D'D"). 
Now we show (d). Take the trace of the formula of part (c), and use the facts 

that D commutes with Tr, and h is pointwise positive definite, to get 

A. Tr(h) < Tr(h)(IAFHIH + |AFKIK) + V"TATrD "(h)h'DA(h). 

The last term is equal to -ID"(h)h 1/21K so 

A0 Tr(h) + ID"(h)h" 12K < Tr(h)(JAFHlH + IAFKK). 
On the other hand, 

2 

Tr(h)A57 log Tr(h) = Aj7Tr(h) + 
I rh 
Tr(h) 
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The last term in this equation is 

ITr(D"(h)h"I2hh2)12 < ID(h)h1/212 
Ih 1/212 

-<I"hh 

To see this note that in general I >i Aibi 12 < Ei > Ai 12 Ei bib12 for vectors Ai and 
scalars bi; then choose an orthonormal basis of eigenvectors for h, so h - 1/2 = 

diag(bi), and let Ai be the diagonal elements (one-forms) of D"(h)h 1/2 

Therefore 

Tr(h)A57log Tr(h) < A57Tr(h) + ID"(h)h 1/212 'K 

The proof is concluded using the fact that A = 2A57= 2A0 on scalar functions. 
Donaldson, in [8], used an identical estimate for the laplacian of the highest 
eigenvalue of log(h) . The above version was suggested by Y. T. Siu. 

Now suppose (E, 0) is a Higgs bundle on X, with a background metric K. 
Make the assumption 

sup IAFKI < B. 
x 

Define the degree of E to be the real number 

deg(E, K) = I | Tr(AFK). 

A sub-Higgs sheaf of E is an analytic subsheaf V c E such that 6 V 
V ? Ox . If V is a saturated subsheaf then outside of codimension 2 it is a 
subvector bundle. Let 7r denote the projection onto V using the metric K; it 
is defined almost everywhere. The metric K restricts to a metric on V outside 
codimension 2, so we can define the degree by integrating outside codimension 
2. 

Lemma 3.2 (Chern-Weil formula). 

deg(V , K) = v/ZTJ Tr(7rAFK) - ID 7lK . 

This is either a real number or -Lx. If the degree is not -x then or E L .If 
X is compact then this is the degree of the sheaf V. 

Proof. D' = nD'7r and D" - 7rD",t. These imply 

AF = 7rAF7t + AD (;r)D'(7r) 

which gives the desired formula. One checks that the first Chern form defined 
by the metric where V is a bundle is a closed current on X. It represents the 
first Chern class of V outside of codimension 2, and hence on all of X. Thus 
if X is compact the above integral is the product of the first Chern class of V 
with [,]nf 1 as claimed. 
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Let A be a group acting by holomorphic automorphisms of X preserving the 
metric co and acting compatibly by automorphisms a: E -- E which preserve 
the metric K and act on 0 by homotheties: 

aOc- =A(a)6. 

Note that JI(a) I = 1 and 
a6Ka =i(a) SK 

so AFK= A(dk + O6K + 6K6) is preserved by A. 
We say that (E , K) is stable if for every proper saturated sub-Higgs sheaf 

V c E which is preserved by A, 
deg(V, K) < deg(E, K) 

rk(V) rk(E) 
We can now state our main theorem. The proof will be given in the next four 
sections. 

Theorem 1. Let (X , w) satisfy the assumptions of ?2, and suppose E is a Higgs 
bundle with metric K satisfying the assumption that sup IAFKI < 00. Suppose 
(E , K) is stable with respect to a group A acting as above. Then there is a metric 
H with det(H) = det(K), H and K mutually bounded, D"(K IH) E L 2, and 
H invariant under A, such that 

AFH = '0 

A metric whose curvature satisfies the condition AFH = 0 is called 
Hermitian-Yang-Mills. There is a converse to Theorem 1. 

Proposition 3.3. If E is a Higgs bundle with metric H such that 

AFH = 0 

then for any proper saturated sub-Higgs sheaf V c E, 
deg(V, H) < deg(E, H) 

rk(V) - rk(E) 

and if equality holds then E = V E3 V1 is an orthogonal direct sum of sub-Higgs 
bundles. 

Proof. It is obvious from the Chern-Weil formula [19, 34]. 

In the remainder of the paper we will give applications. Most of these will 
be constructions of flat connections. 

Proposition 3.4 (Bogomolov-Gieseker inequality). Suppose E is a Higgs bundle 
on X such that 

02 = 0 E OF E Q2 

Suppose H is a metric with AF' =0 . Then 

(2c2(F rl-c1 (EH)2) []n-2=CfTr(Fj =t)Cwn2 >0 
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I and if equality holds then FH = 0 In particular if Tr(F11) = 0 and 

c2(E,H)[w,]n =0 then the connection D is flat. 

Proof. See [30, 34, 35]. If 0 = 0 then the curvature is 
2- F=d +O(0)+(0)+00+00. 

The component F1 I = d + 06 + 00 consists of forms of type (1 , 1) on the 

base, and F' 1 = F' 1 refering to complex conjugation in End E with respect 
to the metric. The Riemann bilinear relations [32] imply that 

Tr(F1 " A 1 F cevn-2 = 2 12 _ 12) )n 

On the other hand, 6 is the negative of the complex conjugate of 0 with respect 
to the real structure on End E induced by the metric so the Riemann bilinear 
relations for forms of type (2, 0) imply 

n-2 C1 )2Wn. Tr(O (0) A a (0))w = Cw O(6) w 
The constant is the same so 

n-2 12 12) n 
Tr(FF) 2 =C ( F- t)AF 2_AF2 )w. 

Similarly for F' . 

If X is not compact, then the Chern classes measured with different metrics 
need not be equal a priori. We get the following statement suggested by S. T. 
Yau. 

Proposition 3.5. Suppose our exhaustion function X satisfies 0 < v/Tq0$0 < 
Cw. Suppose E is a Higgs bundle with 02 = 0, with an initial metric K such 
that sup IAFKI < 0 . Suppose E is stable. Then for the metric H constructed 
in Theorem 1, 

ATr(FH A FH)wc 2 < Tr(FK A FK) 2.- 

The same holds for F' since det(H) = det(K) . 

The proof will be given at the end of ?7. Combining Theorem 1 with Propo- 
sitions 3.4 and 3.5 we get 

Corollary 3.6. Suppose 0 < v'/TO0oq < Cw and let E be a Higgs bundle with 
02 = 0, with a metric such that sup IAFKI < 0, det(K) flat, c2(E, K)[w]n-2 = 

0 and E stable with respect to K and the action of some group A as before. 
Then there is a flat A -invariant metric H comparable to K. 

4. SOME CONSTRUCTIONS INVOLVING HERMITIAN MATRICES 

In this section we will review some constructions involving hermitian matri- 
ces. Let E be a Higgs bundle with a fixed metric K, and let S = S(E) denote 
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the real vector bundle of selfadjoint endomorphisms of E. Suppose o: R -+ R 
is a smooth function. Then we define a smooth map of fiber bundles over X 

?q : S --- S 

as follows: suppose s E S, then at each point in X, choose an orthonormal 
basis {e, } for E with s(e1) = Aie1, and set 

p(s)(ei) = ((i)ei 

Suppose T: R x R -- R is a smooth function of two variables. Then we define 
a map of fiber bundles 

T::S-+ S(EndE), 
where S(EndE) consists of elements of End(EndE) which are selfadjoint 
with respect to the metric Tr(AB *) . T is described as follows. Suppose s E S 
and A c End(E) . Choose an orthonormal basis {el } of eigenvectors of s with 
eigenvalues Al . Let {ei} be the dual basis in E* , and write A = >l y Ai el ej . 
Then set 

T(s)(A) = T (1, j)Aj ei ? ej. 
1 ,j 

Again this is well defined, smooth in s and over X, and linear in A. 
If the functions ?o and T are analytic, then we can express the constructions 

above as power series. If 
?9(A) = a, n 

then 
?(s) = snS 

If 
(21' 2) =E mn l 2n 

then 
T(s) (A) = E bmns Asm. 

The construction T gives a convenient way of expressing the derivatives of 
the construction ?o. More precisely, suppose ~o : R R is a smooth function. 
Define dp : R x R -- R by 

d~p(AI , A2 (AI j) _ , (A2), 
1 2 

which is taken as (dp/ddA)(Al ) if A 1= '2 * If s c S, then 

D % (s) =d?(s)(D"s) 

where the right side uses the obvious extension to form-coefficients in the second 
variable. To see this for example when ?o is analytic, note that if q (A) = An 
then 

d(p(AZ I2) = E 2 
i+j=n- I 
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whereas 
D (sn )= s'D"(s)s'. 

i+j=n-1 

The constructions (p(s) and TP(s) retain the same positivity properties as ? 
and '. For example if Sq(A) > 0 for all A, then So(s) is positive definite for 
all s. And if TP(A2I A2) > 0 for all Al ,2 then Tr(T(s)(A)A*) > 0 for all s 
and all A e End(E). 

We will describe how these constructions behave on Sobolev spaces. Fix a 
smooth metric K on a Higgs bundle E. Using the metric we can define the 
space L (S) of sections of the real bundle S. Let LP(S) denote the space of 
sections s such that s E Lp and D"s E Lp . Note that this is a condition on the 
derivative is and also a growth condition involving 0 if X is noncompact. 
For a given number b denote the closed subspaces of sections s with Is I < b by 
L0 and L1 ,b. Finally let P(S) denote the normed space of smooth sections 
s e S with norm 

||s||P = sup jsj + IID"sIIL2 + IIA'sIIL. 

The constructions p and ' behave in a slightly delicate fashion on Lp and 
Lp as is shown in the following proposition (c.f. [26]). They behave better on 
P since the C0 norm is controlled. 

Proposition 4.1. Let p and ' be functions as above. 
(a) The map p extends to a continuous nonlinear map 

0b Lo (S) -*Log(S) 

for some b 
(b) The map ' extends to a map 

: Lo (S)- Hom(Lp(EndE), Lq(End E)) 

for q < p, andfor q < p it is continuous in the operator norm topology. 
(c) The map y extends to a map 

(p L1 'b(S) -*Lb,(S) 

for q < p, and it is continuous for q < p. The formula D"'(s) = 
d(p(s)(D"s) holds in this context. 

(d) If p and ' are analytic with infinite radius of convergence, then the 
maps 

(: P(S) -* P(S), 

': P(S) -+ P(End(End(E))) 

are analytic. 

Proof. If ( and ' are functions as in the proposition, and if a bound IsiI < b 
is fixed, then there are constants so that 
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and 
'T(sl)(A) - T(s2)(A)| < Cls1 - S21 - JAI 

pointwise on X. From this, (a) is clear. To prove (b) note that flsI - S2flL. < 
CIIsI - S211LP since IsI - S21 < 2b . For any q < p we can choose r so that 
Lr . LP c L q so 

fl'(sl)(A) -T(S2)(A)fIIL < CISI -S211LPIHAHILP' 

To prove (c), apply part (b) to d~o. Note that 

D"(s ) - D"e p(s2) = d9(sj)(D"(s1 - S2)) + (dip(s) - dp(S2))(D "S2) 

so 

JID"y(sl) - D"O (S2)IlLq < bl1l, - S211L + CIISI - S2I1LpIIS21ILP 
(d) Suppose o and ' are analytic. Then the constructions are expressed in 
power series, so we just have to show that 

||Sr||P < cn||S||p 

But pointwise on X, 
ID"sml < mIsIm ID SI, 

IAD"Dtsm ? mSIMImSIADIIDI + M(M - l)ISIm I2 

and IDKsl = ID"sl since s is selfadjoint. These imply the desired inequality. 

5. DONALDSON'S FUNCTIONAL 

Let E be a Higgs bundle over X. Let SD denote the space of smooth metrics 
K such that 

f AFKIK < X. 

Due to the last part of Proposition 4.1, we can make ?5 into an analytic man- 
ifold with local charts 

P(SH) _>_ 

s - Hes. 

Divide Y into components such that each of these charts covers a component. 
Recall that P(SH) is the space of smooth sections s with norm 

llsIlp = sup IsI + fID"s1IL2 + flA'sflL. 

Let 3o be one of the components. For two metrics in this component K 
and H = Kes, define 

M(K, H) = -1 f Tr(sAFK) + f (T(s) (D"s), D"s)K 

where T is constructed as in the previous section from the function 

(X2 - i,) 
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This is the functional used by Donaldson in [7, 8]. M(K, H) is analytic in K 
and H, since K1 - AFK, LI is analytic with respect to the norm using a 
fixed Ko by Lemma 3.1. 

Proposition 5.1. If K, H, and J are three metrics in the same component 3O, 
then 

M(K, H) + M(H, J) = M(K, J). 

Proof. Donaldson defined M by a variational formula [7], and then in [8] 
derived the above formula. Both steps require integration by parts, so we have 
to be careful if X is not compact. To prove the proposition it suffices to show 
that 

2 92 0 
M(Ke" ,KetS e t2S) M(K,Ke e ) 

OtI t2 OtI t2 
at t= t2= O, and 

22 

2M(K, Kets)= &tM(Kets Ke(t+u)s 

at u= 0, t = 1. In the first, the left side is 

at f /Tr(s2AFKe,,s,) = X|fTr(s2AD DK(S1)) 

while the right side is 

f(DSI ,sD s2) = -T ATr(Dhs2 ADks1) 

(note that T(?) = ). These differ by 

IX A ~~~n-I -fi |x-I Tr(s 2aKSI) A ()n1 

For the second identity, the left side is 

(T (s)(D "s), D "s)K 

where 
922 

T (AI I 2) = ,)t (t T(tAI I tA2)) = e2'i 

Thus the left side becomes 

f(D s, D"S)Kes =-v A Tr(D"s A DesS) 

The right side is 
v'irIxA Tr(sD"DKess) 

so they differ by 
n-I 

-V/iT-fI Tr (SaKe,s) A( 



884 CARLOS T. SIMPSON 

Thus the following lemma (Stokes' theorem for X) will complete the proof of 
the proposition. It is clear if X is compact. 

Lemma 5.2. Suppose X has an exhaustion function X with fx IAkI < o, and 
suppose r1 is a (2n - 1)-form with fX 1,12 < 0. Then if di/ is integrable, 

| =0. 

Proof. Take X > 0. Let Xt be the set where q$(x) < t and let Yt be the 
boundary 4(y) = t. By Stokes' theorem 

Id4 12 = f(t - q)Ab < Ct. 

On the other hand, 

dt | IdXl = | Id 
so 

jTf Idl dt < CT. 

Stokes' theorem for the form q is 

|d= f C1 
and the L2 condition is f7 'i dt <C 

Now 

T dCl dt < Jill15 dt 

(T I Iq 12 )1/2 (yTI )112 

< CT1/2 

Therefore there is a subsequence ti x0 such that 

dq-*-0. 

Now we can give the main estimate involving M. 

Proposition 5.3. Fix a number B. Let E be a Higgs bundle over X, with a 
metric K such that supx IAFKI < B . Suppose a group A acts as before. Suppose 
E is stable with respect to the metric K and the action of A. Then there are 
constants such that 

sup lsl < Cl + C2M(K, Kes) x 
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for any A -invariant selfadjoint endomorphism s c P(S) with Tr(s) = 0, such 
that supx Isl < o and such that sup IAFKeS < B. 

Proof. We will use the method of Uhlenbeck-Yau [30] to show that if the es- 
timate does not hold, there is a sub-Higgs sheaf contradicting stability. First 
of all, by Lemma 3.1(d), Assumption 3, and the hypothesis that suplAFKI, 
supx IAFKeS < B, 

sup ISI < C1 + C2IISIIL 
x 

for the sections s we consider. Suppose the required estimate does not hold. 
We can find s contradicting the estimate with IISIIL' arbitrarily large, otherwise 
the estimate would hold after adjusting Cl . Let C, be a series of constants 
with Ci -x 00. Then there is a sequence si of sections of S with Tr(si) = 0 
such that 

IlSilIL I + 00 

IISiIIL, > C1M(Kss') . 

Set l = IISIIIL and u1 = 17Si , so IIUIIIL = 1, and sup 1uiI < C. We may 
assume the si are smooth, and preserved by the group A. 

Lemma 5.4. After going to a subsequence, ui uoo weakly in LI (S). The 
limit is nontrivial. If D: R x R -k R is a positive smooth function such that 
D(A I, A2) < (Al -A2)-1 whenever A1 > A2, then 

--I Tr(u 0AFK) + f (D(u.)(D" u.), D" u. )K < 0 

Proof. The second condition on s1 is 

211 li V Tr(u AFK) + 212 1 (TP(lu,l)(Du 
/ 

, D"u,)K ? C 1,. 

As 1 -loo, IT(IAI1 ,IA2) increases monotonically to (A -A2) - if Al > A2 and 
oo if A < A2. Fix a D as in the statement of the lemma. We may assume it 
is compactly supported since sup IuiI are bounded, so for 1 > 0 

(D(A I, A2) < IT(IA IA2) 
Thus 

Vf 
-- 

Tr(uiAtFK) +j (a;D(u1)(D"u,), DI Ud)K< CI l 1K2 

for i>>0. 
2 

Next we can show that u, are bounded in L1 . Since sup ulI are bounded 
there is a function D as above with 'D(ul) = c for some small constant c. The 

above formula shows that f ID"u,ik are bounded. Choose a subsequence so 
2 that u1 - uoo weakly in L1. 
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To show that uo_ is nontrivial, note that for any relatively compact Z c X, 
L2 LI(Z) is compact, so 

Jull I Jucj 

On the other hand, supx lu, < C and X has finite volume (Assumption 1), so 
for any c > 0 

/ Iuil < e 

if Z is big enough. Thus 

j iuO,j 1-c 

so u0:O . 0 
Finally we do the estimate for (D(u.). The term f Tr(uiAFK) is completely 

continuous in u1 E L2 . Therefore we have shown that given any c > 0, 

-/-I Tr(u AFK) + II"/2(u, )(D"uj)II2 ? c 

for i > 0. Now u- uO in Lo b so we can apply 4.1(b) to conclude that 
D 1/2(u ) -- b1/2(u() in Hom(L2 ,Lq) for any q < 2. D"ui are bounded in 
L so 

N/iTf Tr(u AFK) + IIF1/2 (uO)(D"Uj)JI2q < 2c 

for i > 0. On the other hand, I" 2(u )(D"ud) (D"2(u )(D" U) weakly 
in L q. By the Hahn-Banach theorem this implies that 

m | Tr(u cAF,) + IIF 1/2 (u.)(D"u00)II2q < 2c. 

This works for any c > 0 and any q < 2. If a measurable function satisfies an 
Lq norm inequality which is uniform for q < 2 then it satisfies the inequality 
for q = 2. This implies the inequality in the lemma. 

Lemma 5.5. The eigenvalues of uoo are constant, in other words there are A), 
... Ar which are the eigenvalues of u. (x) for almost all x c X. The Al are 
not all equal. 

Proof. It suffices to show that for all smooth functions p: R -* R, Tr (o(uoo) 
is a constant. We will estimate 

a Tr (p(u.) = TrD" Q(u.) = TrdSp(u.)(D" u). 

Suppose N > 0 is a large number. Choose D: R x R --* R such that 

a(n, A) = dd (A, A) 

and 
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for Al < A2. Then 

Trdp(uoo)(D u/) =Tr(D(u.)(D u.) 
and by Lemma 5.4 

f I F(u.)(D" 
2 oK7 f Tr(u AFK). 

Combining these, 
|| r(oo)IIL2 < N 

This works for all N, so OTr(p(u.) = 0. Tr(p(u.,) is real-valued, so it is 
a constant. The eigenvalues are not all the same because Tr(u.) = 0 but 
U,0 $4 0. 

A consequence of this lemma is that (p(u0) and (D(u00) depend only on 
(pi) and I(Dy),Aj), 1 < i,j < r. Lemma 5.4 now implies that D"(u0o) 
takes vectors with large eigenvalues to vectors with smaller ones: 

Lemma 5.6. If D : R x R -- R satisfies I(D,Ai,j) = 0 whenever Ai > Aj, 
1 < i,j ? r, then D(u)(D"u00) = 0. 

Proof. By the above comment, 1D can be replaced by 01 with 

(DI (Ai, ' j) = D(Ai ' Aj) ' 

N(11)2 (Y1 'Y2) < (Y1 -Y2)' for Y1 > Y2. 
Then as before, II1D(u0)(D"u00)II22 < I C, and this works for all N so 

D(u0,)(D"u00) = 0. This trick is essentially the same as the argument men- 
tioned in the appendix to ?4 of [30]. 

The notion of weak subbundle of a holomorphic vector bundle was intro- 
duced in [30], and we can make a similar definition. Let E be a Higgs bundle 
with a background metric K. An L 2-subbundle of E is a section ir E Li2(S) 

such that 72 = 7 and (I -7r)D(7r) =0. 
The limiting uoo constructed in the previous section gives rise to a flag of 

L 2-subbundles. Let AI .'A' denote the eigenvalues of u00 as before. Let 
{y} be the set of intervals between the eigenvalues and for each y choose 
p: R -+R with py (Ad = 1 for Ai < y and Py(Ai) = 0 for Ai > y. Define 

7y = pY(u00). 
We contend that the 7r are L 2 subbundles of E. They are in Li2(S) by 

Proposition 4.1(c), and 72 = 7r because p2 _ p vanishes at A1 ... A) . To 

see that (1 -7r )D"(iry) = 0, recall from ?4 that D"(7ry) = dpY(u00)(D"u.). Set 
y 

D y(Y, Y2) = (1 - Py)(Y2) * dpy(y, Y2) - It is easy to see that (1 - 7rY)D"(7rY) = 

(D(Uo) (D ifU.). On the other hand, (Dy)(A, ) = 0 if Ai > AJ. By Lemma 

5.6, 'Dy(u00)(D"u0o0) = 0, so 7ry is an L 2-subbundle. I 
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Define the degree of an L2 subsystem 7E by the Chern-Weil formula 

deg(7z) = f Tr(7AFK) - ID 12 

If 7E is projection onto a subsheaf then this coincides with our previous defini- 
tion. 

Lemma 5.7. One of the subsystems 7E constructed above formally contradicts 
stability of E in the sense that 

deg(7r,) deg(E, K) 

Tr(7ry) - rk(E) 

Proof. The trace is between 0 and rk(E) because y was an interval between 
two occurring eigenvalues. Write 

u = aId-Ea 7r7. 

Here a is the highest eigenvalue of u00 and a, is the width of the interval y. 
Consider the combination of degrees 

W = a deg(E) - E a, deg(7r) 
y 

- "'7f| Tr(u.OAF) +f Za.D" (7ry)K2 

Recall from ?4 that D" (7r) = dp (uoo)(D"u ), so 

W = -/-I Tr(u00AFK) +1 (Z a (dp)2 (uo) (D uOo), D uO) 

If Ai > Ai 1 ?i, j < r, then 

aE (dp +,) = (A - A+)- 

because (dp) 2(A i,)) =(i _ 2 if y is between A) and A, and is zero 
otherwise, and the sum of the a, for y between A, and Ai is equal to IA1-Ai . 
Now by Lemma 5.4, W < 0. On the other hand 

Tr(u.) = a rk(E) - E a, Tr(n) = 0, 

so 
deg(7r) deg(E, K) 
Tr(7r) - rk(E) 

for at least one y . 

2 We can now quote the regularity statement for L -subbundles from [30]. 



CONSTRUCTING VARIATIONS OF HODGE STRUCTURE 889 

Proposition 5.8. If E is a Higgs bundle with background metric K, and if 7T is 
an L2-subbundle, then there is a saturated sub-Higgs-sheaf V c E such that 7r 
is projection onto V, defined where V is a subbundle. 

Proof. Uhlenbeck and Yau prove this when E is a vector bundle [30]. Note 
that the statement is local, not depending on compactness of X. Their theorem, 
that a separately almost everywhere meromorphic function is meromorphic, is 
also proved in [28]. If E is a Higgs bundle then D" = a + 0 so the equation 
(1 - 7r)D"7r = 0 decomposes into (1 - 7r)j7r = 0 and (1 - 7r)0r = 0. If 
D Er c L2 then in particular j7r c L2 . Therefore we may use the proposition 
for the vector bundle E to conclude that 7r is projection onto a saturated 
subsheaf V, and furthermore V is preserved by 0. 

Proof of Proposition 5.3. The above constructions show that if the required es- 
timate does not hold, then there is an L 2-subsystem 7r of E which formally 
contradicts stability of E. By Proposition 5.8 it is projection onto a sub-Higgs 
sheaf V c E. By Lemma 3.2, deg(V, K) = deg(7r), and by construction V is 
preserved by the group A, so it contradicts stability of E. 

6. THE HEAT EQUATION 

In this section we will construct the solution of the nonlinear heat equation 
for metrics on a Higgs bundle E. This was done for compact X and vector 
bundle E in [7]. The proof when E is a Higgs bundle is identical. We adapt 
the same techniques to the noncompact case. The idea is to use the exhaustion 
function 0 given by Assumption 2, solve the heat equation with Neumann 
or Dirichlet boundary conditions on X for all time, then take the limit as 

0 . 

The heat equation is 
- idH H I A=-V'AF 

dtH 

If we fix an initial metric Ho and write Ht = Hoht then the equation becomes 

(dt + A) h =v-m hAFo + l- IAD (h)h Do(h) 

It is a nonlinear parabolic equation of type (2,1) in the terminology of [13]. 

Lemma 6.1. Formally if Ht is a solution of the heat equation, then 

(dt +A) IFtAIt <0. 

Proof. For any path of metrics Ht, 
d n' I H_dH) 
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so 
dAFD II-dH 
dt AF =AD DH H dt 

Now IAFS jr = -Tr(AFOiAFH) so for a solution of the heat equation, 

(t +A') IAF'l2 = - 2Tr (AF'AD D (H 1d?t)) 

- 2V,'TATr(D"AF'D'AF') 

- 2ViTATr(AF'D"D'AF') 

- 2ID"AF'12 
<0 

(note that AFI is antiselfadjoint). 

Now introduce the boundary conditions. Fix a number q' and let X. denote 
the compact space q(x) < qi, with boundary Y(,. Fix a metric K on E over 
X, and let O/lv denote differentiation of sections of E in the direction per- 
pendicular to the boundary using the metric connection dK. We will consider 
metrics H on E over X1 satisfying either the Neumann boundary conditions 

Hly =?0, 
or the Dirichlet boundary conditions 

Hly = Kly. 

Start with a metric Ho satisfying one of these sets of conditions (for example 
K ), and try to construct a solution Ht of the nonlinear heat equation with the 
boundary conditions. Since the heat equation is parabolic, and the Neumann or 
Dirichlet boundary conditions are good, the solution exists for short time [13]. 
Suppose we know that the solution exists for 0 < t < T. We will extend the 
solution to time T, and hence beyond, using the methods of [7] and [ 13]. 

Lemma 6.2. supx AF1 12 is decreasing with time in a solution of the heat equa- 
tion with boundary conditions. 

Proof. By applying a/lv to both sides of the heat equation, IAFI 2 satis- 
fies the corresponding boundary conditions. By Lemma 6.1 and the maximum 
principle, its supremum is decreasing with time. 

Proposition 6.3. If Ht is a solution of the heat equation with boundary conditions 
definedfor 0 < t < T, then Ht approach a continuous limit HT in C0 norm 
as T -* t and Ht are bounded in L2' uniformly in t, for all p. 

Proof. Following [7] define 

o(HI, H2) = Tr(H71H2) + Tr(H2 HI) - 2rk(E). 
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It gives a way of measuring distance between metrics. The same calculation as 
in [7, Proposition 13], using Lemma 3. 1, shows that 

(dt +A) a(HI ,H2) ?0 
if Hi and H2 are solutions of the heat equation. Furthermore, if HI and H2 
satisfy the boundary conditions, then so does a(HI, H2), so a is decreasing 
with time. The argument of [7, Corollary 15] shows that Ht -' HT in C0 as 
t -* T. The proof of the proposition is completed by the following lemma. 

Lemma 6.4. If Ht is a family of metrics on E over X,, with Ht -- HT in C? 
if Ht satisfy Neumann or Dirichlet boundary conditions, and if sup IAF'I is 
bounded uniformly in t, then Ht are bounded in Lf uniformly in t. 

Proof. The same as in [7, Lemma 19], but using the boundary conditions. Fix 
a background metric satisfying the boundary conditions, with which to measure 
derivatives. First we contend that Ht are bounded in C' . If not then for some 
subsequence ti there are points xi c Xv, with sup ldH = mi achieved at xl, 
mi -+ oo. Let di denote the distance from xi to the boundary Y(, . There are 
two cases. If 

lim sup dimi = > 0 

then we can choose balls of radius < di around xi and rescale by a factor of 
mi/c to a ball of radius 1, so sup IdHI = E is attained at the origin. Now the 
rest of the proof of [7, Lemma 19] works. On the other hand suppose 

lim sup dimi = 0. 

We may assume xi approach a point y on the boundary. Choose half-balls of 
radius 1/mi around y and rescale by a factor of mi to the unit half-ball. In 
the rescaled picture the points xi still approach y. After rescaling, IAF'I is 
still bounded, H is bounded, and sup IdHI = 1. Lemma 3.1(c) implies that 
A'(H) is bounded, and since H satisfies boundary conditions along the face 
of the half-ball, H is bounded in Lp on a smaller half-ball. Thus Ht -HO 

in Cl norm on a smaller ball. But IdHI = 1 is attained at xi y, but the 
total variation of Ht goes to zero, since the original metrics approached a C0 
limit, and we rescaled by larger and larger factors. This is a contradiction so Ht 
are bounded in C' . To finish the lemma and hence the proposition, Lemma 
3.1(c) together with the bounds on H, AF', and IdHI show that A'(H) is 
bounded. Elliptic estimates with boundary conditions show that H is bounded 
in L. 

Remark. If Ht does not satisfy boundary conditions, then supgldHI is still 
bounded, where g is the function giving distance to the boundary, for then 
only the first case occurs. Therefore Ht are bounded in Lffloc on the interior. 
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Corollary 6.5. If H is a solution of the heat equation for 0 < t < T then it can 
be extended past T; so the heat equation with Neumann or Dirichlet boundary 
conditions has a solution defined for all time. 

Proof. Since the equation is quadratic in the first derivative of H we can apply 
Hamilton's method [13] (fractional derivatives etc.) to deduce that Ht - HT 
in C??, and hence by the existence, patching, and regularity theorems of [13] 
the solution can be continued past T. 

Now we will use this existence result to prove the existence of a solution to 
the heat equation on X. 

Proposition 6.6. Let X satisfy Assumptions 1, 2, 3, and let E be a Higgs bundle 
over X. Suppose K is a metric satisfying the assumption that sup IAFI < B . 
Then there is a unique solution H to the heat equation with det(H) = det(K), 
with Ho = K, and such that supx IHIK < 00 on each finite interval of time. For 
this solution, sup IAFHIH < B. 

Proof. It suffices to prove existence and uniqueness for a finite interval 0 < 
t < T. For each (p such that Y is smooth, lift the inward pointing normal 
vector field 0/Ov to act on E as before, using the metric K. For each (P 
let H9,,t be the solution with Neumann or Dirichlet boundary conditions given 
by Corollary 6.5. We will take the limit as (p -- oo, by getting a C0 bound, 
then Co convergence, and then an L' bc bound using the remark following 
Lemma 6.4. First notice that Lemma 6.2 is independent of (, and the initial 
bound IAFKIK < B is uniform on X, so IAFH IH < B for all p and t. Write 
H = Kh . For each (p, Tr(hq,) satisfies the corresponding boundary conditions 
and 

(d +A') Tr(h) = -v"TTr(hAFK) + V'iTATr(D"(h)h1DK(h)) 

< C, Tr(h) + C2 

with C, and C2 independent of o (Lemma 3.1(c)). The maximum principle 
implies that Tr(h), and hence IHIK, are bounded on the finite interval 0 < 
t < T. The bound is independent of (p. 

Lemma 6.7. Suppose u is a function defined on some X( x [0, T], satisfying 

( d +A') u< 0, 

ult=o = ? 

and suppose there is a bound supx u < C4. Then 

u(x, t) < t). 
(p~~~~ 
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Proof. The inequality holds for t = 0 and for x E Yv . Assumption 2 is that 

IAkI < C3, So 

(dt+A )(+C3t)>O. 

Apply the maximum principle. 

If H and J are two solutions of the heat equation on X x [0, T] which are 
both bounded with respect to the initial conditions K, apply the above lemma 
to u = ai(H,J). u is defined on all X so the conclusion of the lemma 
becomes u = 0, which is the uniqueness H = J. 

Similarly to get C? convergence of Hv, on compact sets, let u,, = 

a(Hv, ,Ht .The Co bound derived above gives the bound on u, and u is 
a subsolution for the heat operator with u(0) = 0. So if 1 < z < (o < V then 

a(H , Hvl) <CT 

on X. For fixed , H, is Cauchy for ( - oo. 
Lemma 6.4 and the subsequent remark imply that on a fixed relatively com- 

pact Z c X, H are bounded in Lg(Z) as (0 -* oo. The bound is uniform 
in t. Let Lp1 (Z x [0, T]) denote the space of metrics with two Lp deriva- 
tives in the space direction and one in the time direction. By the heat equation, 
the time derivative of H is bounded in Lp so H, are bounded in Lp11. By 
going to a subsequence we may assume that for each relatively compact open 
set, H - H in Lp . By the Sobolev embedding H -* H in C1/0 over 

(P ~~~~2/1 ( 
compact sets. Therefore the limit is a solution of the heat equation. It satisfies 
the same C0 bound, as well as the bound sup IAFHIH < B . 

Remark. If a group A acts on X and E as in Theorem 1, and preserves K, 
then it preserves the curvature, so it preserves the heat equation. The uniqueness 
of the solution to the heat equation implies that the solution Ht is preserved 
by A. 

7. PROOF OF THEOREM 1 

Suppose K is a metric on E with sup IAFKIK < B and suppose that (E, K) 
is stable (with respect to the action of a group A as before). By Proposi- 
tion 6.6 there is a solution H of the heat equation, defined for all time, with 
det(H) = det(K) and sup IHIK < 00 uniformly on finite intervals of time, and 
sup IAFH IH < B. 

Lemma 7.1. Ht is in the same component as K in the space 3 of metrics, and 
M(K, Ht) is continuously differentiable in t with 

dM(K, Ht) =- J|AFHH dtIA'. 
Proof. First we show that IIHIlp is bounded. For finite time intervals H is 
bounded and AFH is bounded (in H norm which is equivalent to K norm) 
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so by Lemma 3.1(c) it suffices to show that f D "(h)h 1/212 < 00. It suffices to 
get a uniform bound over compact sets. Following the previous section find the 
solution h as a limit of solutions hf satisfying Neumann boundary conditions 
on Xv,. Since h- h in Lp it suffices to show that 

2, loc 

f ID"(h )h |12 < C 

with C independent of ep. To prove this, take the trace of Lemma 3.1(c), 
and integrate over Xv. The bounds on hf and AF obtained in the proof 
of Proposition 6.6 bound one term independently of ~o. The last term is the 
integral we want to bound, so the first part of the lemma is proved by noting 
that 

f j'Tr(h,) = 0 

since Tr(hq,) satisfies Neumann boundary conditions. 
Next we show that the derivative of M(K, Ht) is equal to -HlAF' I122. By 

Proposition 5.1 it suffices to do this for t = 0. Write Ht = Kes'. The heat 
equation gives 

lim v =-V'TAFK; t-0 t 

uniformly on compact sets. The bound IAF1 1 < B and the heat equation imply 
that 

sup IStI < Ct 

so 

lim ! / Tr(sAFK) = Tr(AF'AF) = f IAF1 12. 

As to the second term in M, write h = eS and note that since these are 
bounded, 

f(T(s)D"s, D"s)K < CIID"(h)h' /22IL2 

so it suffices to show that 

lim IIIDI(h)h 1/2,12 = 0. 

On each XI, use Lemma 3.1(c): 

A Tr(h) = X/- Tr((h, - 1)(AFH - AFK)) - ID"(h )h( 2 

Integrating the laplacian yields zero because of the Neumann boundary condi- 
tions, and sup Ih9 t - 11 < Ct independent of p because of the heat equation 
and the bound for AF. For a relatively compact Z c Xf c X, 

jlIDI(h )h 1/2 2< Ct c AFH -AFKI. (P (P 
I - 

HIP~~~~~~~~~( 
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As - oo, h(,, - h in LI (Z) and then we can let Z -+ X so 

IDIID(ht)h) 1/h22 < CtIAFH -AFKHL. 

On the other hand, AF is continuous in t, uniformly on compact sets, and it 
is bounded, so 

lim gIAFHI - AFK IILI = 0. 

Proof of Theorem 1. Assume (E, K) is stable with respect to the action of a 
group A. Let Ht = Kht be the solution of the heat equation constructed in the 
last section. It is A-invariant, so the estimate of Proposition 5.3 applies. Thus 
sup Ht K < C independent of t < oo since M is decreasing by Lemma 7.1. 
Furthermore M(K, Ht) is bounded below, so there is a subsequence of times 
t oo such that HIAF'1122 -+ 0. Next the formula for M shows that 

|ID I(ht)l2 <C 

independent of t, so we may further restrict to a subsequence so that Hi H00 
weakly in LI . In particular Hi ' H0 in L2 on any relatively compact open 
set, but Hi are bounded uniformly on X so Hi are Cauchy in L 2(X). By the 
uniform bound for IAFI and Lemma 3.1(d) we have 

A log Tr(H1 Hj) < 2B 

so Assumption 3 implies that logTr(H1 HJ) -+0 in Co, in other words H, 
HOO in C . The remark following Lemma 6.4 implies that Hi are bounded in 

LbP 1Oc so by going to a subsequence, Hl\ HOO weakly in Lp Thus F is 
L2,1oc 

so by going toa subsequence, Hi 002,1oC H, 
I 

defined, and AFH = 0 . Elliptic regularity and the equation of Lemma 3.1 (c) 
imply that HOO is smooth. It is mutually bounded with respect to K, preserved 

ii 1 2 by the group A, and D"(K H) E L 

We turn now to the proof of Proposition 3.5. Suppose v is a (1, 1) current 
on X with av = Ov = 0, and say v is compactly supported. Then define 

Mv(K,Kes) = /ZT Tr(sFK)o 2 \-I Tr(T(s)(D"s)D's) VWc 

Lemma 7.2. Suppose f is a compactly supported function on X, and set vi = 

-2v/700of. Then 

MV(K,H)= f(Tr(FK A FK) - Tr(FH A FHIX 
Proof. Differentiate both sides with respect to H. Proposition 5.1 holds for 
the functional Ml (the proof is the same), so on the left side if K is fixed and 
H varied, 

5M (K, H) = \/- Tr(H? 1HFH) vwn2. 
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On the right side the curvature varies according to 

r5FH = D D (H 1H). 

The fact that 02 = 0 implies (D" )2 =0 and (DH)2 = 0 so we have the Bianchi 
identities 

D"F /F O 

Therefore 

f Tr(FHA FH) = 2f fa Tr(H 15HFH)Oi2 

= \A/- f VTr(H- (HFH)w 2 

since f is compactly supported. This formula is the adjunction formula used 
by Donaldson in [7]. 

Fix the assumption that 0 < /ETOq < Cw). Recall that Xt is the set of x 
with q(x) < t and Yt is its boundary. Set 

ft(x) = max(0, 1 - I O(x)), 

vt = -2vTO9f0t. 
Write 

vt =t + -t 

with 
V+ 2 

- ' = t\qaaIx, 
and vt a negative current concentrated on Yt 

Lemma 7.3. With the above notation for afixed t, suppose that K and H = Kes 
are metrics with HI y, = Kl I . Then 

f tf Tr(FH A FH)O) ? ft Tr(FK A FK)w) + I f s|jFKI 

Proof. Note that sly = 0 and vt is concentrated on Yt so 

d V7f + n-2 
d M, (K, Ke = \/-ITr(sFKeys)vt 0 

and 

M^ (K,KeY) = J fTr(sD"D' s)v nt) 2 

- - VZTJITr(D"sDKe,ss)lo< tn-2 

--I Tr(sDKe,ss)a(it )Wn 2. 
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The last term is zero because 0(vtj) is a current of order one concentrated along 
Yt. The other term is positive since v+ > 0. The derivative of M at y = 0 

+n2 is f Tr(sFK)vt+w) . Integrating from y = 0 to y = 1 gives 

M (K, Kes) > -Cf IsIIFKI 

Now apply Lemma 7.2. 

Proof of Proposition 3.5. Suppose H = Kh is the solution to the heat equation 
starting with a metric K. Find h as a limit of solutions h. satisfying Dirichlet 
boundary conditions on X,. Fix a finite interval of time so Ih9 I < C uniformly 
in q. Note that h9, -+ h in C? uniformly on compact sets. Suppose Z c X 
is a compact set. By Lemma 7.3, 

I fq Tr(FH A FH )w,n 2 < f,f Tr(FK A FK)wn2 + - fFKj. 

AFK is bounded so if the quantity on the right in Proposition 3.5 is not 00 
then f IFKI < 0 . Note that I - 1 as q -x+ 0. By the Riemann bilinear 
relations (cf. 3.4) 

n-2> 2 n 
Tr(F A F) >- _CIAFI W 

and sup IAFH I < C uniformly in q (6.2), so 

| ff Tr(FH A FH)anw 2 > -Cvol(X-Z). 

Therefore 
)(,)n-2 ~n-2 C 

Tr(F AFH ) < f Tr(FK A FK) + - + Cvol(X -Z). 

The constants do not depend on (0 or Z. Take the limit as ( -+ oo: 

Tr(FH A FH)W() ? f Tr(FK A FK)wt) + Cvol(X - Z) 

then take the limit as Z -- X. 

Remark. If the initial metric we started with satisfies sup IFK I < 00 then equal- 
ity holds in Proposition 3.5. To see this use the following lemma. 

Lemma 7.4. Suppose H and K are mutually bounded metrics such that 

supx FKI <0o and fx ID"K1 HI2 <0. Then 

Tr(FK A FK)wn2 <? Tr(FH A FH),n2. 

Proof. The total mass of the current vt is bounded by C/t for some C, and 

FK and s= log K-1 H are bounded, so the first term in MA, approaches zero. 
On the other hand, vt < Cw/t so the second term in MA, is almost negative: 

V t 

Now aTr7P(s)(D s) A D2s) A tk A tnl2 <i C AID" tI2 

Now apply Lemma 7.2 and take the limit as t - 00. 
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8. SYSTEMS OF HODGE BUNDLES AND VARIATIONS OF HODGE STRUCTURE 

A complex variation of Hodge structure ([10, 1 1, 5]) over X is a C?? vector 
bundle V with a decomposition V = (Dp+q=w VP q and a flat connection D 
satisfying the Griffiths transversality condition 

D :VP,q -+A? 0 (Vp+l,q-1 )@A'(Vp Tq) ( A' 0(Vp-1,q+1) 

and such that a polarization exists; this is a sesquilinear form ( , ) on V, 
hermitian symmetric or antisymmetric as w is even or odd, invariant under D, 
such that the Hodge decomposition is orthogonal, and such that (-)p-q(. * 

>0 on Vpq. 
A system of Hodge bundles on X is a direct sum of holomorphic bundles 

F = Ep qE together with maps 0 * -+ Ep' q+ 1 0x such that E=(p,q X 

02: E -+E 0 2 is zero. In particular a system of Hodge bundles is a Higgs 
bundle with action of the group A = U(1) x U(1). A metric on a system of 
Hodge bundles means a metric on the Higgs bundle E, preserved by A. It is 
therefore a direct sum of metrics on the bundles Ep q, and we can look at the 
indefinite hermitian form 

(U I V)K = ) (pq(U V)K 

for u, v E Ep q. Given a metric K we get a metric connection DK and 
this preserves the indefinite form. It also satisfies the Griffiths transversality 
condition. Thus if the curvature of K is zero, we get a variation of Hodge 
structure. Conversely given a variation of Hodge structure, we get a system of 
Hodge bundles in a natural way, and a polarization defines a flat metric on the 
system of Hodge bundles. The operators a and 0 are obtained as components 
of the flat connection of the variation, and the integrability conditions 0 = 0, 

2 2 
0(6) = 0, and 0 = 0 are obtained from D = 0. Therefore a system of Hodge 
bundles with a flat metric is the same thing as a polarized complex variation of 
Hodge structure. 

Suppose E is a system of Hodge bundles. A subsystem of Hodge sheaves 
is a sub-Higgs sheaf of E which is preserved by the group A. Make the same 
definitions of degree and stability as in ?3. Thus if X is not compact, these 
depend on the choice of an initial metric K on E such that sup IAFKI < oc. 
Theorem 1 in this case says that if E is a system of Hodge bundles which is 
stable with respect to an intial metric K, then there is a comparable metric H 
with the same determinant, such that AFH = 0. 

Proposition 8.1. Suppose X is compact with Kahler metric w. The category 
of complex variations of Hodge structure is equivalent to the full subcategory of 
systems of Hodge bundles E such that cl (E) = 0, c 2(E).[w(,]n-2 = 0, and E is 
a direct sum of stable systems of Hodge bundles of degree zero. 
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Proof. X satisfies the assumptions of ?2. If E is stable of degree zero, then by 
usual harmonic theory we may choose a metric on det(E) with AF = 0. By 
applying Theorem 1 we get a metric on E with AF = 0. If E is a direct sum 
of systems of degree zero then do this on each summand. Since 02 = 0 we may 
apply Proposition 3.4 to conclude that F = 0, so E comes from a variation 
of Hodge structure. On the other hand if E comes from a variation of Hodge 
structure then by Proposition 3.3 it is a direct sum of stable systems of degree 
zero, and all the Chern classes vanish since it has a flat metric. If E' and E" 
are variations of Hodge structure, the morphisms E' -* E" in the category of 
variations are the maps which preserve the connection. If f: E' -+ E" is a map 
of systems of Hodge bundles, we have to prove that D(f) = 0. Let K be the 
flat metric on E' e E" and let H be the metric obtained by pulling back with 
the automorphism 1 + f of E'E E" . Thus H = Kh with h = (1 + f)( 1 + f)* 
and H is also flat. Lemma 3.1 implies that 

A Tr(h) =_-D"(h)h-1/212 

but fxA'Tr(h) = 0 so D"(h) = 0. Therefore D"(f) = 0 and D"(f*) - 

D'(f)* = 0 as needed. 

Remark. Corollary 3.6 gives a construction of variations of Hodge structure 
when X in noncompact. This leads to the somewhat complicated problems of 
choosing initial metrics and understanding stability. We will discuss these when 
X is a curve, in ? 10. The higher dimensional case will be left to a later time. 

We now discuss a principal bundle version of Proposition 8.1. Define a 
Hodge group to be a semisimple real algebraic Lie group Go together with a 
Hodge decomposition of the complexified Lie algebra 

0 =EgP, P 

p 

such that [gP P ,g rr] c gp+r P r and such that (-1)P+l Tr(ad Uad V) > 0 
for U, V E g0'P. If Go is a Hodge group, let Ko be the subgroup corre- 
sponding to Lie algebra t = g'0 . It is the subgroup of elements k such that 
ad(k) preserves the Hodge decomposition of g . In particular ad(k) preserves 
the above positive definite form so Ko is compact. Let G, K denote the 
complexifications of Go, Ko respectively. 

Define a principal system of Hodge bundles to be a principal holomorphic K 
bundle P together with a holomorphic map 

0: T(X) -+ P xg 
such that [6(u), 0(v)] = 0. Here T(X) is the holomorphic tangent bundle. 
A metric H for a principal system of Hodge bundles is a C?? reduction of 
structure group of P from K to KO, in other words a principal Ko bundle 
PH c P. If (P, 0) is a system of Hodge bundles with metric PH c P, there 
is a unique connection dH on PH which is compatible with the holomorphic 
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structure of P. Let 6H be the complex conjugate of 0 . Then DH = dH+0+OH 
is a connection on the principal GH-bundle RH = PH X Go. A principal variation 
of Hodge structure for Hodge group Go is a principal system of Hodge bundles P 
together with a metric PH such that the curvature of the associated connection 
DH is zero. 

Suppose (PH, D) is a principal variation of Hodge structure. Fix a universal 
cover X. The flat connection on RH means that we can choose a flat triv- 
ialization q: RHI - Go. Then for each x E X there is a right Ko-coset 
(OPH(x) c Go. Thus we get a map X -* GO/KO. Just as in the case of usual 
variations of Hodge structure, GO/KO is a homogeneous complex manifold with 
horizontal tangent subbundle, and the map X -+ GO/KO is holomorphic and 
horizontal. I(X) is the group of covering transformations of X. The cov- 
ering transformations act on RH lj but will not preserve the trivialization qp. 
Thus there is a representation : 7r1(X) -* Go such that a(y)p(r) = (p(yr) 
for r E RHI and y E 7r1(X). The map x H-4 (OPH(x) from X to GO/KO is 
equivariant under this representation: 

(PPH(YX) = (POYPH(X) = (y) PH(X) 

The horizontal holomorphic tangent space to GOIKO at (OPH(x) is identified 
with P xK0g1 1(x) and the differential of X GO/KO is the map 0: T(X) 

p-1 ,1 P xKg 
A Hodge representation of Go is a complex representation V of Go together 

with Hodge decomposition V = 3 VP q such that the action of g is compatible 
with Hodge type, and such that Ko preserves Hodge type (this may not be 
automatic if Ko is not connected). A polarization for V is a metric K for the 
Hodge structure such that the associated indefinite Hermitian form 

(U,V)K = (_)pq(U, V)K, U, V E Vp, 

is GO-invariant. In particular g is a polarized Hodge representation. If V is 
a Hodge representation of G and P is a principal system of Hodge bundles 
then P XK V becomes a system of Hodge bundles. A polarization for V and 
a metric PH for P together give a metric H on the system of Hodge bundles. 

Suppose V is an irreducible polarized Hodge representation of Go. We 
say that a principal system of Hodge bundles (P, 0) is V-stable if the sys- 
tem of Hodge bundles P x K V is stable. Note that since Go is semisimple, 
det(P XK V) = 1 . If X is noncompact then this notion depends on the choice 
of an initial metric such that AF is bounded. 

Proposition 8.2. If a principal system of Hodge bundles (P, 0) is JV-stable for 
some family of irreducible polarized Hodge representations { Vi} which faithfully 
represents g, then there exists a metric PH such that the curvature of the metric 
connection is primitive: 

AF = O. 
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If in addition X is compact and c2(P XK g).[w()]n-2 = 0 then F = 0 so this 
gives a principal variation of Hodge structure. 

Proof. Fix an initial metric PH . If V is any faithful polarized Hodge repre- 
sentation of Go then this gives an initial metric Ho on V. The solution of the 
heat equation 

h- dhh - AF 

for metrics Ht = Hoht on V is unique and compatible with direct sums and 
tensor products. Thus if w is a tensor preserved by G then ht (w) = 1 for all 
t. This implies that ht E G [6], so the family of metrics comes from a family 
of metrics PH on P. Now stability of the Vi implies that the heat equation 

converges to a metric with AF = 0. If X is compact and c2(P XK ).[]n -2 = 0 
then we can apply Proposition 3.4 to conclude that F = 0. 

Remark. If X is not compact but 0 < VCT004 < Cw and we have a good 
initial metric with c2(P XK ).[]n-2 = 0 then we can apply Corollary 3.6 to 
conclude that F = 0. 

Finally we discuss a special case, projective variations of Hodge structure. Let 
V = 3 VP,q be a Hodge structure with a metric J and associated indefinite 
form ()j. Set 

Go =Aut(V, (-, -)j)1U(l). 

Its Lie algebra g is the space End(V)' of endomorphisms of V of trace 
zero; it has a natural Hodge decomposition, making Go into a Hodge group. 
The compact isotropy subgroup is Ko = Aut({VPq },J)/U(l). A projective 
variation of Hodge structure modeled on V is a principal variation (PH , D) 
for the Hodge group Go. 

Lemma 8.3. Suppose X is compact. If a system of Hodge bundles E is a direct 
sum of stable systems of the same slope (i.e. degree divided by rank) and satisfies 
equality in Proposition 3.4, then there is a corresponding projective variation of 
Hodge structure. The differential of the classifying map is given by the map 
0 : T (X) -- (End E) 1l 

Proof. E gives rise to a principal system of Hodge bundles, in other words a 
principal K-bundle P. By Theorem 1 and Proposition 3.4 there is a metric H 
on E with F1 = 0. This gives a metric PH on P with zero curvature, hence 
a projective variation. 

Corollary 8.4. Suppose L is a line bundle on X with a nonzero map L - OX 
and with L.H - > 0. Then L 2.Hn2 < 0 and if equality holds, there is a 
nontrivial representation 7r (X) -* PSL2(R) and an equivariant mapfrom X to 
the upper half-plane. 

Proof. The system of Hodge bundles (L,&x) is stable by the condition 
L.Hn-i > 0. The Bogomolov-Gieseker inequality 3.4 is L2.Hn-2 < 0. If 
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equality holds then we get a projective variation of Hodge structure. The Hodge 
group corresponding to (L , 6Vx) is PSU(1 , 1) and the classifying space is the 
unit disc, equal to the upper half plane via PSU(1 , 1) PSL2 (R) . 

9. UNIFORMIZATION 

Algebro-geometric characterizations of when a quasiprojective variety is uni- 
formized by a Hermitian symmetric space of the noncompact type have been 
obtained by Yau and others using Kahler-Einstein metrics [17, 18, 31]. In this 
section we will treat the question of uniformization from the point of view of 
variations of Hodge structure, applying the results of the previous sections. We 
will assume that X is compact because then the conditions obtained above for 
existence of variations of Hodge structure are algebraic in nature. 

A Hodge group of Hermitian type is a Hodge group such that the Hodge de- 
composition of g has only types (1, - 1), (0,0), (-l, l), and such that Go 
has no compact factors. In this case Ko C Go is a maximal compact subgroup 
and r = GO/KO is a Hermitian symmetric space of the noncompact type, in 
other words a bounded symmetric domain. Furthermore all bounded symmet- 
ric domains arise this way. One should be careful that there may be several 
groups Go corresponding to the same ?, but their connected components are 
all isogenous, so the Lie algebra g and its Hodge decomposition are determined. 

Fix a Hodge group Go of Hermitian type. A uniformizing bundle is a prin- 
cipal system of Hodge bundles (P , 0) such that 0: T(X) -- P XK g'I is an 
isomorphism. This data is just the data of a holomorphic reduction of struc- 
ture group for T(X) to K -- GI(n), where the map K -* Gl(n) is given by 
the representation g l l of K. A uniformizing variation of Hodge structure is 
a uniformizing bundle P together with a flat metric. 

Proposition 9.1. Let X be compact and let X be the universal cover of X. 
Then X is isomorphic to the bounded symmetric domain 2 if and only if a 
uniformizing variation of Hodge structure exists for some Hodge group Go with 
.= Go/Ko. 

Proof. Suppose a uniformizing variation exists. Then the classifying map is a 
holomorphic 7r (X)-equivariant map X - 9, with differential given by 0 

T(X) KgP x Kg1". In particular it is a local diffeomorphism. Now 7I (X) acts 
freely and discretely on X with compact quotient X, and preserves a metric on 
? . An easy argument shows that in this situation, X -> ? must be a covering. 
But ? is simply connected so X - as desired. Conversely suppose we are 
given X : . Let Go = Aut(?) be the group of holomorphic automorphisms. 
This is a Hodge group with Go/KO = ? . Since xl (X) acts holomorphically on 
X - we get a representation r I(X) -4 Go and the equivariant map X -+ 
gives a principal variation of Hodge structure by inverting the procedure of ?8. 
It is uniformizing because the differential is an isomorphism. 
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Remark. If X is not compact then we must include the additional assumption 
that there exists a complete metric on X such that the norm of - I is bounded 
measured in this metric. If there is a uniformizing variation satisfying this 
assumption then the map X - 9 must be a covering so X is uniformized. 

Write the decomposition of g into simple ideals g = E) g. These are sub- 
Hodge structures, and if GO is connected they are Hodge representations of Go. 
If (P, 0) is a uniformizing bundle, we can decompose P XK 0 = (DP XK gi 
locally on X, and the P xK 0, are locally subsystems of Hodge bundles. There 
is a unique finest global decomposition P xK 0 = 3 U. such that U1 are 
locally direct sums of the simple ideals P XK g i. The UJ may not come from 
representations of G. However, there is a subgroup G' c G which has the 
same connected component as G, such that the structure group of P can be 
reduced to K' = K n GC, and such that each U1 comes from a representation 
uof Go. The uj will be direct sums of the gi. From now on we will always 
assume that such a reduction has been made. 

Say that a uniformizing bundle (P , 0) is stable if it is uj -stable for all j, 
in other words if the systems Uj are stable. To understand this condition 
requires a lemma about Lie algebras of the type we are considering. W. Schmid 
explained to me how to prove it. 

Lemma 9.2. Suppose go is the Lie algebra of a Hodge group of Hermitian type. 
Suppose g is simple. If e e I then [g ,[g ,e]]= 0 

Proof. Let 

0 ,0 

Po =o 00 9-)g 

so 00 = to E O is a Cartan decomposition. To prove the lemma it suffices to 
show that if e, f E 0 ' then there exist x , y E g such that 

B([e, x], [f, y]) :$ O - 

Here B(u , v) denotes the Killing form -Tr(ad u v ad v) . Suppose [e , $ . 
Set x = f, y = e, so [f ,y] = -[e,x]. But B is definite on to so the 
associated Hermitian form is definite on t . Thus B([e, x], [f, y]) $ 0 . 

So we may assume [e, f] = 0. Then e + e and f + f lie in a maximal 
abelian subalgebra ao c Po We may choose a Cartan subalgebra j c t and 
roots /1l, . . ., fir for g01 such that aO is the span of the elements E. + EA 
where Efi is the standard vector of weight fi. In this situation the fli are 
strongly orthogonal: fli I fB3 and in fact J?i + 8j and fl, -Bj are not roots. 
We may write 

e=ZaiE, f=bJE. 

The condition that [e , f] 0 translates to: for all i either ai = O or bi = 0. 
Choose i with ai 0 ? and j with b1 $0 O. The results of Moore [23] give a 
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root a of t such that the projection of a onto the space spanned by the root 
vectors /B1 . r is 

In particular (a, /1i) > 0 sO a - /'i is a root, and similarly -a - /lj is a root. 
Set 

x = E_;, y = Ef_i . 

Note that (a - fli, ,BI) = 0 for 1 :$ i j . Thus a - /3i + f,l is not a root because 
a - /li - /3l is not a root, and similarly -a - /lj + f,l is not a root. Therefore 

[e, x] = [Efi, Eafi,] = Ea, 

[f, y] = [Efi -E_fiJ] = -a 

up to scalar multiples, so B([e, x], [f, y]) :$ 0. 

Corollary 9.3. Suppose g is the Lie algebra of a Hodge group of Hermitian type. 
If W c g is a sub-Hodge structure such that [g-1 , W] c W then 

dim W ll > dim W" l 

and if equality holds then W is a direct sum of ideals of g. 

Corollary 9.4. Suppose (P, 6) is a uniformizing system of Hodge bundles. Then 
the following conditions are equivalent: 

(i) (P, 0) is stable. 
(ii) P XK 0 is a direct sum of stable systems of degree zero. 
(iii) Each saturated subsystem ofHodge sheaves W C P xKg with deg(W) > 

0 is locally a direct sum of simple ideals P x K 0 i. 

Proof. Write P XK 0 = 3 Uj as above, then (i) => (ii) is clear. For (ii) => 
(iii): deg(W) = 0, and by Proposition 3.3 if W C P XK 0 is saturated then 
it is a direct summand, say P x g = W E W1 . In particular W and W1 are 
subsystems of Hodge bundles. Corollary 9.3 applies to W and WI, and in 
fact equality must hold for both because it holds for their direct sum, so W is 
locally a direct sum of simple ideals. For (iii) =t (i): if W c Ui is a saturated 
subsystem with deg( W) > 0 then W is locally a direct sum of simple ideals so 
W = Uj by minimality of the decomposition. 

Theorem 2. Suppose X is compact. X 9 if and only if there is a uniformiz- 
ing system of Hodge bundles (P, 0) for a Hodge group Go of Hermitian type 
corresponding to .Z, such that (P, 0) is stable and c2(P XK g)[w]n-2 = 0. 

Proof. If such a uniformizing system of Hodge bundles exists then Proposi- 
tion 8.2 gives a uniformizing variation of Hodge structure (P, D); Proposition 
9.1 shows that X- . Conversely if X- 0, we get a uniformizing varia- 
tion (P, D), and the associated system of Hodge bundles has a flat metric, so 
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C2(P XK g) = 0 . Proposition 3.3 shows that P XK g is a direct sum of stable 
systems of degree zero. 

Corollary 9.5. Let !r be a bounded symmetric domain, and let X be a projective 
algebraic variety over C. If !r is the universal cover of X then for any a E 
Aut(C/Q), 2 is the universal cover of V. 

This statement was already known by a combination of Margulis' theorem 
that X is arithmetic if the rank is bigger than one, Kazhdan's result that conju- 
gates of arithmetic varieties are arithmetic [16], and Yau's criterion in the rank 
one case [31]. Yau informs me that using Kahler-Einstein metrics he gets a char- 
acterization of varieties uniformized by Hermitian symmetric spaces in terms 
of ampleness of the canonical bundle and existence of a section of a symmetric 
power of the cotangent bundle. 

Proposition 9.6. Suppose X is projective and suppose (P, 0) is a uniformizing 
variation which we think of as a reduction of structure group for T(X). Write 
T(X) = 3 Vi corresponding to the irreducible components of the representation 
K c Gl(n). If the Vi are semistable vector bundles on X of degrees strictly 
less that zero, then (P, 0) is stable. So if c2(P XK g) .[w]n-2 = 0 then (P, 0) 
uniformizes X. 

Proof. First suppose G is connected. Let g = D g1 be the decomposition into 
simple ideals. Then g 1 = g 7 is the decomposition into irreducible rep- 
resentations of K. The P x - I 7 and their duals P XK gil 1 are semistable. 
Lie bracket 

1,-i -1,1 0,0 

is surjective, the left-hand side gives a semistable vector bundle of degree zero, 
and the right side gives a vector bundle of degree zero. Therefore P XK 

g0? is semistable. Suppose W C P xK g1 iS a subsystem of Hodge sheaves. 
Then deg(W0 0) < 0 and deg(W1 -l1) < -rk(W1 1 ) *u and deg(W-1 1) < 
rk(W-1 l) . where 

deg(PxKgl7) <0. 
Au rk(g71l ) 

Therefore 
deg(W) < (rk(W-1 1 1 -rk(1W)) *, < 0 
rk(W) ?(kW )r( and if equality holds then W = P XK g1, using Corollary 9.3. This proves that 

P XK gi is stable, which proves the proposition when G is connected. 
Now suppose G is not connected. Let G' be the connected component, 

K' = K n GC, and let f: X' -- X be the finite etale covering over which 
the structure group of P can be reduced to K'. The pull-backs f* VJ are 
semistable. If we decompose TX' = @ V into irreducible components for 
K' then the Vk are direct summands of the f * V1 so they are semistable, of 
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degrees < 0 . By the corollary with connected G , the pull-back f *P XK iS 
polystable. If W c P xK 0 is a saturated subsystem with deg(W) > 0, then 
f * W is a direct summand in f *P XK 0 . By 9.3, f * W is locally a direct sum 
of simple ideals, so the same is true of W on X. Now apply 9.4. 

Corollary 9.7. Suppose X is compact. If T(X) = LIE... E Ln is a direct sum of 
line bundles of degrees cl (Li).[]n- I < 0, and if (c (X) -2c2(X)).[']-- = 0, 
then X is a product of n copies of the unit disc. 

Proof. P is the principal K = C* x . x C*-bundle corresponding to LI E 
* eLn . The class c2(P X K) is represented by F, 1AF, + +Fn A Fn where 
Fi E 2(X) is the curvature of Li, so 

C2(P XK g) = cl (L1 )2 + . + cl(Ln)2 = cl (X)2 - 2C2 (X) 

up to a constant. Now apply 9.6. In this example c2(P XK g) was a linear 
combination of c I(X)2 and c2 (X). This does not seem to be true for general 
G, but W. Schmid informs me that it is true if K modulo its center is simple. 

Finally we treat the unit ball. There is a canonical system of Hodge bundles 
W= (Q ,6x) on X: Wl'? = Q1 and W?'l =<* 

Proposition 9.8. Suppose X is compact. If W is a stable system of Hodge 
bundles over X then 

(2c2 (X) - n + cl (X)2n) .[]-2 0 

and if equality holds then X is uniformized by the unit ball. 

Proof. Apply Lemma 8.3 to W. If equality holds it gives a projective variation 
of Hodge structure with group PU(n, 1). The symmetric space corresponding 
to this group is the unit ball Bn c Cn . The differential of the classifying map 
is 0: T(X) Hom(K2' x) so the classifying map gives the uniformization. 

If X is a curve there is no Chern condition, and the only saturated subsystem 
of Hodge sheaves of W = ( ,2X A9x) is &X itself. Thus W is stable if and only 
if the genus of X is > 2. Hence X is uniformized by the unit disc if and only 
if the genus is > 2. This is the classical uniformization theorem for curves. 

Remark. If X = X - Y is a noncompact curve, then one looks at W = 

(Q (log Y) ,x). Following ?10 below, one can choose an initial metric with 
logarithmic growth and bounded curvature, and then W is stable if and only 
if deg Q(log Y) > 0 . Theorem 1 then gives a metric with F' =0, and the 
uniformization theorem for X follows by using the remark after Proposition 
9.1. 
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Proposition 9.9 ([31, 22]). Suppose X is a projective surface. If c1(X)2 > 
2 3c2(X), c1(X)2 > 0 and c1(X).[wI] < 0 then W is stable so c1(X)2 = 3c2(X) 

and X B' . 

Proof. We will prove that the dual W* = (<x, T(X)) is stable. The only 
saturated subsystem of Hodge sheaves of rank two is T(X) itself, and that is 
taken care of by cl(X).[w-)] < 0. The saturated subsystems of rank one are 
the invertible subsheaves L c T(X) which are subbundles outside of a finite 
collection of points. We have to show that cl (L).[w-)] < Icl (X).[w-)]. Suppose 
the contrary. Let M = T(X)/L; it is torsion-free but not a line bundle. Let 
N = M** so N is a line bundle and M c N has quotient concentrated on a 
finite set. (<x, N) is a system of Hodge sheaves, and 

cl (N). [co] < 2 cl (X). [o-)] < O, 

so (<x, N) is stable. The Bogomolov-Gieseker inequality 3.4 implies 

C1 (N)2 < 0. 

T(X) is equal to N + L - (N/M) in the Grothendieck group, so 

c2(X) = cl (N)cl (X) -cl (N)2 - C2(N/M) 

> c1 (N)cl (X) - c1 (N)2 

because c2(N/M) < 0 since N/M is concentrated on a finite set. Therefore 

(3c, (N) - 2c, (X))2 > 4(c1 (X)2 - 3C2(X)) > 0 

by our hypothesis. On the other hand, we apply the Hodge index theorem. 

2c, (X) is in the interior of the negative half of the cone A2 > 0, while 3c, (N) 
is outside the cone and below 2c, (X). Therefore 3c, (N) - 2c, (X) is strictly 
outside the cone, so (3c, (N) - 2c, (X))2 < 0. This contradiction shows that W 
is stable, so the uniformization X B2 is attained. 

This argument is essentially the same as that given by Miyaoka to show that 
c2 < 3c2 for surfaces of general type [21]. The result on uniformization is 
known by work of Yau and Miyaoka [31, 22]. Unfortunately our argument to 
prove stablity does not seem to work in higher dimensions. I do not know how 
to go between the condition we have given, of stability of W, and the condition 
of Yau [31], that Kx is ample, by algebraic geometry. 

10. QUASIPROJECTIVE CURVES 

In this section we will treat the one-dimensional noncompact case. Let X 
be a quasiprojective curve, and let X be its smooth completion. Let w be a 
metric on X which extends smoothly over X. We will classify metrics with 
Lp curvature, p > 1, on systems of Hodge bundles over X, up to mutual 
boundedness. This together with Theorem 1 will provide a classification of 
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complex variations of Hodge structure on X. We follow the point of view of 
Griffiths' article [ 11 ] using the idea of the Kashiwara-Malgrange filtration [ 1 5, 
20]. 

Let j: X -> X be the inclusion and let Y = X - X. A regular system 
of Hodge bundles on Xalg is an algebraic system of Hodge bundles E on X, 
together with a filtration 

j E- U E 
aERY 

by coherent subsheaves indexed by the partially ordered set Ry, compatible 
with the Hodge decomposition, such that 

0: Ep q , E ,P1 q+1 0 QI(log Y); 
a aX 

such that 

whenever a y > fly for all y E Y, and 

E= n) E~; 

and such that 
E,>l = E, (-y) 

where g' = 1 for y = z and 0 otherwise. 

Construction. Suppose E is an analytic system of Hodge bundles on X, and 
suppose K is a metric. Then we can construct a family of sheaves aE on X: 
aEp q is the subsheaf of janIEp q consisting of sections e with growth near 
y E Y bounded by 

lelK < Cr('+V 

for any e > 0. Note that aElx E canonically. The following theorem plays 
the role of Schmid's Nilpotent Orbit and SL2-orbit Theorems [27]. 

Theorem 3. Suppose E is a system of Hodge bundles on X with a metric K, 
such that 

IIF KIP < 00 

for some p > 1. Then the aE are coherent, and 

0: aE,p q ,- aE,p- q+ I( Q I(log Y) , 

so aE is a regular system of Hodge bundles on Xalg. The construction 'a' 
commutes with taking determinants, duals, tensor products, and first Chern class. 
If H and K are two metrics on E such that a1E = aKE then H and K are 
mutually bounded. The construction 'a 'is an equivalence between the category 
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of metrized systems of Hodge bundles on X with L' curvature, with morphisms 
the bounded maps, and the category of regular systems of Hodge bundles on X . 

Proof. For flat metrics K this follows from [27]. We give an alternative argu- 
ment which works for curved metrics. This will occupy most of the rest of the 
section. The theorem is a local statement near the punctures, so assume that 
X is the punctured disc, and X is the disc. The proof of the first statement 
is based on the distance decreasing property for variations of Hodge structure, 
which works in the curved case as pointed out by Beilinson and Deligne: 

Lemma 10.1. Let E be a system of Hodge bundles on X, and suppose p > 1. 
For any metric K with fx IFKIP < oo, 

sup 101 <zloglzl 

where z is a local coordinate around a puncture y E Y. C depends on the Lp 
norm of the curvature. 

Proof. Use the euclidean metric on the disc. The curvature of the unitary 
bundle (End V) I Q is then just dk where dK is the metric connection 
for the holomorphic bundle (E 0). The following statement holds away from 
the zero set of 0: 

2 (2V'Tad Adk(0), 0) 
Alogl0l <? 

It is the statement that curvature decreases in subbundles, applied to the line 
subbundle of (End V) l Qx given by the holomorphic section 0 . 

Now note that dK = FK- 00 - 00 . The calculation of the negative horizontal 
sectional curvature of the classifying space for Hodge structures [12] amounts 
to the inequality 

(2VTadA(00 + 00)0 , 0) > Cl 2 

for some positive constant C. Furthermore, by multiplying the metric by a 
scalar factor eS with s bounded, we may assume that the curvature xVTAFK 
is negative (see below). Therefore 

Alog012 < _-CI0I2. 

This holds in a distributional sense everywhere since log IO1 2- -oo at the zeros 
of 0 . Now applying Ahlfors' lemma [1], we are done. 

This lemma allows us to conclude that 0: aE -> aEO2 I(log Y) preserves the 
filtrations. Furthermore, the curvatures of the individual bundles are bounded 

IdK2 f < f+ 
C 

K zlogIz112 
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with f E Lp. This implies that the aE ( are coherent, by the theory of 
Cornalba-Griffiths [4] with a minor modification. Their main trick is to multi- 
ply the metric K by a scalar factor eS. The curvature changes by DOs. If we 
set s = a + C log log I z with Au = f then this makes the curvature negative, 
in other words all of the eigenvalues of -= lAF are negative. The additional 
term a does not appear in [4] but it is bounded by the Lp estimates for A. 
The rest of the argument of [4] works. 

The main step will be to show that det(aE) a(detE). It is clear that 
det(aE)(, c a(detE)(1. The following lemma gives a preliminary bound in the 
other direction. 

Lemma 10.2. Suppose K is a metric on a constant holomorphic bundle 6k over 
the punctured disc, with negative curvature. Suppose that the eigenvalues of K 
are < 1 and that 

Idet(K)I < Clzl. 

Then there is a constant section e e Ck such that 

|elK < CIzI 

Proof. Since curvature decreases in subbundles, for any constant section e E Ck 
we have 

v/-j0 Alog lelK < . 

We will show that there is a sequence r1 and a sequence of vectors ei whose 
norm in Ck is 1, such that the area in IzI < r. where logliK ? 2 Ilogri is 

at least r3 . Since log Ieie K is subharmonic and less than zero on I z I 1, it is 
easy to see that we will get 

log lei IK < 6 logIzI 6_k 
in ri < IzI < 1. Now the el will approach a limit e and this estimate gives 

log le I<6klog Iz 

as desired. To choose the ei proceed as follows. Choose any sequence ri -i 0. 

k~~~~ The hypotheses imply that for any lzl < r1 there is at least one e E Ck such 
that Ie(z)IK ? 2 logr, . Let S denote the unit sphere in Ck . For each IzI < r 
then the area of the set of vectors e in S such that 

le(z)IK < 2r'1 

is at least r(2kl)/2k since 

le + f IK < |elK + If ICk < 2r k 

for any vector f with euclidean norm less than ri /2k. Therefore the total area 
in S x {zI < r, } where the K-norm of the vector is less than r 1 /2k, is at least 
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3 r3. But the area of S is finite so we can find a single vector e1 E S such that 
this holds, as desired. This proves the lemma. 

Remark. The conclusion of the lemma still holds under the weaker curvature 
assumption 

IFKI?f K - f + Iz log Iz12 

with f E L', because we can use the trick of modifying the metric by a scalar 
eS as above, so the curvature becomes negative. Include c log I z in s for a 
small e so as to preserve the assumptions K < 1 and det(K) < Clzl. 

To get a precise bound for a(detE) we use this crude estimate on finite 
covers of X ramified over the puncture. Let ir: W -h X be the n-fold cover 
of the unit disc z = tn ( z is the coordinate on X and t the coordinate on 
W). Let G be the Galois group, the group of nth roots of unity. If (E, K) is 
a metrized system of Hodge bundles on X then there is an obvious pull-back 
*E E. On the other hand if E' is a regular system of Hodge bundles on Xalg 

then we can define the pull-back 7r*EI as follows: 

7rE tm7r*(E') 
nfl+m>fa 

Lemma 10.3. If (E, K) is a metrized system of Hodge bundles on X then 
a(z*E) = X*(aE) 

Proof. G acts on 7r*E over its action on W, and this preserves the metric. 
The &w-module 7*E decomposes into a direct sum of Ax-modules 

n-I 

E= e ttmE 
m=O 

under the action of G. If e is a section of lr*E whose norm is bounded in 
some way then the components of e in the above decomposition are bounded 
in the same way, since G preserves the metric. Also multiplication by tm just 
shifts the filtration. Therefore 

n-I 

a(t *E) = @ tma(E) 
m=O 

with filtrations shifted suitably. This proves the lemma. 

Corollary 10.4. If E is a system of Hodge bundles with a metric K whose cur- 
vature is in Lp then det(aE) = a(detE). 

Proof. One direction of inclusions is obvious. Now suppose a(det E) ? 
det(aE). Consider a ramified cover Xr as above with n sufficiently big so 
that 

det(a(r *E)0) c a(det(7r*E))2 
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Choose n so that the weights a which occur in the filtration of aE, when 
multiplied by n, are all just slightly bigger than various integers. In particular 

a(7*E) 12k c a(7E)I. 
Apply Lemma 10.2 to the bundle 7r*E0 to get a contradiction. 

Next we contend that ' a ' commutes with taking duals of line bundles. If L is 
a line bundle with metric K satisfying the assumptions, choose a nonvanishing 
section / with polynomial growth. The curvature being in Lp means that 

f = Alog I/IK 

is in Lp. The condition that the metric has polynomial growth implies that 

log I/IK = b log lzl + a 

with Au = f weakly on X, so a is bounded. Thus aLa is generated by 
sections z'l such that n + b > a. The metric on the dual bundle L* satisfies 

log1*K = -blogjzl - a 

so a(L*)_ is generated by sections z'1* such that n - b > -a. Thus 
a(L*)_O = (aL,)*. 

Suppose E' and E" are two systems with metrics. It is immediate that the 
identity map extends to a morphism of regular systems on Xalg 

aE' 0 aE" -- a(E' 8 ). 

Using this and the fact that the dual E* is a direct summand in some tensor 
product of copies of E and det(E) 1, the identity map extends to a morphism 

(aE)* -- a(E*). 

On the other hand, the pairing 

a(E*)0aE -a(E* ?E) - a('x) 
shows that the identity gives a map 

a(E*) -- (aE)*. 

Therefore 'a' commutes with taking duals. Similarly it commutes with taking 
tensor products. 

Suppose H and K are two metrics on E with Lp curvature, such that 
aHE =aKE. Set 

v = logTr(H IK) + logTr(K 1H). 
Note that v > 0. By Lemma 3.1, 

A v < b 
where fx bp < oo. The condition aHE = aKE means that the identity map 
is a section of aH?lK(E* ? E)o and of aK?H(E 0 E)o. This implies that v 



CONSTRUCTING VARIATIONS OF HODGE STRUCTURE 913 

grows slower than e log I z I for any c . By the proof of Proposition 2.2 and the 
subsequent remark, we conclude that A v < b weakly on X. Since b E L , v 

is bounded (as in Propositions 2.1 and 2.4). Therefore H and K are mutually 
bounded. 

Now we can show that the functor a is fully faithful. If E' and E" are 
systems with metrics K, and if f : aE' -- aE" is a morphism of regular 
systems on Xalg then 

(>f I) 
is an isomorphism of the system E'@e E". It preserves the structure a(E' e E") 
so by the above, the pull-back Kh*h of the metric K is bounded with respect 
to K, in other words h*h is bounded. In particular, the off-diagonal term f 
is bounded. 

To prove the last statement of the theorem, that a is an equivalence, we 
have to show that it is essentially surjective. Suppose E is a regular system 
on Xalg. We need to construct a metric K on Elx such that aK(Elx) = E 
and such that the curvature is in Lp for some p > 1. Proceed as in [27, 
Lemma 6.24]. The two essential cases are a line bundle L, and the system 
W = (W"0, JW0 ) where the components are equal to Ax with the obvious 
filtration, and 0 = dz/z. Every line bundle is of the form Ax(a) for some a, 
where 1 E &x(a)f whenever ,B < a . For this system use the metric I1 = IzI. 
In the system W let wp ,q be the unit section of Wp q = Ax . It is easy to see 
that the metric given by 

10O 1/2 01 -i 
1 

lw I = Ilog lzll/ lw I=lo = lZll 

is flat. Using these two constructions, we get flat metrics on any systems which 
are direct sums of tensor or symmetric products of the above ones. To complete 
the construction, approximate any system by such a one, sufficiently to get a 
metric with Lp curvature. For any E set 

gr (E)=E/ LEf 
fl>a 

Choose an isomorphism of regular bundles on Xalg 

E i 3grc (E) 8)c &x (ae) 
o<a< 1 

This will be an isomorphism of filtered bundles. Define res(dz/z) = 1 and use 
the above isomorphism to define a new 01: E E ? Q (log Y); 

01 = gr(res(O)) 

The system (E, 01) is a direct sum of symmetric products of line bundles 
and systems W as above (this is the Jacobson-Morosov theorem, applied as in 
[27]). Therefore there is a metric H which is flat with respect to 01 and has 
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the required growth properties. Write 0 = Q + g, so there is some c > 0 such 
that 

g : E, -- E, K2 Q(log Y) 
(the filtration is really indexed discretely so take e smaller than the smallest 
distance between consecutive steps). Therefore 

IgIH < CIZ|'>/ 

The difference between the curvatures of the systems (E, 0) and (E, 01) using 
the same metric H, is 

0l +g0l +go1 +61g+g+ gg 

and the norm of this is less than CIzI,/22 . Therefore the curvature of the 
metric H on the system (E, 0) is in Lp for some p > 1 . This shows that the 
regular system E comes from a metrized system over X. 

Remark. This argument gives information on the norms of holomorphic sec- 
tions of aE. In the flat case this information follows from Schmid's norm 
estimates. Thus we have given an alternative proof of the norm estimates for 
holomorphic sections of the Hodge bundles. I am not sure if one can derive the 
norm estimates for flat sections from this, for example one might still need the 
Nilpotent Orbit Theorem. Also Schmid's SL2 Orbit Theorem provides more 
precise information on the higher order asymptotics. 

The theorem is proved except for the statement about Chern classes. More 
generally suppose E is a system over X with metric K, and V is a strict 
subsystem of aE. In other words Vlx c E is a saturated subsystem and 
v = V n aE . Then we can define the degree deg(V) in two different ways. 

degan (V) = Jc (V,K) 

and 
dega'g(V) = degalg(AtoP v) 

where the degree of a line bundle is defined by 

degalg (< (a * y)) = 2 7ra 

and degalg(L) is the usual degree if L comes from a line bundle over X. 

Lemma 10.5. If E is a metrized system as in the above theorem, and V c aE 
is a strict subsystem, then degan ( V) = degalg( V) . 

Proof. It suffices to consider the case where V is a line bundle. Furthermore we 
may tensor with a line bundle that comes from X, so we may assume V0 = x . 
The metric K restricts to a metric on Ax . Set h = 11 IK . It is a function on 
X with growth approximately Izla" near y E Y, 0 < ay < 1 . In fact if g is a 
function such that g = Izlav near y then Ilogh - loggl < CIloglogIzjI near 
the punctures, since the metric K is bounded with respect to a metric which 
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satisfies this, namely the metric on aElx constructed above (we can choose the 
isomorphism E (3grf E?x(a) so that V is constant). It is easy to see that 

V/ -- J log g = degalg (V) 

because the integral of the distribution 00 log g over X is zero and this differs 
from the above integral by contributions from delta functions at the punctures. 
These contributions are the same as the terms that go into degalg(V) from the 
y E Y. So we have to prove that 

JAs = 0 

if IsI < log log IzI near the punctures. We may also assume that As < b where 
b E Lp, since curvature decreases in subsystems and the curvature of E is in 
Lp. Proposition 2.2 and the remark following it show that As < b weakly on 
X. A negative distribution on X which restricts to a function on X restricts 
to an Ll function on X. Therefore the integral in question exists. Apply the 
remark following Proposition 2.2 to show that As = Asix weakly on X. The 
integral over X of the distribution As vanishes, so the integral in question 
also vanishes. This proves the lemma. Theorem 3 is now proved. 

Lemma 10.6. Suppose X is a curve with smooth completion X. Let E be 
a vector bundle with an extension E and suppose K is a metric on E with 
polynomial growth with respect to the completion E. Assume fx IFK I < 00. If 
V c E is an L2 subbundle analytically defined over X, then it extends to a 
subbundle V c E. 

Proof. Note first of all that nothing depends on the base metric. All statements 
are local so assume X is a punctured disc, X is a disc, the metric co is the 
euclidean metric on the disc, and E A . Let H denote the constant metric 
on E obtained from this identification. Polynomial growth of K means that 
IKIH and IHIK grow slower than Izla for some a where z is the coordinate 
on the disc. 

By taking an exterior power and using the Plucker embedding we may assume 
that V is a line bundle. This line bundle is trivial so choose a section v. 

f = a log Iv IK 
is the curvature of V with respect to the induced metric. If nf is the projection 
onto V then the L 1 condition is that 07r e L 2. The Chern-Weil formula for 
the curvature of V is 

f = Tr(7tFK) - iI 2 2 
so fx If I < X0 by our hypotheses. In fact by choosing our disc in X to be 
small enough in the first place, we may assume f If I < 2. Now consider f as 
a distribution on X and let s be a solution of 

08(s) = f 
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given by convolution with the Greens function. The metric Ke S on V is flat, 
so for any b there is a nonzero section w of V such that 

lWlK~s =-s/2 _ b 
IWlKe 6 = e I IWIK < IZI 

In particular we may choose b big enough so that 

IWIH < eS/2. 

Aubin's estimate [2] is 
eS < oo 

since f If I < 2. Thus w is a section of E G r which is holomorphic outside 
2 the origin, and is in L . This implies that it is holomorphic, so the subbundle 

V has an extension over the puncture. 

Corollary 10.7. In the situation of Theorem 3, the L2 subbundles of E/X are 
exactly the restrictions of strict subsystems V c aE on Xalg. 
Proof. By the lemma an L2 subsystem comes from one over Xalg. On the 
other hand by the previous lemma, if V c aE is a subsystem over Xalg then 
the degree of Vjx is not -oo. By the Chern-Weil formula this implies that 
Vix is an L2 subsystem. 

Recall that a system E with a metric K is stable if 

degan(V) degan (E) 
rk(V) rk(E) 

for every proper L2 subsystem V c E. Analogously, say a regular system E 
on Xalg is stable if 

degalg(V) degalg(E) 
rk(V) rk(E) 

for every subsystem V c E. 

Corollary 10.8. A system E over X with metric as in Theorem 3 is stable if and 
only if aE is a stable system on Xalg. 

Proposition 3.3 implies that a system aE which comes from a variation of 
Hodge structure is a direct sum of stable systems of degree zero. Corollary 
10.8 gives information about what kinds of bundles can arise from variations 
of Hodge structure. 

Lemma 10.9. Suppose E' and E" are systems with metrics K as in Theorem 
3. Assume the metrics are flat. Then any bounded map E' -- E" is preserved 
by the connection. 

Proof. This follows from Zucker's theorem [33], but we will give another proof. 
As in the proof of Theorem 3, it suffices to consider the case where the map is 
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an isomorphism. Pull back the metric K via the isomorphism, to get another 
metric H = Kh, h bounded. We have to show that h is a flat section, or since 
it is selfadjoint, just that D"h = 0. From the formula 3.1 (c) we conclude that 

A Tr(h) = -ID"(h)h-1/2 2 

The last part of Assumption 3 holds on X so A' Tr(h) = 0 hence D"h = 0. 

Combining Proposition 2.4, Theorem 1, Proposition 3.3, Theorem 3, Corol- 
laries 10.7, 10.8, and Lemma 10.9, we have proved 

Theorem 4. Let X be a quasiprojective curve. The construction 'a 'of Theorem 
3 gives an equivalence of categories from the category of complex variations of 
Hodge structure over X to the category of regular systems of Hodge bundles on 
Xalg which are direct sums of stable systems of degree zero. 
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