
NOTES FROM TALBOT, 2010

DANIEL BERWICK-EVANS AND JESSE WOLFSON

Contents

1. Overview, Constantin Teleman UC Berkeley 2
2. Introduction to K-Theory, Jesse Wolfson, Northwestern 7
2.1. Generalized Cohomology Theories 7
2.2. Computational Tools 11
2.3. Sample Computations 13
2.4. Theoretical Tools 13
2.5. Constructing the Chern Character 18
2.6. Hirzebruch-Riemann-Roch 19
2.7. The Theorem 20
2.8. Riemann-Roch for Curves 20
3. More K-Theory, Chris Kottke, MIT 21
3.1. K-Theory Via Bundles of Operators 21
3.2. Differential Operators 21
3.3. Families of Differential Operators 22
3.4. Gysin Maps for Fibrations 22
3.5. Clifford Algebras 23
3.6. Clifford Algebras on Manifolds 24
3.7. Dirac Operators 24
4. Twisted K-Theory, Mehdi Sarikhani Khorami, Wesleyan 25
4.1. Twists of (Co)homology Theories 25
4.2. Twists for K-Theory 26
4.3. K-Theory of Categories 27
5. Geometric Twistings of K-Theory, Braxton Collier, University of

Texas 28
5.1. Twisted K-Theory 28
6. Equivariant Twisted K-Theory, Mio Alter, University of Texas 30
6.1. Equivariant K-theory via vector bundles 30
6.2. Equivariant K-theory via C∗-algebras 31
6.3. Atiyah-Segal Construction of Twisted Equivariant K-Theory 31
6.4. Twisted Equivariant Story 32
6.5. A Computation 32
7. Twisted Equivariant Chern Character, Owen Gwilliam,

Northwestern 33
7.1. Equivariant Chern Character 33
7.2. Twisted Chern Character 34

Date: January 15, 2011.
1



2 DANIEL BERWICK-EVANS AND JESSE WOLFSON

8. KG(G), Dan Halpern-Leistner, UC Berkeley 38
9. K-Theory of Topological Stacks, Ryan Grady, Notre Dame 41
9.1. Topological Groupoids 41
9.2. Central Extensions 41
9.3. K-Theory 43
10. Loop Groups and Positive Energy Representations, Harold

Williams, UC Berkeley 44
10.1. The Affine Weyl Group 47
10.2. Positive Energy Representations 48
10.3. Existence of PERs 50
11. Character Formulas, Dario Beraldo, UC Berkeley 51
11.1. 55
12. Dirac Family Construction of K-Classes, Sander Kupers, Utrecht 56
12.1. PinC and Spinors 56
13. 2-Tier Field Theory and the Verlinde Algebra, AJ Tolland, SUNY

Stony Brook 59
14. Survey 2: Known and unfinished business, Constantin 64
15. Open-Closed Field Theories, Matt Young, SUNY Stony Brook 68
16. Landau-Ginzburg B-Models, Kevin Lin, UC Berkeley 73
17. Twisted KG(G) as open closed theory, Constantin 77
18. Chern-Simons as a 3-2-1 Theory, Hiro Tanaka, Northwestern 80
18.1. Geometric Quantization 82
19. Something About Local Field Theory, Chris Douglas 85
20. Chern-Simons Theory and the Categorified Group Ring, Konrad

Waldorf, UC Berkeley 90
20.1. 2-Dimensional TQFTs for Finite Groups 91
20.2. Categorification: From 2-d to 3-d 92
20.3. A Quick Tour of the 3d Theory in the Case of a Torus 93
21. Elliptic Cohomology, Nick Rozenblyum, MIT 94
21.1. Orientations of Cohomology Theories 94
21.2. Formal Groups, Formal Group Laws and Cohomology Theories 96

1. Overview, Constantin Teleman UC Berkeley

This goes way back to Frobenius with character theory of finite groups.
So let G be a finite group and∑

irreps V

dimV 2 = #G.

Then Z = C[G]G ↪→ C[G] is an algebra with convolution.

φ ? ψ(g) =
∑
h∈G

φ(gh−1)ψ(h).

We also get a trace, t : Z → C,

t(φ) =
φ(1)

#G
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Diagram just after line 91 in Constantin's talk

Figure 1. The bordism pΣq.

Diagram just after line 91 in Constantin's talk

Figure 2. Bordisms determining a Frobenius algebra structure..

Get a nondegenerate pairing Z × Z → C, (z1, z2) 7→ t(z1 × z2). Then Z ∼=
⊕CPi, t(Pi) =

dimχ2
i

(#G)2 ,

Pi =
χidimχi

#G
.

This is the structure of a commutative frobenius algebra, and from a more
modern perspective we have

Theorem 1.1. Commutative frobenius algebras are the same as 2-dimensional
TQFTs

We can think of operations Z⊗p → Z⊗q as being associated to surfaces
with p inputs and q outputs. By looking at pairs of pants and discs with
different source and target data, it is easy to see a map from 2-d TQFTs to
Frobenius algebras.

Theorem 1.2. The TQFT given by the Frobenius algebra C[G]G is “pure
gauge theory with structure group G”
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given a weighted count of principle G-bundles (with holonomy on boundary
in prescribed conjugacy classes.

For example, we can compute the value of the TQFT on S2. We get the
trace of the identity

t(1) = t(
∑

Pi) =

∑
dimχ2

i

#G2
.

Note the fact that

Z = Z(C[G])

allows an enhancement of the TQFT structure to surfaces with corners.
We can also add twistings to this story:

H3(BG;Z) ∼= H3
G(Z) ∼= H2

G(U(1))

where the second isomorphism comes from the exponential sequence

1→ Z→ R→ U(1)→ 1

and H2
G(R) and H3

G(R) vanish for a finite (or more generally a compact) group.
The “2” above comes from the dimension of the TQFT. Note also that

H2
G(U(1)) ∼= H2

G(C×).

This is the group of units of C of cohomology with complex coefficients. We
call τ ∈ H3(BG;Z) a twisting.

Proposition 1.3. τ parametrizes central extensions of G by C×, twisted by
the convolution algebra of this group.

We can associate to a central extension of G a line bundle over G so that
nonzero elements have a group structure. Then

τC[G] = {algebra of sections with convolution}.

The representations of G give projective G-representations with cocycle de-
termined by τ .

Now if P → Σ is a principle G bundle, this is classified (up to homotopy)
by a map [p] : Σ→ BG, and we can pullback the twisting τ ∈ H2(BG;U(1)),
and [p]∗τ ∈ H2(Σ;U(1)) can be integrated,∫

Σ

[p]∗τ ∈ C×.

Then we can a count principle G-bundles weighted by the above number.
These weights play well with the TQFT structure, e.g.

weight(Σ1)weight(Σ2) = weight(Σ1Σ2)

Now we generalize a bit. Let

(1) G be a compact group.
(2) replace H∗ by K∗.
(3) replace twistings accordingly
(4) notice that K∗ contains the group of lines, under ⊗ among its units.



NOTES FROM TALBOT, 2010 5

In the above, “accordingly” means that twistings are in H2(BG;BU(1)) =
H2(BG;CP∞) = H2(BG;K(Z, 2)). Then

H2(BG;K(Z, 2)) ∼= H3(BG;U(1)cts)

twists the K-theoretic gauge theory of a compact group.
For the geometric picture: before we had the moduli stack of principle G-

bundles (with finite group G) and twistings were functions with values in C×.
The number associated to a surface was in integral cohomology (which is the
toy example of a path integral in physics). Usually in physics one integrates
exponential of something purely imaginary, i.e. we integrate a U(1)-valued
function. This is precisely what we had.

Now in the generalization, have the moduli of (flat) principle G-bundles de-
notedM. Twistings are line bundles L, and the invariant we get for a surface
is some “integral element in K-theory.” We can intepret this as holomorphic
Euler characterisitic: ∑

(−1)qhq(M;L).

These numbers are controlled by a particular Frobenius algebra, namely the
Verlinde algebra of G. So now we’d like to examine the algebraic side of this
story.

Again, let G be a compact group. Our first attempt is to construct the
convolution algebra of G, (Co(G), ?) and its center as a frobenius algebra.
Basically, this works and gives some physical theory described by Witten a
long time ago, namely the topological limit of 2-dimensional Yang-Mills the-
ory with group G. The involves the character theory of G. But this is not
the topological theory descibed previously! What we’re computing on this
algebraic side is the “symplectic volume” of M,∫

M
exp(ω)

where ω is a distinguished 2-form, the curvature of L. What we need to
do is pass to K-theory; the philosophy behind this is that the move from
cohomology to K-theory corresponds to passing from spaces to loop-spaces.

Theorem 1.4. As Frobenius algebras, projective representations of LG are
isomorphic to something like twisted K(LBG), which we will later define as
twisted KG(G).

Both twisted Rep(LG) and KG(G) have products and traces. On repre-
sentations, this is the fusion product. On K-theory this is the Pontryagin
product.

m∗ : τKG(G)× τKG(G)→ τKG(G)

as a shriek map from m : G×G→ G.
We remark that there is a cup product in KG(G) (which initially is ac-

tually zero!) and the tensor product on Rep(LG). When we look at elliptic
cohomology, the cup product structure becomes the interesting part. Notice
that this gives some vague connection between elliptic cohomology and Chern-
Simons, since the fusion product is related to CS and the cup is related to
elliptic cohomology.
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This also gives one interesting example of string topology that works! So
let’s say a few words about string topology.

Let X be a (pointed) closed oriented manifold. The relation to our story
is that X will be the classifying stack of the group G, X = BG, ΩX = G as
a group. Homology and cohomology will be with rational coefficients below.

String topology is an attempt to make A := H∗(LX) into a 2-dimensional
TQFT, i.e. a Frobenius algebra. Any (easy) attempt is bound to fail because
H∗(LX) is not self-dual:

H∗(LX)∗ ∼= H∗(LX) 6= H∗(LX).

Frobenius algebras have a pairing, so must be isomorphic to their dual.
Chas and Sullivan gave a partial Frobenius algebra structure, which defines

a “positive output” 2-dimensional TQFT. One can define operations

A⊗p → A⊗q

from surfaces with p incoming and q outgoing boundard components, dentoed
pΣq, so long as q > 0. These compose correctly. We can even define this for
surface bundles pΣq → B giving operations

H∗(B)⊗ A⊗p → A⊗q.

For example we have the string product, given by maps of figure eights
into X. We can either restrict to each side of the figure eight, giving a map
to LX × LX, denoted r+, or we can conncatentate the loops giving a map to
LX denoted r−. We’d like to define operation (r+)∗ ◦ (r−)∗ on homology. We
have a diagram

Maps(8, X) ↪→ LX × LX
↓ ↓
X

∆
↪→ X ×X

which allows one to define this map by cap product with diagonal.
Would like to define the string topology operation by a correspondence

Map(pΣq;X)
r+→ LX×q

Map(pΣq;X)
r−→ LX×p.

We need some good choice of a relative cycle to define (r+)∗ ◦ (r−)∗, and there
really isn’t one as yet. It seems that we’re secretly looking at the Floer theory
of T ∗X, i.e. holomorphic maps into T ∗X.

For X = BG, a stack, this works! So here we think of LX as the stack
of flat G-bundles on S1. This is classified by G/G, where G acts on itself by
the adjoint action. Then Maps(Σ;G), which is the stack of flat G-bundles on
Σ, which is isomorphic to G#ofloops/conjugation-action. We have maps from
Maps(Σ;G) to stacks (G/G)p and (G/G)q.

These maps are proper and smooth so long as p, q 6= 0, so we can define
operations by correspondence diagrams, and one gets a nondegenerate trace
provided there is a twist.
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Now it turns out for open surfaces, the map from the stack of flatG-bundles
to the stack of all G-bundles with connection is a homotopy equivalence, which
is what allows us to work with that above.

2. Introduction to K-Theory, Jesse Wolfson, Northwestern

2.1. Generalized Cohomology Theories. We begin with the definition of
ordinary cohomology due to Eilenberg and Steenrod:

Def. 1. An ordinary cohomology theory is a collection {H i}i∈Z such that:

• For each n ∈ Z, Hn is a contravariant functor from the category of
pairs of spaces to abelian groups.1

• (Homotopy Invariance) If f ' g through maps of pairs, then Hnf =
Hng for all n.
• (Preserves Products) Hn(

∐
Xα) =

∏
Hn(Xα) for all n.

• (LES of the Pair) For each pair (X,A), there exists a long exact se-
quence

· · · → H i(X,A)→ H i(X)→ H i(A)→δ H i+1(X,A)→ · · ·
such that the boundary map δ is natural.
• (Excision) If Z ⊂ A ⊂ X and Z ⊂ Int(A) then the induced map

H i(X,A)→ H i(X − Z,A− Z)

is an isomorphism for each i.
• (Dimension) H i(∗) = 0 for i 6= 0.

An extraordinary cohomology theory satifies all of the above except the
dimension axiom. Complex K-theory was one of the first extraordinary co-
homology theories to be discovered and studied in depth. My aim here is to
present it as such and develop some of the key structures of K-theory as a co-
homology theory. Whenever going through the gory details would obscure this
development, I’ll refrain and refer interested readers to other sources instead.

2.1.1. K-Theory Take 1. As a disclaimer, assume all spaces X are compact
and Hausdorff.

Def. 2. Given a space X, let V ectC(X) denote the semiring of isomorphism
classes of (finite dimensional) complex vector bundles over X with addition
given by ⊕ and multiplication by ⊗.

Def. 3. We define K0(X) to be the group completion of V ectC(X).

Example 1. All vector bundles over a point are trivial, so V ectC(∗) = N and
K0(∗) = Z.

Let X∗ denote a space with basepoint ∗. For any space X, let X+ denote
the union of X with a disjoint basepoint. Let Sn(X∗) denote the n-fold reduced
suspension of X∗. With this notation, we define the negative K-groups as
follows:

1The assignment X 7→ (X, ∅) makes this into a functor on spaces as well, and this is
what is meant by Hi(X).
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Def. 4. Letting i : ∗ → X∗ denote the inclusion of basepoint, we define

K̃0(X∗) := ker(i∗ : K(X∗)→ K(∗))

This is called the reduced K-group. Observe that K0(X) = K̃0(X+). Now,
for n ∈ N, let,

K̃−n(X∗) := K̃0(Sn(X∗))

K−n(X) := K̃0(Sn(X+))

K−n(X, Y ) := K̃0(Sn(X/Y ))

To extend our definition of the K-groups to the positive integers, we use
Bott Periodicity.

Theorem 1. (Bott Periodicity v. 1) Let [H] denote the class of the canonical
bundle in K0(CP1). Then, identifying CP1 with S2, and letting ∗ denote the
reduced exterior product, the map

K̃0(X∗)→ K̃0(S2(X∗))

[E] 7→ ([H]− 1) ∗ [E]

is an isomorphism for all compact, Hausdorff spaces X. We call [H] − 1 the
Bott class.

Periodicity allows us to define the positive K-groups inductively, setting
Kn(−) := Kn−2(−), and similarly for the reduced groups.

In order to verify that K-theory gives a cohomology theory, we need two
last facts:

Prop. 2. If X is compact and Hausdorff, and E is any vector bundle on Y ,
then a homotopy of maps f ' g : X → Y induces an isomorphism of bundles
f ∗E ∼= g∗E.2

Prop. 3. To every pair of compact, Hausdorff spaces (X, Y ), there exists an
infinite exact sequence
. . . // Kn(X, Y ) // Kn(X) // Kn(Y ) // Kn+1(X, Y ) // . . .

which is natural in the usual sense.3

Now, checking our definitions against the axioms:

• Pullback of bundles makes the K-groups into contravariant functors so
Axiom 1 is satisfied.
• Homotopy invariance follows from the proposition we just stated.

2The proof is an application of the Tietze extension theorem formulated for vector bun-
dles. c.f. Atiyah [?] L.1.4.3.

3The proof of this requires the most work, after Bott periodicity, in setting upK-theory as
a cohomology theory. Both Atiyah [?] (P.2.4.4) and Hatcher[?] provide a detailed construc-
tion, but I recommend just taking this as a given when first getting a handle on K-theory,
and coming back to the details later.
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• For products, a quick check shows that the map

V ectC(
∐

Xα)→
∏

V ectC(Xα)

given by pullback along the inclusions is an isomorphism, and that this
isomorphism is preserved under group completion.
• The LES of the pair was given above.
• Excision is satisfied because X/Y ∼= (X − Z)/(Y − Z) for any Z ⊂
Y ⊂ X.

so we see that K-theory is indeed a cohomology theory.

2.1.2. A Quick Note on K-classes. From the definitions we’ve given, every K-
class is an element of K0(X) for some compact space X. We can say more
than this:

(1) Two vector bundles E and F define the same K-class if there exists a
trivial bundle εn such that E ⊕ εn ∼= F ⊕ εn. This is known as stable
isomorphism, so we see K0(X) is the group completion of the semiring
of vector bundles modulo stable isomorphism.

(2) Every K-class can be written as [H] − [εn] for some vector bundle H
over X.

(3) A vector bundle E is in the kernel of K0(X) → K̃0(X) if and only if
it is stably isomorphic to a trivial bundle.

The upshot of this is that when we want to make arguments in K-theory, we
can actually make arguments using vector bundles and then check that these
arguments behave well when we pass to K-classes. This is one of the main
techniques for making constructions in K-theory.

These conclusions follow from two facts:

Prop. 4. Every vector bundle on a compact space is a direct summand of a
trivial bundle.

This follows from a partition of unity argument, and the finiteness of the
cover; in particular, this can fail for paracompact spaces. See Hatcher [?]
P.1.4.

Prop. 5. Given a commutative monoid A, with group completion K(A),
K(A) ∼= A× A/∆(A) and x 7→ (x, 0) gives the canonical map A→ K(A).

Since K(A) is defined by a universal property (that it’s a left adjoint to the
forgetful functor from groups to monoids), it’s sufficient (and straightforward)
to check that A→ A× A/∆(A) satisfies the universal property.

Putting these together, we see every K-class is of the form [E] − [F ] for
two bundles E and F . 1 follows because [E] = [F ]⇔ ∃ G s.t. E⊕G ∼= F ⊕G.
Given such a G, let G′ be a bundle such that G⊕G′ ∼= εn for some n. Then

[E] = [F ]⇔ E ⊕G⊕G′ ∼= F ⊕G⊕G′

i.e. E ⊕ εn ∼= F ⊕ εn. The proofs of 2 and 3 are similarly straightforward
applications of the two propositions above.
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2.1.3. K-Theory Take 2. We can give another characterization of K-theory
that is frequently useful, and which illuminates the definitions. Recall that
a spectrum is a sequence of spaces (CW-complexes) {E(n)} and connecting
maps fn : E(n) → ΩE(n + 1). A loop spectrum is one where the connecting
maps are homotopy equivalences.

Theorem 6. (Brown Representability) Every reduced cohomology theory h̃
on the category of pointed CW complexes has a representing loop spectrum
{H(n)}, unique up to homotopy, such that h̃n(X) = [X,H(n)]∗ (where [−,−]∗
denotes based maps up to homotopy).4

Since we recover an unreduced theory h by adding in a disjoint basepoint,
i.e. h∗(X) := h̃∗(X+), we see Brown also says that unreduced cohomology
theories correspond to unbased maps up to homotopy.

We can start to identify the spectrum KU of complex K-theory using the
following:

Prop. 7. For any compact, Hausdorff space X∗,

K̃0(Sn(X∗) ∼= [X∗,U]

where the unitary group U := lim−→ U(n).5

This together with periodicity and the suspension-loop adjunction shows
that

K̃0(X∗) = K̃−2(X∗)

= K̃0(S2(X∗))

= [S(X∗),U]

= [X∗,ΩU]

Thus, we can give a homotopy theoretic definition of complex K-theory as

K̃−n(X∗) = [X∗,Ω
n+1U]

and Brown Representability, plus periodicity, again shows that this gives a
cohomology theory.

In particular, periodicity can be restated as

Theorem 8. (Bott Periodicity v.2) ΩU ' BU× Z, and since G ' ΩBG for
any topological group G, we see Ω2U ' U. Moreover, For all n ∈ N,

π2n+1(U) = Z
π2n(U) = 0

This is in fact the original form in which Bott proved it.6

4For a fuller discussion and proof of Brown Representability, see Hatcher [?] § 4.E.
5The proof follows from considering a clutching argument and that if X is compact, [X,-]

preserves filtered colimits (e.g. direct limits).
6Both homotopy equivalences have concrete implementations which Bott was able to

formulate and study using Morse theory. The interested reader should see Milnor [?] for
the full proof. Alternatively, both Hatcher [?] and Atiyah [?] provide proofs of version 1 in
terms of bundle constructions.



NOTES FROM TALBOT, 2010 11

We can view this version as a calculation of the reduced K-groups of
spheres. Passing to unreduced, we see that the values of K-theory for spheres
are:

K0(S2n) = Z⊕ Z
K1(S2n) = 0

and

K0(S2n+1) = Z
K1(S2n+1) = Z

Since the spectrum of a cohomology theory is only specified up to homo-
topy, it’s possible to give several equivalent spectra, each of which can shed
light on the theory.

For example we can interpret K-theory in terms of operators on a separable
infinite dimensional Hilbert space H. Recall that a bounded operator on a
Hilbert space is Fredholm if it has a closed image, and its kernel and cokernel
are finite. To each operator T , we can assign an index

Index(T ) := dim ker(T )− dim coker(T )

It turns out that this is the restriction to a point of an isomorphism

index : [X,Fred(H)]→ K0(X)

Appendix A to Atiyah [?] spells this out in detail. Note that this interpretation
of the spectrum K provides a link between K-theory and index theory of ellip-
tic operators. Other representing spectra also exist and they illuminate deep
connections between complex K-theory and areas of interest to mathematical
physics and analysis,7 but this is beyond my scope right now.

2.2. Computational Tools. As with any cohomology theory, we have the
usual computational tools of Mayer-Vietoris sequences, and the LES of the
pair. However, these are often not very useful in K-theory, because periodicity
means we rarely have enough zero entries to reduce the long exact sequences to
a series of isomorphisms. However, K-theory, and in fact any extraordinary
cohomology theory, comes with two additional tools which relate its values
to those of ordinary cohomology. These are the Atiyah-Hirzebruch spectral
sequence, which is a special instance of a generalized Serre spectral sequence,
and the Chern character, which relates K-theory to rational cohomology.

2.2.1. A Quick Recap of Spectral Sequences. Spectral sequences can seem quite
daunting at first, at least they did to me.8 However, once you get comfortable
using them, they open up an incredible number of calculations which look
nearly impossible without them. Recall that a spectral sequence is an infinite
sequence of “pages” consisting of a grid of groups and of differentials between

7For example, see Atiyah-Bott-Shapiro [?].
8If you haven’t worked with them before, I highly recommend Ch.1 of Hatcher [?], avail-

able online. I recommend taking the construction of spectral sequences as a given, and
focusing first on how use them. Hatcher has a great set of examples, sample computations
and exercises and I really enjoyed this.
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them. We write Ep,q
r for the (p,q)th entry of the rth page, and dr : Ep,q

r →
Ep+r,q−r+1
r for the differential. You pass from one page to the next by taking

the homology with respect to the differentials, and cooking up a new set of
differentials from the data of the previous ones. A spectral sequence converges
if for for each (p,q), Ep,q

r = Ep,q
r+1 for r � 0; we write Ep,q

∞ for this stable group.
In a wonderful variety of situations, we can cook up a spectral sequence

such that E2 page starts with something that we know, and the E∞ page is
closely related to something we want to calculate, e.g. the cohomology ring
of a space X. As a shorthand, we say the spectral sequence converges to the
thing we want, and we write something like

Ep,q
2 ⇒ hp+q(X)

However, this notation is shorthand and should not be taken literally. Spectral
sequences do not converge to the groups written on the right hand side of the
arrow, they converge instead to the associated graded objects of a filtraton
of these groups. Whether or not we can recover the groups we care about
depends on an extension problem, and is often nontrivial.

Alright, with these disclaimers in place, let’s lay out the main tools:

2.2.2. The Atiyah-Hirzebruch Spectral Sequence. Recall that given a fibration
F → E → B, we have the Serre spectral sequence:

Hp(B,Hq(F ))⇒ Hp+q(E)

In fact, the proof and construction carry over to any cohomology theory h
giving us a generalized Serre spectral sequence:

Hp(B, hq(F ))⇒ hp+q(E)

Taking the trivial fibration id : X → X, we get the Atiyah-Hirzebruch spectral
sequence

Hp(X, hq(∗))⇒ hp+q(X)

This spectral sequence should be seen as reiterating for generalized cohomol-
ogy what we already know from ordinary cohomology: namely, that coho-
mology theories are largely determined by their values on the point.9 This
spectral sequence, along with the generalized Serre SS for K-theory, provides
one of the main tools for computing K∗(X).

Note also, that the generalized Serre SS for K-theory allows us to prove a
K-theory version of Kunneth (as the same proof in ordinary cohomology using
the Serre SS carries over here), and its formulation is precisely the one we’re
used to.

9More precisely, two cohomology theories h and h′ are equivalent if there exists a natural
transformation α : h → h′ such that α induces an isomorphism h(∗) ∼= h′(∗). c.f. Adams
[?].
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2.2.3. The Chern Character. The Chern Character is a ring homomorphism

ch : K∗(−)→ H∗(−;Q)⊗K∗(∗)
induces an isomorphism K∗(−) ⊗ Q ∼= H∗(−;Q) ⊗K∗(∗).10 In other words,
for any space X,

K0(X)⊗Q ∼=
⊕
n∈N

Hn(X;Q)⊗K−n(∗)

∼=
⊕
n∈N

H2n(X;Q)

and similarly,

K1(X)⊗Q ∼=
⊕
n∈N

H2n+1(X;Q)

2.3. Sample Computations. The following set of spaces are suggestions for
good examples to apply these tools to calculate the K-theory of spaces.

• Riemann Surfaces
• CP n

• SO(3)
• O(4)

The first two can be computed immediately from the Atiyah-Hirzebruch SS.
For SO(3), you’ll need to combine the isomorphism from the Chern character
with the Atiyah-Hirzebruch SS. You can use this to calculate the K-theory of
O(3) and then use this plus Kunneth to calculate the K-theory of O(4).

2.4. Theoretical Tools. As we observed above, since every K-class can be
represented as formal difference of actual bundles, we can usually make our
arguments for K-theory in terms of actual bundles, and then observe that
these arguments behave well when we pass to K-classes. Frequently these
constructions involve reducing the structure group, for example, in decompos-
ing a bundle as sum of line bundles, or reducing its dimension by one. I sketch
the general process in the next section; we will use it frequently. Following
this, the theoretical tools discussed are:

• Adams operations
• The Thom Isomorphism and Applications
• A construction of the Chern character

These are largely independent, and you should feel free to tackle them in
any order.

2.4.1. Splitting Principles. In the most general case, a splitting principle refers
to an operation in which a G-bundle E → X is pulled-back along a map
f : F → X, such that f ∗E has a reduced structure group, and the map
induced by f on cohomology is injective.

The generic splitting principle arises from a fiber sequence

H ↪→ G→ G/H

10Such an isomorphism is actually a general property of cohomology theories, and the
map h→ H∗(−;Q)⊗K∗(∗) is called the character of the theory.
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where H and G are topological groups.
Give a G bundle E → X, the splitting principle is the action of pulling

back the G-bundle along the projection of the associated bundle

E ×G G/H → X

This pullback gives us a bundle with structure group H, and for nice enough
fiber sequences, the projection induces the desired injective map on cohomol-
ogy.11

Some common examples of splitting principles for complex bundles are:

• SU(n) → U(n) → S1 which corresponds to orienting the vector bun-
dle.
• U(n−1)→ U(n)→ S2n−1 which allows us to make arguments/constructions

by inducting on the dimension of the bundle.
• Tn → U(n) → Fln which corresponds to reducing a vector bundle to

a direct sum of line bundles.12

This last principle is the one most commonly referred to as the splitting
principle, and we will use it repeatedly going forward. In fact, the moral for
basic K-theory constructions seems to be:

• Define the construction for (direct sums of) line bundles.
• Extend to arbitrary bundles.
• Use the splitting principle to show that properties which hold for line

bundles hold in general.

2.4.2. Adams Operations. The Adams operations {ψk} are cohomology oper-
ations on complex K-theory, analogous to Steenrod Squares in mod 2 coho-
mology.

Their basic properties are:

Prop. 9. For each compact, Hausdorff space X, and each k ∈ N, there exists
a ring homomorphism

ψk : K0(X)→ K0(X)

satisfying:

(1) Naturality, i.e. ψkf ∗ = f ∗ψk for all maps f : X → Y .
(2) For any line bundle L, ψk([L]) = [L]k.
(3) ψkψl = ψkl.
(4) ψp(x) ≡ xp (modp).

11The cleanest way to see that this construction does reduce the structure group is to
pass to universal bundles over classifying spaces. Recall that over paracompact spaces X,
isomorphism classes of bundles E correspond to homotopy classes of maps fE : X → BG,
where BG is the classifying space of G-bundles. We recover the bundle E on X by pulling
back the universal G-bundle EG → BG along fE . Up to homotopy, EG is defined as
a contractible space with a free G-action, and BG is defined as EG/G. Now, given an
injection H → G, EG also has a free H-action, so BH ' EG/H. But then BH → BG is
the universal G-bundle with fibre G/H. Forming an associated bundle E ×G G/H over X
corresponds to pulling back the universal bundle BH along the map fE , and pulling back
EG along f∗E(BH)→ BH → BG gives the “splitting” of E. See Segal [?] for the basics of
classifying spaces.

12Fln denotes the complete flag variety over Cn.
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Property 2 characterizes the Adams operations, and we can use this, plus
the splitting principle, to give a general construction. Observe that if E =⊕n

i=0 Li, then property 2 and being a homomorphism says

ψk(E) =
n∑
i=0

Lki

We can extend this to a general definition using exterior powers. Given any
bundle E, let λiE denote the ith exterior power of E. From linear algebra, we
know

• λk(E ⊕ E ′) =
⊕k

i=0 λ
i(E)⊗ λk−i(E ′)

• λ0(E) = 1, the trivial line bundle.
• λ1(E) = E.
• λk(E) = 0 for k > dimE.

There exists a useful class of integral polynomials called the Newton poly-
nomials, denoted sk (for k ∈ N). With a little work,13 one can show that if
E =

⊕n
i=0 Li as above, then

∑n
i=0 L

k
i = sk(λ

1(E), . . . , λk(E)). We can then
take

ψk(E) := sk(λ
1(E), . . . , λk(E)

as the general definition. By applying the splitting principle associated with
Tn → U(n)→ Fln, it’s enough to verify for (direct sums of) line bundles that
the Adams operations satisfy the specified properties, and this is a straight-
forward check from our definitions.14

2.4.3. The Thom Isomorphism and Applications. Given the dependence of K-
theory on vector bundles, we might expect that those features of ordinary
cohomology related to vector bundles also arise in K-theory (e.g. the Thom
Isomorphism, characteristic classes, and Gysin maps). All of these rely on
the orientability of the vector bundles in ordinary cohomology, and formulat-
ing these for K-theory will similarly require a suitable notion of K-orientable
bundle and manifold.

2.4.4. Orientability in K-theory. Orientations for vector bundles or manifolds
are defined formally in any cohomology theory analogously to how they are
defined in ordinary cohomology. First, some notation: Given a bundle V on
X, let B(V ) denote the unit ball bundle, and S(V ) the unit sphere bundle
(under any metric).

Def. 5. A bundle V is orientable in the cohomology theory E∗ if there exists
a class ω ∈ E∗(B(V ), S(V )) such that ω|p is a generator of E∗(B(V )p, S(V )p)
as a module over E∗(∗) for all p ∈ X.

Despite the formal similarity between ordinary orientability and orientabil-
ity in a general theory, we should not expect these to be closely related. First,
while orientability in ordinary integral cohomology is equivalent to orientabil-
ity in a (differential) geometric sense, there is no guarantee that this is the

13See Hatcher [?] §2.3 for the details of this construction.
14For the proof of this splitting principle, see Hatcher [?] §2.3.
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case in general, or that integral orientability is in any way related to E∗ ori-
entability. In general, the question of whether an integrally orientable bundle
or manifold is E∗-orientable, for some theory E, is a question of whether the
orientation class survives to the E∞ page of the Atiyah-Hirzebruch SS and
then whether we can recover the cohomology from the associated graded. In
general, this is not trivial, and it still leaves us with the question of interpreting
the meaning of the E-orientability of a space.

In complex K-theory, Atiyah-Bott-Shapiro [?] shows that a vector bundle
is K-orientable if and only if it admits a spinc structure. This has applications
for mathematical physics, but is beyond the scope of my introduction. On the
other hand, every complex bundle admits a spinc structure, and is thus K-
orientable. More directly, we can construct the orientation class of the bundle
from its exterior algebra. Thus, for the remainder of this section, I will assume
that any bundle or manifold is almost complex, and avoid worrying about the
more general case.

2.4.5. The Isomorphism. In preparation for the Thom isomorphism, we refor-
mulate our test space for orientations of bundles as follows:

Def. 6. Given a vector bundle E on X, we define its Thom space, XE, to be
the one point compactification of E. 15

Notice that (XE/∞) ∼= B(E)/S(E), so we can replace K∗(B(E), S(E))
with K∗(XE) in our definition of orientability above.

Prop. 10. Every complex vector bundle E is K-orientable, with a canonical

orientation class λE ∈ K̃0(XE) satisfying

(1) Naturality, i.e. λf∗E = f ∗λE
(2) Sums, i.e. λE⊕E′ = (π∗1λE) ∪ (π∗2λE′)

For the construction of λE from the exterior algebra of the bundle E, and
a verification that it satisfies the desired properties, see Atiyah [?], §2.6, p.
98-99. λE is known as the Thom class of the bundle. We can now state:

Theorem 11. (Thom Isomorphism) If E is a complex vector bundle over X,

then K̃∗(XE) is a free module of rank 1 over K∗(X) with generator ωE. In
other words, the map

ΦK : K∗(X)→ K̃∗(XE)

given by ΦK(x) = λE · x is an isomorphism.

The theorem can be proven via showing it in the case for (direct sums of)
line bundles and then using the splitting principle associated to Tn → U(n)→
Fln as usual.16

15Equivalently, if E is a complex vector bundle, we can define XE := P (E ⊕ 1)/P (E).
A quick check will show these are the same. Namely, P (E ⊕ 1) amounts to compactifying
the fibers of E by gluing in projective hyperplanes at ∞, and modding out by P (E) sends
all these hyperplanes to a point.

16c.f. Atiyah [?] §2.7.
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2.4.6. Gysin Maps. Gysin, or wrong-way, maps, are a useful tool in cohomol-
ogy theories. Using either Duality or the Thom Isomorphism, we can associate
covariant maps to orientation preserving maps between manifolds, in addition
to the contravariant mappings guaranteed by the theory. As a matter of no-
tation, given such a map M →M ′, let NM denote the normal bundle of M in
M ′, and εM denote a tubular neighborhood of M in M ′ isomorphic to B(NM)
with boundary ∂(εM) isomorphic to S(NM).17 Let ε◦M denote the interior of
εM , i.e. ε◦M = εM − ∂(εM).

Def. 7. (Gysin Maps) Given an immersion f : M → M ′, of almost complex
manifolds, we define f! : K∗(M)→ K∗(M ′) as the composite:

K∗(M)→ K̃∗(MNM )→ K∗(εM , ∂(εM))→ K∗(M ′,M ′ − ε◦M)→ K∗(M ′)

where the first map is the Thom isom., the second is the isom. (B(NM), S(NM)) ∼=
(εM , ∂(εM)) given by the tubular neighborhood theorem, the third is the
isom. due to excision, and the last map corresponds to the canonical map
(M ′, ∅)→ (M ′,M ′ \ ε◦M).

Note that in ordinary cohomology, the Gysin map raises the degree by
dim(M ′) − dim(M). However, if M and M ′ are almost complex, they are of
even dimension, so the difference is even as well. The periodicity of K-theory
then ensures that Gysin maps between almost complex manifolds preserve
degree.

2.4.7. The Thom Class and Characteristic Classes. We use the Thom class
to construct characteristic classes in K-theory. There are two equivalent con-
structions for these classes, one using a splitting principle and the other using
the Adams operations. I will sketch both and the interested reader can check
that they are equivalent by doing the calculations with the universal bundle
on BU .

Def. 8. (The Euler Class) Given a complex vector bundle E onX, let ζ denote
the 0-section. Then the Euler class, e(E) ∈ K0(X), is given by e(E) = ζ∗λE.

Def. 9. (Chern Classes) Given a complex vector bundle E on X, we define
the Chern classes classes c1(E), . . . , cn(E) ∈ K0(X) inductively as follows:

(1) cn(E) = 0 if n > rk(E)
(2) cn(E) := e(E)

(3) ci(E) := π−1
∗ (ci(Ê)) where Ê is the vector bundle corresponding to the

splitting principle given by U(n− 1)→ U(n)→ S2n−1.18

We can also define ci(E) by ci(E) := Φ−1
K ◦ ψi(λE) where ψi is the ith

Adams operation.

17The existence of such a neighborhood is an immediate consequence of the usual tubular
neighborhood theorem.

18We show this to be a splitting principle via the Gysin sequence coming from the Thom
isomorphism.
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An obvious question to ask is how the Chern classes in K-theory behave
relative to those in ordinary integral cohomology. Recall that in integral coho-
mology, if L and L′ are line bundles, then c1(L⊗L′) = c1(L) + c1(L′).19 In K-
theory, a similar calculation shows that c1(L⊗L′) = c1(L)+c1(L′)+c1(L)c1(L′).

Jacob Lurie includes a nice discussion of this in [?]. In particular, he considers
the notion of formal group laws, and observes that in this language, ordinary
chern classes are governed by the formal additive group, whereas K-theoretic
chern classes are governed by the formal multiplicative group. We can exploit
this to motivate both the definition and the existence of the Chern character.

2.5. Constructing the Chern Character. I asserted the existence of the
Chern character above, and this section outlines a concrete construction of it.
Morally, the Chern character for K-theory arises from the observation that,
over Q, exponentiation gives an isomorphism between the formal additive
group and the formal multiplicative group. We can make this concrete as
follows:

Given a K-class [L] represented by a line bundle L→ X, define

ch([L]) := exp(c1(L)) = 1 + c1(L) +
c1(L)2

2
+ . . .+

c1(L)k

k!
+ . . .

where c1(L) is the first Chern class of L in ordinary cohomology. Given a
K-class [E] represented by E =

⊕n
i=0 Li, define

ch([E]) :=
n∑
i=0

ch(Li) = n+ (t1 + . . . tn) + . . .+
tk1 + . . . tkn

k!
+ . . .

where ti = c1(Li). By the same algebra that we used in the construction of
the Adams operations, we can convert this expression into one purely in terms
of the ordinary chern classes of E.20 If cj denotes the jth Chern class cj(E) of
E, and sk denotes the kth Newton polynomial, then we can rewrite this as

ch(E) = dim(E) +
∑
k>0

sk(c1, . . . , ck)

k!

and take this as a general definition for arbitrary bundles. The interested
reader can check that this is well defined and that it lands in the correct
dimensions in H∗(X;Q). Moreover, a straightforward check from our defini-
tions shows that for any line bundles L and L′, ch(L⊗L′) = ch(L)ch(L′) and
ch(
∑

i Li) =
∑

i ch(Li), so ch gives a ring homomorphism as desired.

19We show this by doing the computations with the chern class of the universal line
bundle over CPn).

20From the axioms of characteristic classes, the total chern class

c(E) = (1 + t1) . . . (1 + tn) = 1 + σ1 + . . .+ σn

where σj denotes the jth symmetric polynomial in the ti, and considering cohomological
degrees, we see cj(E) = σj . As noted in the construction of the Adams operations, there
exists a class of polynomials sk called the Newton polynomials with the property that tk1 +
. . . tkn = sk(σ1, . . . , σk). This allows us to rewrite the formula above as ch([E]) = dim(E) +∑
k>0

sk(σ1,...,σk)
k! . See Hatcher [?] §.2.3 for more details on the Newton polynomials.
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Now apply the splitting principle associated to Tn → U(n) → Fln to
conclude that any cohomology relation which holds for line bundles under this
reduction also holds for arbitrary bundles.21 This completes the construction
of the Chern character. For the proof that it induces the isomorphism claimed
above, see Hatcher [?], Ch.4, P.4.3 and 4.5.

2.6. Hirzebruch-Riemann-Roch. The Hirzebruch-Riemann-Roch Theorem
was the first in a series of generalizations of the classical Riemann-Roch theo-
rem, which eventually culminated in the Grothendieck-Hirzebruch-Riemann-
Roch Theorem in algebraic geometry, and in the Atiyah-Singer Index Theorem
in the differential case. I include it here, both for historical purposes, and be-
cause some of the deeper applications of K-theory occur in its implications for
index theory, and Hirzebruch-Riemann-Roch is a first sign of these results.

Before we can state the theorem, we need to define another characteristic
class Td∗(−) called the Todd class. We can think of the Todd class as a formal
reciprocal of the Chern character, and its construction is similar.

2.6.1. The Todd Class. In the usual manner, we define the Todd class for
direct sums of line bundles, use some algebra to massage this into a formula
for general bundles, and then prove it has the desired properties by using the
splitting principle. We can characterize the Todd class as follows:

Prop. 12. Given a vector bundle E → X, there exists a unique class
Td∗(E) ∈ H∗(X;Q) satisfying:

(1) Naturality, i.e. f ∗Td∗(E) = Td∗(f ∗E).
(2) Td∗(E ⊕ F ) = Td∗(E)Td∗(F )

(3) Td∗(L) = c1(L)

1−e−c1(L) for all line bundles L.

Using the Bernoulli numbers {B2i}∞i=1, we can expand the righthand side
of number 3 as a formal power series. Explicitly:

Q(x) :=
x

1− e−x
= 1 +

x

2
+
∞∑
i=1

B2i

(2i)!
x2i

For any finite dimensional basespace X, number 3 describes a polynomial
in the chern classes with rational coefficients, and thus it does specify an
element of H∗(X;Q). This, together with number 2 then dictate the formula
for direct sums of line bundles, and though we are unable to massage out a
general expression using the Newton polynomials, there exists another class
which does the job and allows us to get get a general expression for Td∗(E) as
a power series in the Chern classes of E. The first few terms of this expansion
are

Td∗(E) = 1+
1

2
c1 +

1

12
(c2

1−2c2)+
1

24
c1c2−

1

720
(c4

1−4c2
1c2−3c2

2−c1c3 +c4)+ . . .

21This is why we need the injectivity of the map p : Fl(E) → X on cohomology. For a
proof of this splitting principle, see Hatcher [?], §3.
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where the ci are the Chern classes of E. With this definition, naturality is
a consequence of the naturality of the chern classes, and the splitting principle
associated to Tn → U(n)→ Fln shows that 2 is satisfied in general.

2.7. The Theorem. Recall that the euler characteristic of a coherent sheaf
F on a space X is the alternating sum of its Betti numbers, i.e.

χ(F ) :=
∑

(−1)irk(H i(X,F ))

Theorem 13. (Hirzebruch-Riemann-Roch) Given a vector bundle E on a
compact complex manifold M , let E denote the sheaf of holomorphic sections
of E. Then

χ(E) =

∫
M

ch(E) · Td∗(TM)

I don’t give the proof here, but if you’re interested, see Hirzebruch [?], or
for a nice motivational discussion, see Griffiths and Harris [?] §3.4.

As an illustration of the theorem, we can quickly derive the classical
Riemann-Roch formula for curves, which I go through below. There’s a sim-
ilarly nice derivation of Noether’s Theorem for surfaces, and the interested
reader should Hartshorne’s [?], Appendix A.

2.8. Riemann-Roch for Curves. Let X be a curve of genus g and let L(D)
be a line bundle X corresponding to divisor D. We need to quickly recall
several facts from algebraic geometry:

• χ(OX) = 1− g.
• The first Chern class gives the isomorphism between divisors and line

bundles, so c1(L) = D and ch(L) = 1 +D.
• The tangent bundle TX is the dual of the canonical bundle of X, and

so if K is the canonical divisor of X, TX corresponds to −K, and
Td∗(TX) = 1− 1

2
K.

• Since D and K define elements of H2(X;Z), DK = 0 for dimension
reasons.
• For a divisor D,

∫
M
D = degD (this is tautological from the definitions,

but worth recalling).

. Putting these together, we see

ch(L)Td∗(TX) = (1 +D)(1− 1

2
K)

= 1 +D − 1

2
K

and plugging this into the formula from the theorem, we get

χ(L(D)) =

∫
M

(1 +D − 1

2
K)

= deg(D − 1

2
K)
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Now, taking D = 0, this says 1 − g = χ(OX) = −1
2
degK, and plugging this

in we get the classical formula:

χ(L(D) = degD + 1− g

3. More K-Theory, Chris Kottke, MIT

As the token analyst here, I’ll tell you a bit about how to think of the
pushforward in K-theory. We’ll start with the Gysin map as an index of
an elliptic differential operator; proceed to clifford algebras and spinC as an
orientation and Dirac operators; then spinC Dirac operators as a fundamental
class; and finally we’ll talk about the higher index theorems (everything else
is about K0).

3.1. K-Theory Via Bundles of Operators. Let V → X be a vector bun-
dle. Then we can define compactly supported K-theory as

K∗c (V ) = K∗(V , ∂V ).

In particular,

K0
c (V ) = {π∗E, π∗F, σ s.t. σ|V−0 : π∗E

'→ π∗F}

To compare, recall that

K0(X,A) = {[V ], [W ], σ s.t. σ : V → W, σ|A : V
'→ W}/{stable homotopy}

Now let H be a separable infinite dimensional Hilbert space. Let F ∈ B(H),
be a bounded operator. We say that F is Fredholm if it is invertible modulo
compact operators:

∃G ∈ B(H) s.t. FG− I and GF − I compact

Note that this implies that the kernel and cokernel of F are finite dimensional.

Theorem 3.1 (Atiyah). [X,Fred(H)] ∼= K0(X).

Say we have a map X → Fred(H), x 7→ P (x). Then the element of K-
theory we want in the above theorem is [ker P (x)]− [coker P (x)] ∈ K0(X).

3.2. Differential Operators. Now recall that P ∈ Diffk(X;V,W ) if locally

P =
∑
|α|≤k

aα(x)∂αx

where aα(x) ∈ Hom(Vx,Wx) and α = (α1, . . . , αn) and ∂αk = ∂α1
x1
· · · ∂αnxn .

To get something independent of coordinates, we want the principal symbol
of P , defined as

σ(P ) =
∑
α=k

aα(x)ξα ∈ C∞(T ∗X;Hom(π∗V, π∗W ))

where (x, ξ) are local coordinates for T ∗X. We say that P is elliptic if σ(P )(ξ)
is invertible for all ξ 6= 0. Notice that an elliptic operator defines a class,
namely [[π∗V ], [π∗W ], σ(P )] ∈ K0

c (T ∗X).
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3.3. Families of Differential Operators. Say Y → X → Z is a fibration.
We may regard X as a bundle associated to a principle Diffeo(Y )-bundle Q:

X = Q×Diffeo(Y ) Z

and
Diffk(X/Z;V,W ) := Q×Diffeo(Y ) Diffk(Y, V,W ),

so
σ(P ) ∈ C∞(T ∗X/Z;Hom(V,W )).

Really one should think of these as differential operators in the fiber direction.
Now if P is elliptic, it is also Fredholm as an operator on L2(X/Z;V ) →

L2(X/Z;W ) over Z.

Theorem 3.2 (Kupier). The group of unitary operators on Hilbert bundles
are trivializable, in particular, P ∈ Map(Z,Fred(H)) for an elliptic operator
P .

Now, define the analytic index as

Ind(P ) = [Ker P (x)]− [Coker P (x)].

Then we find that Ind(P ) ∈ K0(Z). In particular, when Z = pt and we have
the bundle X → pt, then

Ind(P ) = Dim(Ker(P ))−Dim(Coker(P )) ∈ Z = K0(pt)

3.4. Gysin Maps for Fibrations. Say M → B a fibration for B compact.
Then

M
i
↪→ B × RN

over B gives a normal bundle ν →M with respect to i and

h̃∗(Mν) ↪→ h̃∗(ΣNB) = h∗(B).

(The inclusion above is just excision.) Then if M is oriented then the Thom

isomorphism h∗(M)→ h̃∗(Mν) composes with the above to give a shriek map
h∗(M) → h∗(B). Notice there are degree shifts in each separate map, but
they cancel in the composition.

Now consider for any fibration of manifolds X → Z,

T ∗(X/Z) ↪→ Z × R2N

↓ ↓
X ↪→ Z × RN

↓ ↓
Z = Z

Have ν(T ∗(X/Z)) = ν(X) ⊕ ν(X) ∼= ν(X) ⊗ C, so T ∗(X/Z) is canonically
complex, and hence canonically oriented. So we have a map (the topological
index):

K0
c (T ∗(X/Z))→ K0(Z).

Theorem 3.3 (Atiyah-Singer). The topological index equals the analytic in-
dex.

When can we get a pushforward from X to Z? First we need some more
background.



NOTES FROM TALBOT, 2010 23

3.5. Clifford Algebras. Let (V, q) be a vector space with a nondegenerate
quadratic form. Then consider maps f : V → A to an algebra A such that
f(v) · f(v) = −q(v) · 1. The Clifford algebra Cl(V, q) is the universal object
of these.

More concretely as a vector space Cl(V, q) is the exterior algebra of V , but
they are not isomorphic as algebras. Let {ei} be a basis for V . Then products

{ei(1) · · · ei(k)|i(1) < · · · i(k)}

is a basis for Cl(V, q). If the basis happened to be orthonormal with respect
to q, then eiej = −ejei. In general

eiej = −ejei − q(ei, ej).

Moreover, we see that Cl(V, q) is Z/2Z-graded, where

Cl0(V ) = Λeven(V ), Cl1(V ) = Λodd(V ),

We can also complexify this

Cl(V ) = Cl(V ⊗ C) = Cl(V )⊗ C.

We define

Clk := Cl(Rk, ·)

where · is the standard dot product on Rk. The representation theory of
complex Clifford algebras is very simple, as we have

Clk ∼= M(2k,C) k even

Clk ∼= M(2k−1,C)⊕M(2k−1,C) k odd

(i.e. there is only one irrep if k is even and two if k is odd). Let Spin(V )
be defined as the subset of Cl(V ) (viewed as an algebra of endomorphisms of
Cl(V )) given by

Spin(V ) := {u ∈ Cl(V )∗ ⊂ Aut(Cl(V ))|u fixes V and u ∈ SO(V )}

We can also define Spin(Rn) as the universal cover of SO(Rn):

0→ Z/2→ Spinn → SOn → 1

but it’s nice to have Spin(V ) as a subset of the Clifford algebra. We have the
“spin representation:”

ρ : Cl2n → gl(W )

where dim(W ) = 22n, and ρ|Spin2n : Spin2n → GL(W ). In fact this is a
Z/2-graded representation of Cln,

W = W 0 ⊕W 1.
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3.6. Clifford Algebras on Manifolds. Let (X, g) be a Riemannian mani-
fold. We have a bundle Cl(X)→ X whose fiber at a point p is

Cl(X)p = Cl(TpX, g(p)).

We get Clifford modules over X by considering vector bundles on which the
bundle Cl(X) → X acts. When do (complex) Clifford modules decompose
globally into irreducibles? This happens when X is SpinC.

First let’s explain ordinary spin manifolds. A spin structure on (X, g) is a
lift PSpinn(X)→ PSOn(X) over X (this is a 2-sheeted cover) with compatible
actions from SOn and Cln. The obstruction to this is w2(X) ∈ H2(X;Z/2).

Proposition 3.4. X spin implies that for E a Clifford module, we have

E ∼= PSpinn(X)×ρ F

In particular we have that sections of S+⊕S− ∼= S = PSpinn(X)×ρW are
called the “spinors.”

Theorem 3.5. [π∗S+, π∗S−, Cl] ∈ K0
c (T ∗X) is an orientation class for K∗

There is a group
SpinC

n
∼= Spinn ×Z/2 U(1).

Then a SpinC-structure on (X, g) is a complex line bundle L→ X and a lift

PSpinC
n(X) → PSO(n)(X) × PU(1)(L),

another 2-sheeted cover. The obstruction to this is

w2(X) + c1(L) mod 2 ∈ H2(X;Z/2)

Again we have
S = S+ ⊕ S− = PSpinC

n
×ρW,

and
[π∗S+, π∗S−, Cl] ∈ K0

c (T ∗X)

is an orientation.

3.7. Dirac Operators. Let’s say we have a Clifford module E → X, Cl(V )→
Ũ(E), and a Clifford connection, which is a connection ∇ on E, such that

∇(cl(v) · s) = cl(∇LCv) · s+ cl(v)∇s,
where ∇LC is the Levi-Civita connection. From this we can construct a Dirac
operator

D ∈ Diff1(X;E)

where
Dp =

∑
i

cl(ei) · ∇ei

for {ei} an orthonormal basis for TpX. Now

σ(D)(ξ) = i · cl(ξ)
is clearly invertible. Also notice that

σ(D2) = |ξ|2.
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If X is SpinC then we have an operator DSpinC ∈ Diff1(X,S)
It turns out D is formally self adjoint, and with respect to grading S =

S+ ⊕ S−

DSpinC =

[
0 D1

D0 0

]
.

Then [σ(DSpinC)] ∈ K0
c (T ∗X) is a Thom class.

As an example, for T ∗X → X → pt we have

K0(X) ∼= K0
c (T ∗X)

ind→ K0(pt)

So for [E], [F ] ∈ K0(X), we get ind(DE−DF ) = ind(D0
E)−ind(D0

F ) ∈ K0(pt).
As a final remark, if X happens to be complex, there is a canonical SpinC

structure and

S± ∼= Λ
even/odd
C T ∗X.

In this case, D = ∂ + ∂
∗
.

4. Twisted K-Theory, Mehdi Sarikhani Khorami, Wesleyan

4.1. Twists of (Co)homology Theories. A “good” cohomology theory can
be twisted by its units. Let R be a “highly structured” ring spectrum (say
E∞, A∞, etc.). Then the units of R are defined as the pullback

Gl1(R) → Ω∞R
↓ ↓

π0(R)× → π0(R)

where Ω∞R = lim→ΩnR(n) so that we have an honest Ω-spectrum in the
upper right.

One finds that

[X+, Gl1(R)] ∼= R0(X)×,

hence the name “units.”
In the example of K-theory, R = K(n) and then Gl1(K) = Z/2×BU :

Gl1(K) → BU × Z
↓ ↓

{−1, 1} → Z

Unfortunately, in general Gl1(R) need not be a topological group. How-
ever, if R is E∞ (or even A∞) we can form BGl1(R). Then for a map to
BGl1(R) we get a bundle via pullback,

Gl1(R)
↓

P → EGL1(R)
↓ ↓
X

τ→ BGL1(R)

and can form the associated Thom space (in fact an R-module)

Xτ = Σ∞+ P ∧LΣ∞+ GL1(R) R
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and define the τ -twisted R-homology of X as

Rτ
∗(X) = π∗(X

τ ) = π0(HomR(ΣnR,Xτ ))

The associated τ -twisted R-cohomology of X is
τR∗(X) = π0(HomR(Xτ ,Σ∗R)).

In fact we have that GL1 is a functor

GL1 : (E∞ − spectra)→ (certain E∞ spaces)

and there is an adjoint functor Σ∞+ .

4.2. Twists for K-Theory. We would like to use this to define twisted K-
theory. Twists can be given by

X → K(Z, 3).

We have a (functorial) action

Pic(X)×K(X)→ K(X),

so that for a map f : X → Y we get

Pic(Y )×K(Y ) → K(Y )
↓ f ∗ ↓ f ∗

Pic(X)×K(X) → K(X)

By the above reasoning twistings are given by maps to B(BU × Z/2). The
Z/2 part says certain twistings are real line bundles on X. So concentrating
on the BBU -part, a twisting is a BU bundle on X. So what we might do is
start with a class τ ∈ H3(X;Z) which determines a homotopy class of a map

τ ∈ [X,K(Z, 3)]

giving a K(Z, 2)-bundle on X. Then we would like to form an associated
bundle

P ×CP∞ BU,

to recover an honest twist of K-theory. Unfortunately this doesn’t make sense
because we can’t form a point-set action of CP∞ on BU : all maps in the game
are only determined up to homotopy. However, with K-theory we are lucky
and can model our maps on the nose rather than up to homotopy, and this is
precisely the content in the Atiyah-Segal paper.

So what does this construction actually do? It’s enough to see that we
have a morphism of ∞-ring spectra

Σ∞+ CP∞ → K,

because in particular, such a morphism would induce a map

K(Z, 2) = CP∞ → GL1K

which in turn induces a map

K(Z, 3) ∼= BK(Z, 2)
α→ BGL1K.

Morally, this is a generalization of “a map from a group ring to an algebra is
induced by a map from the group to the units of the algebra.”
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So then for a twisting τ we have

X
τ→ K(Z, 3)

α→ BGL1K.

Then
π∗(X

ατ ) = Kτ
∗ (X)

It is interesting to note that from the short exact sequence

0→ BU(1)→ BSpinC → BSO → 0

we can “Thom-ify” to get

Σ∞+ CP∞ ∼= MBU(1)→MSpinC

and using the Atiyah-Bott-Shapiro orientation (lifted to the spectrum level)
we get MSpinC → K.

4.3. K-Theory of Categories. Let S be a small additive category. Then
we can form the K-theory of this category, if we look at isomorphism classes
of objects and use the Grothendieck construction:

K(S) := {Grothendieck group of the set of isomorphism classes of objects of S}
There are many interesting examples that arise in this way: say X is a

compact space and let S be vector bundles over X. Then K(S) = K(X). If
instead we let S be the finitely generated projective modules over A = C(X)
the continuous functions on X, we recover the algebraic K-theory, which is
isomorphic to the topological one in this case.

Furthermore, if you have an additive functor φ : S → S ′ you can get a
map on the K-theory, K(φ). But how do we define this? Well, we look at
triples (E,F, α), E,F objects of S and α : E → F an isomorphism. Two of
these triples are isomorphic if there are morphisms f : E → E ′, g : F → F ′

such that

φ(E)
φ(f)→ φ(E ′)

α ↓ ↓ α′

φ(F )
φ(g)→ φ(F ′)

commutes. Then define

K(φ) = {[(E,F, α)]}/ ∼
where

(E,F, α) ∼ (E ′, F ′, α′)

if there exists a triple (G,G, σ) such that (E+G,F +G,α+σ) ∼= (E ′+G,F ′+
G,α′ + σ).

Let A be a graded finite dimensional C-algebra. Take A to be central
simple, i.e. the center of A is C. (For example, let A be a Clifford algebra.) An
A-bundle over X is a locally trivial bundle over X with fibers A and transition
functions respecting the algebra structure. Fix an A-bundle A over X. Let
εA(X) be the category of graded C-vector bundles which are projective as A-
modules with morphisms of degree zero. Then let εA(X) be the same category,
but with morphisms of all degrees. There is an inclusion ι : εA(X)→ εA(X)
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The K-theory of this functor is independent of the class of the bundle A in
the Brauer group over X.We can then define K-theory with local coefficients
by

KA(X) := K(ι).

Alternatively, we can take α ∈ Brauer(X) and write

Kα(X) := K(ι).

If X is compact, a theorem of Serre shows that Brauer(X) ∼= Tor(H3(X;Z)).

5. Geometric Twistings of K-Theory, Braxton Collier,
University of Texas

There are really two aspects to discuss:
Firstly, we would like to understand formal properties of spaces with twist-

ings. For example, how do we generalize the Eilenberg-Steenrod axioms. Since
usually computations in cohomology can be very formal (for example using
Mayer-Vietoris and spectral sequences), we might actually be able to read
these off from the formal properties alone.

Second we want some (geometric) models for twistings. It turns out that
the whole zoo of twistings can be understood in the language of groupoids.

Twistings are classified by a central extension,

1→ H1(X;Z)→ F (X)→ H1(X;Z/2)→ 1,

so as a set the twistings are just the product, but the twistings have a product
structure and it is not the direct product. We won’t be getting into this issue
now, but let it be known that it is lurking in the background.

Let X be a space, and τ(X) be twistings of the K-theory of X. First let’s
actually define a category of twists rather than just a group. So let the objects
of TwistX be τ(X), and let the morphisms be

Hom(τ, τ ′) = {“geometric maps” from τ → τ ′}/ ∼= .

It turns out that this is a symmetric monoidal groupoid. Now say f : Y → X
is a map and τ ∈ τ(X). Then we get f−1(τ) ∈ τ(Y ). In fact, we can beef this
up to a functor

f−1 : TwistX → TwistY .

So now we form the category of twists, whose objects are pairs (X, τX) with
τX ∈ TwistsX and morphisms are maps f : Y → X and an isomorphism
φ : τY ∼= f−1τX . Notice that even for fixed (X, τX), we may well get interesting
automorphisms. In fact the automorphisms of τ are complex line bundles on
X, which in turn are isomorphic to H2(X;Z). One way to say this is that any
two automorphisms differ by a line bundle, in the appropriate sense.

5.1. Twisted K-Theory. Twisted K-theory is a functor Twistop → Ab

where for (Y, τY )
(f,φ)→ (X, τX), (f, φ)∗ : KτX (X) 7→ KτY (Y ). This functor

is homotopy invariant in the sense that f ' g if and only if we have a diagram
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(Y × I, π∗Y ) ← (Y, τY )
↑ ↘ ↓g

(Y, τY ) →f (X, τX)

There is also a multiplication

Kτ (X)⊗Kτ ′ → Kτ+τ ′(X)

As an aside, we want a way to canonically identify Kτ=0,1(X) with K0,1(X),
and we do this via the automorphisms of τ . Specifically, if [L] = φ ∈
AutTwistX (τ), then [L] acts on Kτ (X) via α 7→ [L] · α. I claim this is all
we need to know.

Now if we have

Z
f→ X

g ↓ ↓
Y → X

⊔
Z Y,

as a pushout of spaces, what do the twistings do? We need to know how
to glue twistings to get local things, like Mayer-Vietoris. Morally, the twists
should be something sheaf-like.

The twists we’ll be considering are classified by H3(X;Z). Let’s do an
example, say X = S3. Then H3(S3;Z) ∼= Z. We’ll use the fact that S3 is the
gluing of two hemispheres U± along the equator S2. Then

(U+

⋂
U−, ε

−1τ)
β→ (U+, α

−1τ)
γ ↓ ↘ ε ↓ α

(U−, δ
−1τ)

δ→ (S3, τ)

(1)

Now we compute,

K0(U±) ∼= Z, K1(U±) = K1(U+

⋂
U−) ∼= 0, K0(U+

⋂
U−) ∼= aZ⊕ bZ.

Then we have an exact sequence

0→ Kτ+0(S3)→ Kα−1τ (U+)⊕Kδ−1τ (U−)→ Kε−1τ (U+

⋂
U−)→ Kτ+1(S3)→ 0.

Now we need to get explicit trivialization over the open hemispheres:

(U±, 0)
1U± ,T±→ (U±, α

−1τ/δ−1τ).

There are two trivializations of (U+

⋂
U−, ε

−1τ), determined by β−1T+ and
γ−1T−, which gives us (under some inverting and composition)

[L⊗k] = [β−1T+]−1 ◦ [γ−1T−] ∈ Aut(0U+
⋂
U−).

This is a line bundle on S3 which is classified by integers k, so we get the
equals sign above.

We find K0+τ (S3) = 0 and K1+τ (S3) = Z/kZ.
This computation is done in FHT I.
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6. Equivariant Twisted K-Theory, Mio Alter, University of
Texas

First we’ll go through equivariant K-theory via vector bundles and C∗-
algebras, then review the completion theorem, then do a twisted equivariant
example.

6.1. Equivariant K-theory via vector bundles.

Definition 6.1. If X is compact space and G is a compact Lie group, an equi-
variant vector bundle π : E → X is a vector bundle such that π is equivariant
and Ex 7→ Egx is linear for each x ∈ X.

Proposition 6.2. If G acts freely on X, V ectG(X) ∼= V ect(X/G).

We see this as

E 7→ E/G
↓ ↓
X X/G

(2)

Proposition 6.3. If G acts trivially on X and F → X is a equivariant vector
bundle, then

F ∼= ⊕ni=1Vi ⊗ Ei
where Vi = X × Vi, Vi an irreducible representation of G and

Ei ∼= HomG(Vi, F )

is a equivariant vector bundle with a trivial G-action.

Definition 6.4. K∗G(X) is the K-t=heory of G-equivariant vector bundles
over X, i.e. K∗G(X) = K(V ectG(X)).

Proposition 6.5. For X a trivial G-space, K∗G(X) ∼= R(G) ⊗ K(X), and
R(G) ∼= KG(pt).

For example if X = G/H and we have a bundle E → G/H, then G ×H
EH → E sits over G/H. I MISSED THE STATEMENT HERE,(JESSE: SO
DID I) BUT I THINK THE K-THEORY IS COMPLETELY DETERMINED.

Note that

V ectG(G/H) ∼= V ectH(pt),

so we find that

K∗G(G/H) ∼= K∗H(pt),

and we see that K0
H(pt) = R(H) and K∗(pt) = 0 otherwise.

There is a localization theorem for equivariant K-theory which is analogous
to the localization theorem for equivariant cohomology. Won’t go into it much.

One might also start with the Borel construction for equivariant K-theory,
as just the ordinary K-theory of

XG
∼= EG×G X.

However, the equivariant bundle picture is much richer. In fact,
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Theorem 6.6 (Atiyah-Segal Completion).

K̂∗G(X)I
∼=→ K∗(XG).

where I is the augmentation ideal, i.e. I is the kernel of the augmentation map
ε : R(G)→ Z is. Notice that the augmentation ideal is the ideal generated by
virtual representations of virtual dimension zero.

6.2. Equivariant K-theory via C∗-algebras. Recall that a C∗-algebra is a
Banach algebra with a C-linear involution. All C∗-algebras have embeddings
into B(H) for some Hilbert space H. An example of a C∗-algebra is the ring
of continuous functions C(X,C), where X is a compact space.

Definition 6.7. For G a compact Lie group and A a C∗-algebra, a continuous
action of G on A is a map α : G → Aut(A) where for a sequence gn → g,
α(gn)(a)→ α(g)(a) for all a ∈ A.

Definition 6.8. A (G,A, α)-module is an A-module in which G acts compat-
ibly with the A-action.

Definition 6.9. KG
0 (A) is the Groethendieck group of isomorphism classes of

projective (G,A, α)-modules.

Definition 6.10. The crossed product G×α A is a completion of the twisted
C∗-algebra, C(G) ⊗ A where the product (convolution) and involution are
defined in terms of α.

Theorem 6.11. KG
0 (A) ∼= K0(G×α A)

Note the difference between this theorem and the case for spaces and the
Atiyah-Segal completion theorem.

Also, it’s worth noting that if your C∗-algebra happens to be the algebra
of functions on a compact Hausdorff space, the (equivariant) K-theory of the
space agrees with the (equivariant) K-theory of the C∗-algebra.

6.3. Atiyah-Segal Construction of Twisted Equivariant K-Theory.

Proposition 6.12. Classes in H3(X;Z) are in bijection with projective Hilbert
bundles P → X up to isomorphism.

Proof. To go from a bundle to a class, consider a cover of X on which Pα ∼=
P(Eα). Then there are transition functions

gαβ : Pα → Pβ,

and we can get a lift

g̃αβ : Eα → Eβ,

but there is a cocycle condition on these, namely

g̃αβ g̃βγ g̃γα : Xαβγ → U(1),

and this defines a class η ∈ H2(X;U(1)) ∼= H3(X;Z) where the isomorphism
follows from the exponential sequence, and H i(X;R) = 0 for i > 0.
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Less concretely (but for a quick proof of both directions in the theorem)
PU(H) is a K(Z, 2), so BPU(H) is a K(Z, 3), and then we have that

H3(X;Z) ∼= [X,BPU(H)],

which in turn is projective Hilbert bundles, up to isomorphism. �
Now given τ ∈ H3(X;Z) Let τP → X be the corresponding projective

Hilbert bundle. Let Fred(τP) → X be the associated bundle with fiber
Fred(H). Similarly let τK → X be the associated bundle with fiber com-
pact operators on H.

Now we define twisted K-theory as
τK0(X) ∼= π0(Γ(X;Fred(τP)))

τK0(X) ∼= K̃0(Γ(X; τK⊕ I · C))

where these are sections that are a compact operator plus the identity.
We remark that the automorphisms of these projective Hilbert bundles

come from tensoring with a line bundle.

6.4. Twisted Equivariant Story.

Theorem 6.13 (Atiyah-Segal). There is a bijection between G-equivariant
projective Hilbert bundles over X and projective Hilbert bundles over XG, the
homotopy quotient.

So G-equivariant twists are in bijection with H3
G(X;Z).

Then we define
τK0

G(X) := π0(Γ(X;Fred(τP)))

We can also take as our definition K̃0 of the category of continuous projective
(G,Γ(X; τK⊕ I · C))-modules. This is also equal to

K̃0(G×α Γ(X; τK⊕ I · C)).

6.5. A Computation. H1(X; {G−Line Bundles}) ∼= H1
G(X; {Line Bundles}) ∼=

H3
G(X;Z)

Let’s consider the example where X = U(1) acts on itself by conjugation
(i.e. trivially). We still get interesting vector bundles, since the fibers are
representations of U(1). So take a line bundle given by the representation
z 7→ zn and another given by z 7→ z. Call these line bundles L±. These line
bundles determine a Cech-1-cocycle, and given any Cech-1-cocycle, modulo a
boundary, it is in this form.

We have the Mayer-Vietoris sequence
τK0

U(1)(U(1)) → τK0
U(1)(U)⊕ τK0

U(1)(V ) → τK0
U(1)(U

⋂
V )

↑ ↓
τK1

U(1)(U
⋂
V ) ← τK1

U(1)(U)⊕ τK1
U(1)(V ) ← τK1

U(1)(U(1))
(3)

but
τK1

U(1)(U) ∼= τK1
U(1)(pt) = 0,

so we get a sequence

0→ τK0
U(1)(U(1))→ Z[L±]2 → Z[L±]2 → τK1

U(1)(U)→ 0.
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where the middle map is given by (x, y) 7→ (x− y, x− yn). This shows
τK1

U(1)(U(1)) ∼= Z[L±]/ < 1− Ln >,
and 0 otherwise.

Remark: when we add C·I in the above, we need to take reduced K-theory.
It’s like adding a disjoint basepoint.

7. Twisted Equivariant Chern Character, Owen Gwilliam,
Northwestern

We’ll start with discussing the equivariant Chern character. Then we’ll
look at the twisted version. Lastly, we’ll apply this to τK∗G(G).

7.1. Equivariant Chern Character. Recall that the ordinary Chern char-
acter gives us a map

ch : KQ
∼=→ HQ.

and that H∗G(X) := H∗(EG×G X).
So say G = S1. Then

H∗S1(pt) = H1(BS1) ∼= H1(CP∞) ∼= Z[t],

where the generator lives in degree 2.
More generally if G = T = (S1)n then

H∗T (pt) = Z[t1, . . . , tn].

Now if G = SU(2) we have

H∗SU(2)(pt) = Z[t]

where now t lives in degree 4.
Remark: in general, we need to take power series rather than polynomial

rings to define the Chern character. For finite dimensional spaces, this is
irrelevant, but it’s important in the general case, and justified in that we can
equally well extract a ring from a graded ring by taking power series rather
than the conventional direct sum.

Now suppose we took the naive definition of equivariant K-theory coming
from the Borel construction, i.e.

“KG(X)” = K(EG×G X)
ch→ H(EG×G X) = HG(X).

However, we have

Theorem 7.1. K(BG) is the completition of KG(pt) at the augmentation
ideal.

so the Chern character, naively defined, would give us incomplete informa-
tion. Now let G be a compact Lie group. Recall that in the “real” definition,

KG(pt) = Rep(G)⊗ C =: R(G)

Then

R(G)⊗ C
∼=→ character ring

V 7→ χV
(4)
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Now if G = S1 the representation ring is C[t, t−1] with ring structure giving
by the formal multiplicative group.

If instead we take G = Gln(C), putting matrices in Jordan canonical form,
we see χV is a symmetric polynomial in the generalized eigenvalues of the
conjugacy class of the matrix, so

Rep(G) ∼= C[t1, t
−1
1 , . . . , tn, t

−1
n ]Sn

In general, for T ⊂ G a maximal torus,

Rep(G) ∼= R(T )W .

Now KG(pt) = R(G) is a commutative ring, and KG(X) is an R(G)-
module, so we can think ofKG(X) as a quasicoherent sheafKG(X) on Spec(R(G)).

Theorem 7.2 (Untwisted). For a point p ∈ Spec(R(G)),

K̂∗G(X)p ∼= H∗Z(g)(X
g)

where here g ∈ G is associated to the conjugacy class of p, Z(g) is the cen-
tralizer, and Xg is the fixed point set of < g >.

Let’s do an example. Take S2 with S1 acting on it by rotation in a fixed
plane. Then

C[t, t−1] ∼= R(S1) ↪→ Gm(C) ∼= C×.
So take g = eiθ for θ 6= 0. Then Xg = {N,S} and Z(g) = S1. So then

H∗S1(N
⊔

S) ∼= C[[tN ]]⊕ C[[tS]].

If instead we take g = 1, then Xg = X. We’ll use Mayer-Vietoris here with
US = S2 − N and UN = S2 − S. Notice these charts play well with the S1

action. Then US
⋂
UN = S2 − {N,S} and

H∗S1(US) = C[[tS]], H∗S1(UN) ∼= (C)[[tN ]], H∗S1(US
⋂

UN) ∼= C

Then we see that H∗S1(S2) is the kernel of the map

C[[tN ]]⊕ C[[tS]]→ C
that reads off the constant parts of the respective power series.

THERE WAS AN INTERESTING COMMENT BY CONSTANTINE ABOUT
WHEN WE ROTATE BY TWICE THE SPEED SO THAT −1 ALSO FIXES
THINGS. ESSENTIALLY, HE WAS SAYING THAT THIS DOUBLE RO-
TATION WOULD BE CAPTURED IN EQUIVARIANT K-THEORY BUT
NOT IN EQUIVARIANT COHOMOLOGY.

7.2. Twisted Chern Character. Let (τ, ε) ∈ H3(X;Z)⊕H1(X;Z/2). For
now, say ε = 0.

Theorem 7.3. There is a functorial Chern character
τch : τK(X,C)→ τH(X;X)

which is a module isomorphism over

ch : K(X;C)→ H(X;C).
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The nice thing is there is a spectral sequence to compute τH(X;X).
Let’s use a de Rham model, as it’s a bit easy to think about and to compute

with. So pick a cocycle η ∈ Ω3(X) representing τ . Then define

D = d− η : Ω± → Ω∓.

Now notice that

D2 = d2 − ηd− dη + η2 = 0,

so we can define

H0
η = even cohomology, H1

η = odd cohomology.

Let’s see how this changes when we take a different representative for τ .
Now take η′ and η − η′ = dξ. Think of this like a “change of gauge.” We get
a formula

Dη′e
ξ = eξDη.

This gives an isomorphism

Hη
∼= Hη′ .

So then we see that H2(X;C) acts on Hη. We can define τH as this, but we
need to make a choice for η, and need to remember the action of H2, i.e. the
action

Pic(X)× τK(X)→ τK(X).

There is a spectral sequence F pΩ∗ = ⊕q≥pΩq and D preserves it. Then
Epq

2 (X) ⇒ τHp+q(X). Furthermore the E2 page is Hp(X) for q even and 0
elsewhere, and d2 = 0 and d3 = τ ∪ −.

Remark: We’ve said that this twisted equivariant Chern character exists,
but defining it is actually quite a chore.

Let’s look at another example. Take G = SU(2) acting on itself by conju-
gation. Then

H∗(SU(2)) ∼= C[v]

where v is degree 3 and v2 = 0, so τ is some multiple of v and for τ 6= 0

τH∗(SU(2)) = 0

which follows quickly after looking at the spectral sequence: everything get’s
hit by cupping with v.

Let G be a compact Lie group and GC its complexification. For concrete-
ness, think of SU(n) and SLn(C).

Take g ∈ GC “normal” (i.e. it commutes with hermitian adjoint). Then

< g >= G
⋂

< g >C

is cyclic and

Z(g) = G
⋂

ZC(g)

is the centralizer. Then as before, Xg is the fixed point set.
Now

̂τKG(X)q = {formal completition at conjugacy class q}.
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Now form a flat Z(g)-equivariant line bundle τL(g) on Xg =: Y . Pick a
projective Hilbert bundle

PY
π→ Y

associated to τ and lifting the Z(g) action on Y projectively. At each point
y ∈ Y , < g >⊂ Z(g) acts projectively in the fiber π−1(y) and so we get a
central extension, ˜< g >y, coming from lifiting

1 → C× → GL → PGL → 1
↑ ↑

1 → C× → ˜< g > → < g > → 1
(5)

This give a principle C×-bundle τL on Y× < g >C
So we have a line bundle, but it is not yet clear that it is flat. So let’s see

this.
Two splittings differ by a homomorphism

< g >C
ρ→ C×

and holonomy given by picking a splitting around a closed loop is ρ(g).
Constantine: Flat line bundles are determined by holonomy, so for each

loop we want to produce a complex number. A twisting is a 3-cocycle, and a
loop is a 1-cycle, and contracting the 3-cocycle of the twisting with the 1-cycle
of the loop and a 2-cycle coming from exponentiation a Lie algebra element
produces a complex number, which happens to be invertible, giving our flat
connection.

With this, we have:

Theorem 7.4.
̂τK∗G(X)g

∼=→ τH∗Z(g)(X
g, τL(g))

Remark: For a group G with π1G free, FHT show KG(G) is a skyshaper
sheaf.

Now let’s do the example SU(2).

Rep(SU(2))⊗ C = C[t, t−1]S2

There is a map

Spec(Rep(SU(2))
π→ A1

which takes the trace of an element, which looks like λ+ λ−1. Now

SU(2) ↪→ SL2C
and the map takes diag(eiθ, e−iθ) 7→ eiθ + e−iθ ∈ [−2, 2] ⊂ A1.

So for θ 6= 0,
< g >C= TC

or a cyclic group if eiθ is a root of unity.

Z(g) = T, SU(2)<g> = T.

Instead if we choose θ = 0, π then Z(g) = G and Xg = G.
It turns out (as Dan H-L will show)

H3
G(G;Z) ∼= Z.
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Spectral sequence diagram in Owen's talk, just after line 1133

Spectral sequence diagram at end of Owen's talk, just after line 1241

Spectral sequence diagram in Owen's talk, just after line 1133

Spectral sequence diagram at end of Owen's talk, just after line 1241

Figure 3. The spectral sequences.

Now let’s take τ 6= 0 and g 6= ±1. One can show

τL(g)→ S1

a line bundle over the circle has holonomy λ2τ . This implies

τHZ(g)(S
1; τL(g)) = 0

if λ2τ 6= 1. So to be interesting, we should choose λ to be a root of unity,

λk = eiπk/τ, k = 1, . . . , τ − 1.

Now for the circle

H∗T (T ) ∼= H∗(BT )⊗H∗(T ) ∼= C[[u, θ]]/θ2

where u is the generator for BT and θ is the generator for S1.
(The 2 is coming from some restriction map of H3

G(G) to H3
T (T ).)

Now let’s look at the spectral sequence. The d3 differential is cupping with
2τ · uθ.
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8. KG(G), Dan Halpern-Leistner, UC Berkeley

We’ll start with the example G = SU(2). We’ll think of them as the unit
quaternions. We have

τK∗G(G) = τK∗(G//G).

The twists for this are pretty simple:

H0(G//G;Z/2) = 0, H1(G//G;Z/2) = 0

where the second one follows from taking the geometric realization of the
fibration G→ G//G→ pt//G and then looking at the long exact sequence of
the fibration. So we only have twists

H3(G//G;Z) ∼= Z.

We prove this and set up our calculation for twisted K-theory as follows: there

is a map SU(2)
Re→ [−1, 1] and

U+ := SU(2)− {−1} ' {+1}, U− := SU(2)− {+1} ' {−1},
where the homotopies are equivariant with respect to the conjugation action
of SU(2) on itself. Lastly,

U+

⋂
U− ' S2 = {Re = 0}.

Then Mayer-Vietoris gives:

H2(BG)⊕H2(BG)→ H2
G(S2)→ H3(G//G)→ H3(U+)⊕H3

G(U−)

and

H2
G(S2) ∼= H2

G(SU(2)/U(1)) ∼= H2
U(1)(pt)

∼= Z,
(this isomorphism comes from general considerations for homogeneous spaces
G/H)

H3
G(U+)⊕H3

G(U−), H2(BG)⊕H2(BG) ∼= 0

H∗(BG) ∼= Z[[t4]], H∗(BU(1)) ∼= Z[[x2]].

All of this together proves the assertion about twistings. Now, let τ ∈
H3
SU(2)(SU(2);Z) correspond to the integer k under the isomorphismH3

SU(2)(SU(2);Z ∼=
Z. Mayer-Vietoris in K-theory gives

Kτ+0
G (G) → Kτ+0

G (U+)⊕Kτ+0
G (U−) → Kτ+0

G (U+

⋂
U−)

↓ ↓
Kτ+1
G (U+

⋂
U−) ← Kτ+1

G (U+)⊕Kτ+1
G (U−) ← Kτ+1

G (G)
(6)

and

Kτ+0
G (pt) ∼= Rτ (G)

and is zero otherwise. Then since

Kτ
G(U+

⋂
U−) ∼= Kτ

G(G/U(1)) ∼= Kτ
U(1)(pt),

Rep(SU(2)) ∼= Z[L±]W

where L± is coming from the twisting, as we saw before.
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Since everything is over R := KG(pt) = Z[L±]W , the maps must be maps
of R-modules. We write R = span{ek = Lk +Lk−2 + · · ·+L−k}. Putting this
together, we have

0→ τK0
G(G)→ (Z[L±]W )⊕2 → Z[L±]→ τK1

G(G)→ 0

(f, g) 7→ f − Lkg
(1, 0) 7→ (1, 0)

(0, 1) 7→ (0,−Lk) = −Lek−1 + ek−2

And writing Z[L±] = R · 1⊕R · L, the middle map is given by

ϕ =

(
1 ek−2

0 −ek−1

)
So we arrive at what will turn out to be a general result (for nice G and

nice twistings). For SU(2)
Kτ+0
G (G) = 0.

Kτ+1
G (G) = 0⊕R/ < ek−1 > .

In particular, note the shift, i.e. the interesting group is in 1, not 0. Also,
note that the twisted G-equivariant K-theory of G is a quotient of R(G).

Theorem 8.1. There is a canonical isomorphism Kτ+n
G (G) ∼= R(G)/Iτ as

R(G)-modules, where n is the dimension of G and I is the fusion ideal of τ .

This is in FHT I for π1G free, G connected and τ nondegenerate. τ is
called nondegenerate when, pushing τ through the following maps

H3
G(G)→ H3

T (T ) ∼= H1(T )⊗H2(BT ) ∼= H1(T )⊗H1(T )

we have τ nondegenerate as a bilinear form on H1(T ). For SU(2), τ 6= 0 is
nondegenerate.

Note that in the above theorem, Kτ
G(G) is not a necessarily a ring, and in

general it need not be. In particular, it will not give a TQFT. If G is simply
connected, however, we do get a ring structure.

There is a map π : G//G → G/G. We have a sheaf of spectra on G//G,
π0(Γ(G//G, Fred(n)(H))). On G/G consider the sheafification of Kτ+q defined
by

U 7→ Kτ+q(π−1U).

This looks like the pushforward of the sheaf on G//G.
The generalized Leray-Serre spectral sequence gives us

Ep,q
2 = Hp(G/G;Kτ+q) =⇒ Kτ+p+q(G//G).

The stalk of [g] ∈ G/G is

Kτ+q
G ([g]) ∼= Kτ+q

Z(g)(pt),

which is 0 when q = 1 and Rτ (Z(g)) when q = 0. The challenge is in describing
Kτ+0. Have T ⊂ G with t its Lie algebra. Then there is the cocharacter lattice

Π = ker(exp : t→ T )
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The extended affine Weyl group, W e
aff is the group of isometries of t generated

by translations in Π and W .
So we almost know the sheaf Kτ+0 because we know the stalks. Now we

need to know how they glue together. Since G is connected, we have

exp : t/W e
aff

∼=→ G/G.

We restrict τ to ∗//T and then we denote the set of splittings of the
sequence

1→ Π→ T τ → T → 1

by Λτ . Then consider

f : t×W e
aff

Λτ → t/W e
aff .

It is a fact that

Kτ+0 ∼= f c∗(Z)

if τ is nondegenerate. So, the fiber is a compactly supported function Λτ → Z
that is W e

aff invariant in a suitable sense.
Now we get from the Leray-Serre spectral sequence

Hp(G/G; f c∗(Z) ∼= Hp
c (̃t;Z)

where t̃ ∼= t×W e
aff

Λτ . After a calculation, we have that

Ep,q
2 =

{
0 p 6= rk(G)

Z〈free W e
aff orbits in Λτ 〉 p = rk(G)

=

{
0 p 6= rk(G)

MapW e
aff

(Λτ ,Z) p = rk(G)

where there is some nontrivial action of W e
aff on Z.

So, the spectral sequence looks like:

and we see it degenerates at E2 giving τK
rk(G)
G (G) = MapW e

aff
(Λτ ,Z).

Now let’s think about the field theory side of things and see why the

twisting is important for actually obtaining one. Given some bordism X0
Σ→

X1, we assign some moduli space to all these guys (X0, X1,Σ). Then we want
to consider

Kτ (MΣ)
r+→ Kτ (MX1)

r− ↓
Kτ (MX0)

(7)

We want a map (r+)! ◦ (r−)∗, Then we need to look at SOMETHING THAT
GOT ERASED (JESSE - I MISSED THIS TOO)so that we can pullback and
pushforward to get maps from Kτ (MX0)→ Kτ (MX1). But then we need this
to be well-defined for compositions of bordisms, which will require twistings.
Then for every 1-manifold S we assign a cocycle, τ ∈ Z3(MS, and to each
surface Σ we want to assign a coboundary B3(MΣ) which is some kind of
compatibility between the source and target twistings once we pull them back
to MΣ.
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9. K-Theory of Topological Stacks, Ryan Grady, Notre Dame

Throughout, G is sufficiently “nice:” simple, maybe π1 is free, or perhaps
it’s even simply connected. Anyway, there are some assumptions lurking. As
motivation, consider the following black-box theorem:

Theorem 9.1.

kR(LG) ∼= k+nKdim G
G (G) ∼= k+nK(G//G) ∼= k+nK(A/LG)

where A is some space of connections (with values in g) on the trivial principle
bundle over S1, and LG acts by gauge transformations.

So consider the groupoid

A/S1 o LG,

and since the S1 action must lift to the bundle, the bundle must be trivial.
Then there is a corresponding theorem

Theorem 9.2.

τ−σR(S1 o LG) ∼= τKdim G(A/S1 o LG)

So let’s begin by describing topological groupoids.

9.1. Topological Groupoids.

Definition 9.3. A topological groupoid is a pair of spaces (X0, X1) with
source and target morphisms, s, t : X1 → X0, and identity section X0 → X1,
an inverse inv : X1 → X1 and a composition, c : X1 ×X0 X1 → X1.

For example, if X is a G-space, X × G
→→ X is a topological groupoid,

denoted X//G.
If X is a space and U = {Ui} is a cover, then define a topolgical groupoid

NU whose objects are pairs (Ui, xi), xi ∈ Ui and a morphism from (Ui, xi) to
(Uj, xj) is an ω in Ui ×X Uj such that πi(ω) = xi and πj(ω) = xj.

9.2. Central Extensions. The heuristic for this is:

U(1) ρ1 X1

↓↓ → ↓↓ → ↓↓
pt ρ0 X0

(8)

Definition 9.4. A U(1) central extension of X = X1 → X0 is a locally
equivalent groupoid τX and a U(1)-bundle over τX1 together with some com-
patibility.

It is a fact that a U(1)-bundle gerbes over X are in bijection with central
extensions of X. Also, to a P(H)-bundle there is an associated U(1)-gerbe
called the lifting gerbe.

As an example, we define MT . Consider S1 × S1 → S1 × S1 given by
(z1, z2) 7→ (z1z2, z2). Then we take the mapping torus for B(S1 × S1):

CP∞ = BS1 ↪→ BS1 ×BS1 × [0, 1]/ ∼p2×p3→ BS1 × S1 DD→ K(Z, 3)
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Spectral sequence after line 1412 in Dan's talk.

Diagram in definition of local equivalence, Ryan's talk, line 1491

Diagram for example of SU(2), in Harold's talk after line 1798.  (You have SU(2), I wrote SL(2). 
I'm not sure which is right).

Figure 4. A local equivalence.

where DD classifies the Dixmier-Douady class (this class is the obstruction to
lifting to a Hilbert bundle). Here, DD(MT ) is not torsion. The above gives a
U(1)-gerbe.

Definition 9.5. Let X, Y be topological groupoids. Then F : X → Y is
an equivalence if it is essentially surjective and fully faithful. F is a local
equivalence if F is an equivalence and for each y ∈ Y0 there is a neighborhood
U such that

Remark: this notion of equivalence is not an equivalence relation. We
end up with weird correspondence diagrams to make things work, which is
reminiscent of some homotopy category stuff.

The local equivalence basically enforces some notion of local lifting, which
we don’t get for equivalences because essentially surjective does not imply
surjective.

Examples:

(1) For a refinement of covers, U → V then there is a local equivalence
NU → NV .

(2) G → P → X a principle bundle, then P//G → X
→→ X is a local

equivalence.
(3) H < G, P//H → G/H//G

Definition 9.6. A global quotient qroupoid is one who that is related via a
zig-zag of local equivalences to a groupoid of the form X//G for X Hausdorff
and G a compact Lie group.

Definition 9.7. A local quotient groupoid is one who admits a cover by open
groupoids that are global quotients.

Definition 9.8. For X1
→→ X0 a groupoid, then a fiber bundle is a regular

fiber bundle P → X0 together with a bundle isomorphism tf : Pa → Pb for
f : a→ b ∈ X1 satisfying a cocycle condition.

Sections are the naive thing, as maps from X to P in a suitable sense.
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Proposition 9.9. Let F : X → Y be a local equivalence and P → Y be a
fiber bundle. Then there is a homeomorphism,

Γ(X,F ∗P ) ∼= Γ(Y, P )

Definition 9.10. A Hilbert bundle H on X is a fiber bundle with fiber a Z/2-
graded separable Hilbert space. H is universal if it contains any other Hilbert
bundle as a summand. H is locally universal if for all open subgroupoids
XU ↪→ X, H|XU is universal.

Proposition 9.11. Suppose X is a global quotient, X = S//G, then

H = S × L2(G)× Cl1 × `2

is locally universal. Furthermore, if Y is a local quotient groupoid, then there
exists a locally universal Hilbert bundle H. The bundles above are unique up
to contractible choices.

Notice that on a space, Hilbert bundles are always trivial so that these
notions are only interesting if points have automorphisms.

Proposition 9.12. A local quotient groupoid is a global quotient groupoid if
and only if its universal Hilbert bundle splits as a finite sum of finite dimen-
sional bundles.

Corollary 9.13. Any gerbe with non-torsion DD-class is not a global quo-
tient.

In particular, MT is not a global quotient. Also, A/S1×LG is not a global
quotient groupoid, but is a local quotient groupoid.

9.3. K-Theory. Let X be a local quotient groupoid, H its locally universal
Hilbert bundle. Then define

Fred(0)(H) = {A ∈ Fred(H)|A2 + I is compact}.
This does half the job, namely this gives us even K-theory. Now we need to
get odd K-theory. So let A ∈ Fred(Cln ⊗H) for n odd. Let

ω(A) := ε1 · · · εn · A n = −1 mod 4

ω(A) := i−1ε1 · · · εn · A n = 1 mod 4,

where the εi are generators for the Clifford algebra. Then define

Fred(n)(H) ⊂ Fred(0)(Cln ⊗H)

as odd operators that commute with Cln and such that ω(A) has positive and
negative essential spectrum.

Now define

k(X)n = Γ(X,Fred(0)(H)) n even

k(X)n = Γ(X,Fred(1)(H)) n odd

and

Kn(X) = π0(k(X)n).
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Theorem 9.14. K∗ is functorial, and local equivalent groupoids give isomor-
phic K-theories, and we have a MV sequence for open subgroupoids, and we
have shriek maps for K-oriented maps.

This shows that local equivalence is the correct notion of weak equivalence
for groupoids, and in fact, they are weak equivalences for the model theory on
stacks.

Now, what about the twists?

Definition 9.15. A twist of a groupoid X is a central extention, τX , which
recall is a locally equivalent groupoid equipped with a principle bundle.

τK(X) := [K(τX)]deg 1

where the degree 1 is with respect to the action of S1 on the Hilbert spaces.

Remark: L̃G→ LG defines a twist of G//G.

Theorem 9.16.
τ−σR(S1 o LG) ∼= τK(A/S1 o LG)

From e→ G we get a shriek map

ind : τ−σR(S1 oG)→ τK(A/S1 oG)

and
ind∗ : τK(A/S1 o LG)→ HomZ(τ−σR(G);R(S1))

Let H be an irreducible representation of S1 o LG. Then

ind∗[H] =
∑
µ

ε(u)q||µ||
2/2Tr(g)Vp−µ

where the right hand side is the Kac numerator and µ ranges over λ+ρ where
λ is the lowest weight of H and ρ is a positive energy rep.

Remark: If we take a trivial groupoid we get ordinary K-theory back and
when we take an action groupoid, we recover G-equivariant K-theory.

10. Loop Groups and Positive Energy Representations, Harold
Williams, UC Berkeley

We’ve already seen pieces of this in previous talks. Now we’re going flesh
all of it out.

The idea is that LG (or more appropriately L̃G) behaves very much like
a compact group, so we want to study its representation in a similar way.

So first, we want to think of

LG := C∞(S1, G)

as a C∞-manifold. So for C∞([a, b]) we want fn → f if and only if f
(k)
n → f (k)

uniformly for all k. Then it is a fact that

TeLG = LTeG = Lg.

It turns out that the Fourier guys are dense in the above, i.e.

⊕k∈Zzkg ↪→ Lg
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is dense.

Definition 10.1. For f ∈ Aut(G), let

LfG = {γ : R→ G|γ(θ + 2π) = f(γ(θ))

This is the twisted loop group.

Definition 10.2. Let G be compact. Then L̃G is the universal extension

1 → π1G → G̃ → G → 1
↓ ↓= ∃! ↓

1 → A → E → G → 1
(9)

for any abelian group A.

From now on, assume G is simple, so π1(G) = 0. Given an invariant
bilinear form, 〈 , 〉 : g⊗ g→ R, define

ω : Γ2Lg→ R
by

ω(ξ, η) =

∫
S1

〈ξ, dη〉.

Then ω is a 2-cocycle, so it defines a central extension:

0 → R → L̂g → Lg → 0(10)

by
[(ξ, a), (η, b)] = ([ξ, η], ω(ξ, η))

for a, b ∈ R and ξ, η ∈ Lg. We’d like to get a corresponding central extension

1 → T → L̂G → LG → 1(11)

So need a class in H2(LG). So we extend ω by left translation to get ω ∈
Ω2(LG). Now if ω/2π is integral, we get a S1 bundle with Chern class ω/2π,
which lifts the group structure.

From now on, normalize 〈 , 〉 so that ω/2π is minimal among integral

classes. The corresponding L̂G is universal and π1L̂G = 0.
As a remark, for simply connected groups we have isomorphisms

H4(BG)
∼=→ H3

G(G)
∼=→ H3(G)

∼=→ H2(LG),

so our class ω really comes from one on H4(BG). So ω/2π is cohomologous
to the transgression of σ ∈ Ω3(G),

σ : Λ3g→ R,
σ(X, Y, Z) = 〈[X, Y ], Z〉,

which is G-invariant as in the above sequence of isomorphisms.
Let P be a projective representation of LG. This gives a central extension,

LGp, which gives a multiple `〈 , 〉 of 〈 , 〉, where ` is the level of P .

The universal map L̂G → LGP restricts to the center as z 7→ z`. Also,

Diff+(S1) acts on LG and lifts to an action of Diff+(S1) on L̂G so we can
form

L̃G = π o L̂G.
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We want to study the representation theory of this guy.
Let’s quickly review the representation theory of compact groups. Let

T ↪→ G

be a maximal torus. We start by looking at the representation theory of this,
since we know what representations of abelian groups look like. We have the
cocharacter lattice,

Ť := Hom(S1, T )

and the character lattice

T̂ := Hom(T, S1).

Taking derivatives, we regard

Ť ↪→ t, T̂ ↪→ t∗.

If G now acts on V , we can decompose V as

V = ⊕λ∈T̂Vλ

where

Vλ = {v|t · v = λ(t)v}.

The nonzero weights of Adg : G→ G are the roots of G.

For nonzero α ∈ T̂ a root, dim(gα) = dim(g−α) = 1. Define the coroot hα
by hα ∈ [gα, g−α] and α(hα) = 2. We note hα ∈ T̃ comes from SU(2)→ G

Now T̂ acts on N(T ) by

(g · α)(t) = α(g−1tg)

for g ∈ N(T ).
If v ∈ Vλ,

tgv = gg−1tgv = (gλ)gv,

so gv ∈ Vgλ, and thus the weights of V are invariant under

W = N(T )/T,

the Weyl group.
Now, to recover the representation theory of G choose positive/negative

weights. We say λ ∈ T̂ is antidominant if λ ≤ ωλ ∀ω ∈ W , which holds if and
only if

λ(hα) ≤ 0 ∀α ≥ 0.

Theorem 10.3. Irreducible representations are in bijection with antidominant
weights, which are in turn in bijection with T̂ /W .
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Spectral sequence after line 1412 in Dan's talk.

Diagram in definition of local equivalence, Ryan's talk, line 1491

Diagram for example of SU(2), in Harold's talk after line 1798.  (You have SU(2), I wrote SL(2). 
I'm not sure which is right).

Figure 5. Roots of SL2.

10.1. The Affine Weyl Group. Let TR be the torus which acts by rotations
on the base, TC for the central torus, and T is the maximal torus of G, thought
of as living in LG by constant loops. Then

TR × T × TC ↪→ L̃G.

We claim that

Waff :=
N(TR × T × TC)

TR × T × TC
= T̃ oW.

To see this (at least half way) consider

Rθ ∈ TR, f ∈ LG.
Then

R−1
θ f(z)Rθ = f(eiθz)

and for f ∈ T̃
f(z)Rθf(z)−1 = Rθf(eiθz)f(z)−1 = Rθf(eiθ) ∈ TR × T

so Ť normalizes TR, and since it takes values in S1, it normalizes T and TC as
well. This “shows” the claim.

Roots of L̃G are defined as

{(k, α, 0)|k ∈ Z, α a root of G}
positive roots are

{(0, α, 0)|α > 0}
⊔
{((k, α, 0)|k > 0}.

We see this by considering

R0 ⊕ (⊕k∈Zzkg)⊕ RC .

The new simple root is (1,−θ, 0) where θ is the highest root.
Now, the coroots are

h(k,α,0) = [zkeα, z
−ke−α = (0, hα,

−k
2
||hα||2).
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We remark that ω/2π is integral if and only if ||hα||2 is even. We can then
characterize the normalized form as

〈θ, θ〉 = 2.

So in particular, our integral forms take the character lattice to the cocharacter
lattice and hθ 7→ θ, under induced map t→ t∗.

We remark further that L̃g ⊗ C is an affine Kac-Moody algebra. Kac-
Moody algebras are the right generalization to infinite dimensions of a semisim-
ple algebra.

10.2. Positive Energy Representations.

Definition 10.4. A representation V of L̃G is of positive energy if in the
decomposition

V = ⊕Z×T̂×ZVn,λ,`,

we find that
Vn,λ,` = 0

for all n < 0.

It’s a fact that PERs are completely reducible, unitary and have heighest
weights.

Theorem 10.5. PER of L̃G are in bijection with antidominant affine weights.

So if V is irreducible, then TC acts by a unique weight, and V has a
well-defined level.

So let’s classify the antidominant weights, (n, λ, `). First note that given
a representation of L̃G, we can always twist by a character,

TR → T,

which will shift the energy. So we can always assume that n = 0. We can
check if a weight is antidominant by evaluating on positive coroots, i.e.

λ(hα) ≤ 0

for α > 0. So we want to consider

(0, λ, `) · (0,−hθ,−
1

2
||hθ||2) ≤ 0

working this out we find

−λ(hθ)−
`

2
||hθ||2 ≤ 0,

and by our normalization we find

λ(hθ) ≥ −`.

Now let’s look at SU(3), finding θ, determining Weyl chambers, where the
positive coroots are, where the Weyl alcoves are. The antidominant weights
at level ` are those in the Weyl alcove.

We claim that
η ∈ T̃ ↪→ t
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Diagram for Lattice of SU(3) in Harold's talk, line 1858

Picture at line 1884 of Harold's talk.

Picture of holomorphic induction in AJ's talk, line 2517

Figure 6. Roots for SU(3).

Diagram for Lattice of SU(3) in Harold's talk, line 1858

Picture at line 1884 of Harold's talk.

Picture of holomorphic induction in AJ's talk, line 2517
acts on R∗R ⊕ t∗ ⊕ R∗C by

η · (n, λ, `) = (n+ λ(η) +
`

2
||η||2, λ+ `η∗, `).

Notice that η fixes the level `. The fact that η is acting by affine transforma-
tions is why we have an affine Weyl group and an affine Kac-Moody algebra.

In general we’ll always have a representation of the form (0, 0, 1), called
the basic representation.

For example, consider LSU(2) at level 1. Then we have (0, 0, 1) and
(0,−θ/2, 1). Then

T̃ = mhθ ↪→ t,

and

mhθ · (0, 0, 1) = (
1

2
||mhθ||2,mθ, ) = (m2,mθ, 1)

which gives us the Weyl orbit are the lattice points lying on some parabola.
For a fixed energy level, we get a finite dimensional representation, see the
figure above.
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10.3. Existence of PERs. One might be tempted to build these represen-
tions naively, say LSU(2) acting on on L2(S1;Cn). But this is not of positive
energy. So we need to do something more sophisticated.

Now it is a fact that

G/T ∼= GC/B
+,

the generalized flag variety. From the description on the right hand side above,
we have a complex manifold.

GC =
⊔
w∈W

N−1wB+.

For example for SU(N), B+ is upper triangular matrices, N−1 is lower trian-
gular with ones on the diagonal. We find then that

G/T ∼=
⊔
w∈W

N−1w

and the N−1w’s are affine spaces, one of which is dense.
Any λ ∈ T̂ , extends to B+ = TC oN01 → C×, so we get a representation

Cλ of B+. Then

Lλ = GC ×B+ Cλ

is a complex line bundle over the complex manifold G/T .

Theorem 10.6 (Borel-Weil).

Γ(Lλ) = 0,

unless λ is antidominant. Then

Γ(Lλ) = Lλ.

We recall that

KG(G/H) ∼= KH(pt) = Rep(H).

For example, consider the Hopf bundle U(1) → SU(2) → CP1. So irreps
of SU(2) sections of holomorphic line bundles on CP1 = SU(2)/U(1) = G/T .
These line bundles correspond to

Symk(C2),

which is the sheaf O(k).

Theorem 10.7. Borel-Weil holds for LG/T .

Unpacking the analogue of this,

L̃G/T̃ ∼= LG/T ∼= LGC/L
+B+

where L+B+ is bounded values of holomorphic maps γ from the unit disc into
GC, where γ(0) ∈ B+. From here, everything works out as one would expect:
we get an analogue of the Bruhat decomposition:

LG =
⊔

w∈Waff

L−N−wL+B+.
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and

LG/T =
⊔

w∈Waff

L−N−w,

and all the cells are contractible. We have a “big cell” that is isomorphic to
L−N−. From the exponential map on the Lie algebra, we get that a neigh-
borhood in L−N− is diffeomorphic to a neighborhood in L−n−. So if

s ∈ Γ(Lλ),

we restrict to get a holomorphic function on L−n−. So in particular, a section
is determined by its Taylor series at the the basepoint, which is in

Πn≥0Sym
n(L−n−)∗,

and one can see that this is positive energy, so the section we started with was
positive energy.

11. Character Formulas, Dario Beraldo, UC Berkeley

Let G be a compact Lie group. And T ⊂ G the maximal torus. We have
some lattices:

roots of g ⊂ Hom(T, S1) ⊃ weight g ⊂ it∗

Then there is a map

exp : t/L
∼=→ T.

Λ =

(
L

2πi

)∗
= {φ : t∗ → iR|φ(L) ⊂ 2πiZ}.

Then irreducible reps for G are in bijection with Λ+, where λ ∈ Λ+ maps to
(πλ, Vλ). Then we have the Weyl character formula for X ∈ t

χλ(exp(X)) =

∑
w ε(w)e(w·(λ+p))(X)

eρ(X)Πα>0(1− e−α(X))
,

where

ρ =
1

2

∑
α>0

α =
∑̀
i=1

wi.

Note that in general

w · (λ+ ρ), ρ /∈ Λ+,

but w(ρ)− ρ is a root of g.
Now we will explain Kirilov’s orbit method philosophy. Let G be a non-

compact Lie group. Then coadjoint orbits (denoted Ω) in g∗ are in bijection
with unitary irreducible representations of G (denoted πΩ).

Proposition 11.1. Each coadjoint orbit is a homogeneous symplectic mani-
fold.
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The map Ω → πΩ is called quantization, and we may think of Ω as some
classical phase space.

Unfortunately, this doesn’t work for all Lie groups, for example the above
is false for a compact Lie group. However this does work if G is connected
with nilpotent Lie algebra.

So backing up, any Lie group acts on its Lie algebra by the adjoint rep-
resentation, ad, which is the deriviative of the adjoint action Ad of the Lie
group on itself. We will define another action of G on g by

K(g) · φ = φ ◦ Ad(g−1).

Taking derivatives, g acts on itself by

K∗(X)φ = φ ◦ (−ad(X)).

for X ∈ g and φ ∈ g∗.
So now we wish to get a symplectic manifold

G/stab(φ)→ Ωφ

g 7→ k(g)φ.

Now we define a form σ (that will turn out to be symplectic). Now,

TφΩ = g/sφ

where
sφ = {X ∈ g|K∗(X)φ = 0}.

Then
σ : g× g→ R

(X, Y ) 7→ φ([X, Y ]).

One can show that σ is closed using the Jacobi identity. It is nondegenerate
as

ker(σ) = sφ.

For example, consider the Heisenberg group of 3× 3 upper triangular matices
with 1’s on the diagonal:

H := {

 1 a c
0 1 b
0 0 1

 |a, b, c ∈ R}.

Let gabc denote an element of H. Then we want to look at the irreducible
representations of H, denoted πλ and πµ,ν .

Then πλ : L2(R, dx)→ L2(R, dx) where

(πλ(gabc)f)(x) = e2πi(bx+c)f(xa)

which is irreducible by Wiener’s theorem, and

πµ,ν(gabc = e2πi(aµbν).

Define
X := g100, Y = g010, Z = g001.

and note [X, Y ] = Z. Define a pairing

〈A,B〉 = tr(AB).
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Now for computing K, since g∗ = Mat(3× 3)/g⊥,

K(gabc)

 ∗ ∗ ∗x ∗ ∗
z y ∗

 = gabc

 ∗ ∗ ∗
x+ bz ∗ ∗
z y − az ∗

 g−1
abc =

 ∗ ∗ ∗x ∗ ∗
z y ∗


Now let z = λ. Then if λ 6= 0 we get 1 orbit {z = λ} and if λ = 0, orbits are
points {µ, ν, 0)}.

We have a measure on these orbits, given by the symplectic volume,

µΩ :=
σd

d!

where d = 1
2
dimΩ.

Then there is the Kirillov character formula

χπΩ
= µ̂Ω.

The character is the trace of the representation evaluated on the exponential
of a Lie algebra element. Given

πλ(φ) = (πλ(g), φ) =

∫
G

πλ(gabcφ(a, b, c)dadbdc.

In the above example, σ = dx∧dy
λ

. Now, we want to verify that (χπΩ
, ϕ) =

(µ̂Ω, ϕ) = (ϕ̂, µΩ). We have an operator on L2(R) given by:

πλ(ϕ) = (πλ(g), ϕ) =

∫
G

πλ(gabc)ϕ(a, b, c)dadbdc

Now,

(πλ(ϕ)(f))(x) =

∫
R3

ϕ(y, b, c)e2πiλ(bx+c)f(y)dydbdc

=

∫
R

∫
R
φ̂(y − x, λx, c)e2πiλcf(y)dcdy

So

πλ(φ)f(x) =

∫
R

∫
φ̂(y − x, λx, c)e2πiλcdcf(y)dy.

Since f was Schwartz, this is trace class,

trπλ(φ) =

∫
R
K(x, x)dx =

1

λ

∫
R

∫
R
φ̂(0, x, c)e2πiλcdcdx =

∫
R
φ(0, 0, c)

e2πiλc

λ
dc,

where

K(x, x) = φ̂(y − x, λx, c)e2πiλc.

Then

χπΩ
=
e2πiλc

λ
δ(a)δ(b).

So

(µ̂Ω, φ)→ (µΩ, φ̂) =

∫
Ωλ

(∫
R3

φ(x, y, z)e2πi(ax+by+cz)dadbdc

)
dx ∧ dy

λ
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which gives∫
φ(x, y, z)

(∫
e2πiaxdx

)(∫
e2πibydy

)(∫
e2πiczdz

)
WASN’T ABLE TO COPY THIS ONE IN TIME. (Jesse: NEITHER WAS
I.)

For compact groups, this fails roughly because there are too many coadjoint
orbits and too few irreducible representations of G. We do have a Killing form
on g, so adjoint orbits can be identified with coadjoint orbits. Adjoint orbits
are flag varieties, G/Γ, for Γ ⊃ T . It is a fact that each orbit intersects the
positive Weyl chamber in exactly one point.

Another problem is something about exp : g → G. A third problem is a
ρ-shift.

Now lets look at SU(2). So coadjoint orbits are flag varieties, i.e. spheres,
which are centered at 0 ∈ su(2). So let Ωr be the sphere of radius r, and
σ = r sinφdθ ∧ dφ. Let Z be a diagonal Lie algebra element with iz,−iz on
the diagonal. Then

1

p(Z)

∫
e2πi<Z,Fdσ(F ) =

1

p(Z)

sin rz

z
=

sin rz

sin z

where

p(Z) =
sinh(ad Z/2)

ad Z/2

If r = n+ 1, then
sin((n+ 1)z)

sin z
= χn(z).

Then the Kirillov character formula:

Theorem 11.2 (Kirillov).

χλ(exp(X)) =
1

p(X)

∫
Ωλ+ρ

e2π1<X,F>dµ(F )

exp∗χλ(X).

Now let’s move to loop groups. So

L̃g ∼= Lg⊕ RC
and

L̂G = Lg⊕ RC ⊕ RD
[D,X ⊗ zn] = nX ⊗ zn.

We have an invariant bilinear form defined by

< D,C >= 1, < X × zm, Y ⊗ zn >=< X, Y > δm,−n.

In principle we want to calculate the action of L̂G acting on L̂g
∗
, but for now

we’ll just do LG acting on L̃g
∗
. We have sequences

0→ RC → L̃g→ Lg→ 0

0→ (Lg)∗ → L̃g
∗ → Rδ → 0
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where δ is an element determined by δ : C 7→ 1. Then

(L̃g)∗` = {φ : L̃g→ R|φ(C) = `},
which are connections on the trivial principle G bundle over S1. Then we need
to calculate this dual:

(Lg)∗ = Ω1(S1;ð∗) = Ω1(S1;ð)

where the second isomorphism uses the Killing form, which are like infinites-
simal gauge transformations.

(X ⊗ f, Y ⊗ ω) =< X, Y >

∫
fω

In (L̃g)∗` , we have an element `δ + ω.

K∗(X)(`δ + ω) = X · (`δ + ω)

and

< X · (`δ + ω), Y + αC > = − < `δ + ω, [X, Y + αC] >

= − < `δ + ω, [X, Y ] >

= −` < dX, Y > − < ω, [X, Y ] >

= −` < dX, Y > + < [X,ω], Y >

=< −`dX + [X,ω], Y + αC

so we find that the infinitessimal gauge action is

x · (`δ + ω) = [x, `d+ ω]

where d = `δ. So LG acts on (Lg)∗` by γ · (d+ ω) = γ(d+ ω)γ−1, and we see

(Lg)∗`/LG
∼= A/LG = G//G

11.1. Frankel has given a Kirillov character formula for L̂G. Let λ be a
weight.

χλ(exp(bD + Y )
1

p(bD + Y )
eb/a(H,H)

∫
Ωλ+p̂

e2πi<dB+Y,F>dµa/b(F ).

The roots of L̂G are
{Rg + ZC}

⊔
{Z− 0C}

and the simple roots were α1, . . . , α` and α0 = C−θ. The fundamental weights
are {ω̃0, . . . , ω̃`}. Then

2(ω̃i, αj)

(α̃j, α̃j)
= δij.

The Killing term is

p̂ =
∑̀
i=0

ω̃i =
D

2
+ p

where

p =
∑̀
i=1

ωi.
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The above character formula is defined if and only if Im(b) < 0 and

λ+ p̂ = aD +H

for a > 0.
Constantine: Which elements of the loop group are trace class? You have

to do something to force things to be trace class which involves something
about energies in the unit disc. DIDN’T CATCH THIS PART (Jesse - NEI-
THER DID I).

12. Dirac Family Construction of K-Classes, Sander Kupers,
Utrecht

This is either FHT II or parts 3 and 5 or FHT III.
There will be 3 analogous constructions giving a map between loop group

representations and equivariant K-theory.
So let T be a torus, G a compact Lie group. There are three setups for

the different constructions:

(1) Have a finite dimensional complex representationR(G) ∼= σKdim G
G (g∗)cpt

(2) Positive energy representations at level τ−σ Rτ−σ(LG) ∼= τKdim G
G (G).

(3) Positive energy representations at level τ , which are in bijection to
representations of Γτ ,

Rτ (LT ) ∼= R(Γτ ) ∼= τKdim T
T (T )

All of these isomorphisms can be implemented by Dirac families on spinor
fields. We will also see the twistings σ in these constructions.

First we’ll look at a special class of twistings, then look at PinC and
spinors. Then look at G, LG, LT and Γτ .

We’ll again be thinking of twists as central extensions of some topological
groupoid. So recall a twist Kτ

G(X) is the following data:

(1) X̃//G̃ → X//G locally equivalence of groupoids such that Ñ ⊂ G̃ is
normal, freely acting on X̃, X̃/Ñ ∼= X, G̃/Ñ ∼= G, N = ΩG.

(2) A central extension G̃τ of G̃
(3) A grading homomorphism ε : G̃→ Z/2.

So we want to get our hands on classes in Kτ
G(X). Unwinding a definition

from yesterday, we need G̃τ -equivariant families of skew-adjoint odd Fredholm
operators on a τ -twisted Hilbert bundle, indexed by X̃. We’ll construct Dirac
operators, and they’ll be Fredholm operators of this type.

12.1. PinC and Spinors. If V is a finite dimensional real vector space with
inner product, one can define

PinC(V ) ⊂ CL(V )

This is a group and therefore it acts on spinor representations S. If the
dimension of V is even , we get two irreducible representations, S±, and we
just fix one. If the dimension of V is odd, we get one irreducible representation
S, but we need to remember a Cl(1) action too. There is a central extension

1→ T → PinC(V )→ O(V )→ 1
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which is split at the Lie algebra level.
We can construct spinors on loop groups, but we’ll need to make some

choices, like a polarization which roughly allows us to distinguish between
positive and negative energy representations.

Now pick a G invariant inner product on g with basis ei and dual basis e∗i .
Then Ad : G→ O(g).

Definition 12.1. Gσ = G×O(g) Pin
C(g).

Pick our spinor representation σ on S, so Gσ acts on S, Cl(g∗) acts on S,
g∗ acts on S via γ, from splitting

g→ gσ → pinC.

Now we want to define spinor fields. Via left translation, identify spinor
fields with C∞(G)⊗ S. Then G acts on C∞(G)⊗ S on the left via a map R
and g and g∗ act on the right via γ and σ.

Theorem 12.2 (Peter-Weyl). L2(G)⊗ S ∼= ⊕̂V irrV
∗⊗ V ⊗ S where the first

V is right translation, and the second V is left translation.

Look at a single summand,

V ∗ ⊗ V ⊗ S.
Then

Definition 12.3. Dσ = iγaRa + i
3
γaσa ∈ End(V ⊗ S) where γa = γ(ea),

Ra = R(ea) and σa = σ(ea).

Note this is not the Levi-Civita Dirac operator! However, its square is a
generalized Laplacian.

Now, D(V ) : g∗ → End(V ⊗ S) and Dµ = Dσ + µaγ
a where µ = µae

a.
There are some properties of D:

(1) Dµ is odd, skew-adjoint, if S admits a commuting Cl(1) action, Dµ

commutes with this.
(2) D(V ) is Gσ-equivariant.

Proposition 12.4. ker(D) is supported on a coadjoint orbit in g∗ if and only
if D(V ) ∈ σKdim G

G (g∗)cpt for

σ = (g∗//G
id→ g∗//G,Gσ, εa).

To do calculations, fix for µ a maximal torus Tµ such that µ ∈ t∗µ and a
Weyl chamber such that µ is antidominant.

Proposition 12.5. If V is irreducible of lowest weight λ then ker(D) is V−λ⊗
S−ρ when µ = −λ− ρ and 0 otherwise.

ρ = 1
2

∑
a∈ a is the lowest weight of S as a Gσ-representation.

To prove the above,

(1) introduce energy operator Eµ which acts as multiplication by a con-
stant on weight spaces, with lowest value

V−λ ⊗ S−ρ.
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(2) D2
µ + 2Eµ is multiplication by a constant, which implies D2

µ is multi-
plication by a constant and attains its maximum on V−λ ⊗ S−ρ.

(3) Dµ = −γ(µ+λ+ρ) on V−λ⊕S−ρ if and only if (D2
µ = 0⇔ µ = −λ−ρ).

From this it follows that ker(D(V )) is supported on coadjoint orbit of −λ−
ρ. So we’ve constructed a map from irreducible representations to coadjoint
orbits.

Working from the K-theory side,

R(G) = K0
G(pt)

D→ σKdim G
G (g∗)cpt

where the map is induced by [V ] 7→ (V ⊗ S, 1⊗ cl).
Now for a coadjoint orbit Ω in the case that G is connection (for discon-

nected G need another twist), [ ˜ker] = [V ] ∈ Kσ(Ω)+dimΩ
G (Ω) and this maps to

[D(V )] DIDN’T GET A CHANCE TO GET THE DIAGRAM HERE (JESSE
- I MISSED THIS TOO).

Now we wish to do this for loop groups. The major differences are:

(1) Positive energy representations are projective, i.e. a representation of
LGτ . So we use A instead of (Lg∗) as an indexing space, which is
equivalent to choosing linear splittings of Lgτ → Lg.

(2) Spinors become a bit harder (this is where the polarization comes in)
(3) Need to do some analysis: work on a dense subspace of finite energy

loops, the fourier components described earlier today.

Let τ be an admissable extension (LGτ extends to L̃G
τ
). And let V be a

positive energy representation of level τ−σ. Then S is an infinite dimensional
spinor representation of Cl(Lg∗).

To fix notation, let eaz
n be a fourier basis in Lg, γa(n) Clifford multiplica-

tion of eazn ∈ Lg∗ on S, σa(n) the spinor action of eaz
n ⊗ Lg on S, (Ra(n))A

is the action of eaz
n on V (which will depend on the splitting).

Remark: S is like the Fock space constructed from the polarization (see
Pressley and Segal, Chapter 12).

Definition 12.6. D(V ) : A → End(V ⊗ S)fin), DA = iγ(−n)(Ra(n))A +
i
2
γ(Ω)A.

If we fix the trivial connection A0, A with Lg∗

Dµ = iγa(−n)Ra(n) +
i

3
γa(a)σa(n) + γ(µ)

for µ ∈ Lg∗, which is superficially like the Dirac operator we had before, only
now it is indexed by n ∈ Z.

Unfortunately, this operator is unbounded. But we fix this.

Theorem 12.7. D(V ) : A → Fred(V ⊗ S), A 7→ DA(1 − D2
A)−1/2 gives an

element of τKdim G
G (A ∼= τKdim G

G (G1).

Here

τ = (A//G→hol G//G,LGτ , ε+)

and D : Rτ−σ(LG)→∼= τK
dim(G)
G (Ge) is an isom.
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Now we can do this relatively easily LT , T a torus with cocharacter latice
Π ∼= π1(T ) and Π∗ the character lattice.

LT ∼= Γ× exp(V )

where
Γ = {γ ∈ LT |d(γγ−1|t is constant} ∼= Π× T

and V s t⊥ ⊂ Lt.
Admissable central extensions of LT are LT τ = Γτ×(exp(V ))τ so τ : Π→

Π∗ and
τ ∈ H1(T )×H3

T (T ) ∼= H1(T )⊗H1(T ) ∼= Π⊗ Π.

Now (exp(V ))τ has a single irreducible representation, the Fock space repre-
sentation F. On the other hand, Γτ has irreducible representations

V[λ] = ⊕λ∈[λ]Vλ,

where
[λ] ∈ Π∗/τ(Π)

So irreducible positive energy representations of LT are level τ are all of the
form V[λ] ⊗ F.

Now τ : Π → Π∗ extends to a linear map, τ̃ : t → t∗, so we can take τ̃ ∗D
of the map D : t→ C∞(T )⊗ S we defined earlier.

Proposition 12.8. τ ∗D restricts on V[λ] ⊗ S and then is a Γτ -equivariant
family of odd skew-adjoint Fredholm operators with commuting Cl(1)-action if
dim T is odd. So

D(V )τ+? ∈ τKdimT
T τ (t) ∼= τKdim T

T (T )

and
τ = (t//T → T//T,Γτ , ε).

Theorem 12.9. τR(LT ) ∼= R(Γτ ) ∼= τKdim T
T (T ), and in particular

τKdim T
T (T ) ∼= HomW e

aff
(Λτ , Hn

c (t)⊗ Z[ε]

Λτ is a Π∗-torsor, and there is a bijection

Λτ/W e
aff
∼= Π∗/τ(H).

13. 2-Tier Field Theory and the Verlinde Algebra, AJ
Tolland, SUNY Stony Brook

I’d like to explain how the Verlinde algebra first is a Frobenius algebra,
and show how it really is an extended field theory too. Then we’ll try to see
the connection to K-theory.

First, we need a bunch of notation and preliminaries. Afterwards we’ll get
to the fun stuff.

So let G be a simple 1-connected compact group of dimension d (as usual,
for concreteness think SU(2)). Let GC be its complexification. Let ` ∈
H4
G(pt,Z) be a level. As we’ve seen this week, this group has many differ-

ent incarnations:

Z ∼= H4
G(pt,Z) ∼= H3(LBG,Z) ∼= H3(BLG;Z) ∼= H3

LG(pt,Z) ∼= H2
LG(pt;U(1)),
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Diagram for Lattice of SU(3) in Harold's talk, line 1858

Picture at line 1884 of Harold's talk.

Picture of holomorphic induction in AJ's talk, line 2517

Figure 7. Picture of holomorphic induction.

and we can interpret the last guy as an ad-invariant symmetric bilinear form.
A level ` is positive, written ` ≥ 0, if the bilinear form is.

The map ` : T → T̃ gives us a trace on the representation ring of G,
denoted

θ` : R(G)→ Z,
as follows. Let F = Ker(d`) thought of as living in t, the Lie algebra of the
maximal torus of G. Then we may define

θ`(V ) =
1

|F |
∑

f∈F reg/W

|∆(f)|2χV (f),

where ∆(f) is the Weyl denominator and χV (f) comes from the character
formula.

Then our bilinear form looks like

< V,W >`= θ`(V
∗ ⊗W )

The Twisted K-theory side gives us

`Kd
G(G) = R(G)/ker(< , >).

The Verlinde algebra has been sadly neglected so far. We’re going to try
to rectify this now. So denote it by

R`(LG) = Gr(PER),

the Groethendieck group of positive energy representations. This is related to
the story of holomorphic induction, which is a map

R(G)→ R`(LG).

If you’re trying to remember what this map actually does, think of a disk with
a marked point with a representation V of G attached to the marked point
an a representation V̂ attached to the boundary of the disk, so we get a map
V 7→ V̂ ; see the picture.
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Now define the affine flag variety (or the Grassmannian, if you like) XD

associated to the disk D:

XD :=
GC(D×)

GC/D

If we were to choose a coordinate, the numerator would be Laurant series in
z and the denominator would be power series in z. Recall from Harold’s talk
that there is a central extension L̂G of LG, which comes from a line bundle
L on GC(D×), which in turn gives a line bundle L on XD.

We have an action of GC(D) on GC(D×), but GC(D×) also acts on V , so
we can get an associated bundle V on XD.

This ends the preliminaries. Now assume ` ≥ −h̃ (which for SU(2) is
` ≥ −2). If V = Vλ and λ(θ) ≥ −` (so that we’re in the Weyl alcove). Then
we take our line bundle from before and consider the global sections of L⊗`⊗V :

V̂ := H0(X;L⊗` ⊗ V),

is the positive energy representation of level ` with V̂0 = Vλ. Now it might
seem that something goes wrong for negative `, but really all we get it the
zero representation, which is fine.

Just as a comment: LG doesn’t honestly sit inside of GC(D×). Rather,
there are polynomials which are dense in both spaces, and their representation
theories agree.

As a special case, consider

Ĥ = H0(X;L⊗`)

is the vacuum representation.
To think about fusion, rather than looking at a punctured disk, we’ll think

about the pair of pants (see the picture). We’re going to have to make some
choices, but this will descend to something well-defined on the Verlinde al-
gebra. So as before we label the boundary circles by representations of LG,
denote the incoming by V̂1 and V̂2. We want to construct something for the
outgoing boundary, V̂1 ? V̂2, the fusion product. We do this by capping off
both the incoming boundaries with marked points labeled by V1 and V2. We
also cap off the boundary with a disk D, but don’t put a marked point on it.
Then if Σ is the resulting surface, we consider

XΣ−D =
GC(D×)

GC(Σ−D)
.

THERE WERE SOME QUESTIONS ABOUT HOW THIS REALLY WORKS.
So we get a line bundle L on this flag variety XΣ−D and bundles Vi on

XΣ−D.

Definition 13.1. V̂1 ? V̂2 = H0(XΣ−D;L⊗` ⊗ V1 ⊗ V2) which descends to a
product on R`(LG) that is independent of the choices since the data we chose
is continuous and R`(LG) is discrete.

This is of level ` since the extension is classified by the line bundle L⊗`.
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Picture for fusion multiplicities in AJ's talk, line 2582
Figure 8. The fusion product.

Picture for fusion product in AJ's talk, line 2556

Picture for fusion multiplicities in AJ's talk, line 2582

Figure 9. Fusion multiplicities.

Theorem 13.2 (FHT).

R`(LG) ∼= `+h̃Kd
G(G)

and it is the fusion product in the Verlinde algebra that goes to the Pontryagin
product in twisted K-theory.

The Pontryagin product really comes from the multiplication onG. MIGHT
BE GOOD TO SPELL THIS OUT A BIT MORE.

AJ MADE A CRYPTIC (AND VERY INTERESTING) REMARK ABOUT
HOW THE PRODUCT IS RELATED TO SOME OPERATOR-STATE COR-
RESPONDENCE BETWEEN THE MARKED POINT ON A DISK AND
ITS BOUNDARY.

We want to now see how this is some TQFT in that we’re really doing some
integral over a space of fields. First we need to think about fusion multiplicities
(i.e. the multiplicities of irreps in the fusion product). So consider a pair of

pants with incoming labeled by V̂1 and V̂2 and outgoing labeled by the fusion
product, which the funny capping off we had before (see the picture). Then,
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if V̂ is an irrep, by definition

multV̂ (V̂1 ? V̂2) = H0
GC(D)(V̂1 ⊗ V̂2 ⊗ V̂ ∗).

and then we compute

H0
GC(D)(V̂1 ⊗ V̂2 ⊗ V̂ ∗) = H0

GC(D)(H
0(XΣ−D,L⊗` ⊗ V1 ⊗ V2)⊗ V̂ ∗)

and this is the E2 page of some spectral sequence converging to

H0(XΣ−D/GC(D),L⊗` ⊗ V1 ⊗ V2 ⊗ V∗) = BunGC(Σ)

(We only have to worry about H0 above because Teleman’s thesis says the
higher cohomology vanishes).

Now Σ = (Σ − pt)
⊔
D, and this gives us something like a clutching de-

scription.

Corollary 13.3. χ(L)BundGC(Σ)
= multĤ(Ĥ?Ĥ) = ZR`(LG)(punctured sphere),

where Ĥ is the vacuum vector.

This is the tip of the iceberg! We can generalize this wildly by decorating
things with complex structures. Also, since we have a TQFT above, we can
start throwing in surfaces of higher genus.

Now after giving the Verlinde algebra it’s due attention, let’s switch back
to K-theory. Everything we’re going to do should be traced back through the
FHT isomorphism.

Theorem 13.4 (Atiyah-Bott).

BundGC(Σ) = AGΣ/C∞(Σ, G)

is an isomorphism of stacks.

Now define

MG(Σ, ∂Σ) = AGΣ/C∞((Σ, ∂Σ), (G, e)),

and we have a LG-equivariant projection

π :MG(Σ, ∂Σ)→ A∂Σ,

and

A∂Σ/LG ∼= G//G.

Now let’s talk a bit about twistings.

H4
σ(pt) ∼= H3

G(G),

and

S1 × LBG ev→ BG
p ↓
LBG

(12)

and ` ∈ H4(BG) → H3
G(G), τ = p∗ev

∗` ∈ H3
G(G). COULDN’T QUITE

COPY ALL THIS IN TIME (JESSE: YOU HAD EVERYTHING I HAVE).
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On Σ,

MGC(Σ, ∂Σ) ∼= Σ×Map(Σ, BG)
ev→ BG

p ↓
MGC(Σ,∂Σ)

(13)

Then

d

∫
Σ

ev∗` =

∫
Σ

d(ev∗`) =

∫
∂Σ

ev∗` = τ,

and we find
π∗τKLG(MG(Σ, ∂Σ)) ∼= τ 0KLG(MG(Σ, ∂Σ)).

A difference between two trivializations is a line bundle on MG(Σ, ∂Σ), de-

noted O(τ). Then O(τ) = Lτ−h̃, which we can think of as the first sign of the
FHT isomorphism.

We have an index from
π∗τKLG(MG(Σ, ∂Σ)

π→ τKG(G),

and
indexD(O(τ)) = π!(

τ1),

and this “Dirac” index agrees with the Doulbealt one

index∂(O(τ − h̃)).

If we consider a 2-holed torus with genus 1 pieces Σ1 and Σ2 and want the
index of the whole thing... MAYBE A CAREFUL EXPLAINATION HERE?

Remark: Now, if G is not simply connected, and you happen to be working
with twistings that are transgressed you still get a Verlinde algebra fusion
product, but in general this may not be.

14. Survey 2: Known and unfinished business, Constantin

Let’s take stock of where we are and highlight a few things.
The following two things are closely related:

(1) Character Formulas: Kac-Weyl and Kirillov (connected by Fourier
transform)

(2) Chern character and Dirac Family give computational constructions of
τKG(G) (Chern does this after tensoring with C).

The Fourier transform is a shadow of a higher structure connection Chern
character and Dirac family, a structure called modularity, as Kac-Weyl is
related to Chern and Kirillov is connected to Dirac family.

Now modularity is related to 3-d TQFT via an S-transformation in Chern-
Simons field theory, and is also related to Elliptic cohomology. However, these
two are somewhat disjoint as elliptic cohomology needs a circle action and
Chern-Simons only makes sense if we forget the circle action.

So let’s review all the ingredients in this picture.
So Let G be a compact group and T ⊂ G and W = NG(T )/T . For

example, G = U(n) T is diagonal matrices and W = Sn. Then

ρ =
1

2

∑
α>0

α
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which in the semisimple case is
∑
wi. Now for (anti)-dominant λ and Vλ a

representation of heighest weight λ,

χλ = TrVλ|T =

∑
w∈W ew(λ+ρ)

eρΠα>0(1− e−α
,

Let ∆ be the denominator above, called the Weyl denominator; it is a character
of the spin representation S(g/t) which as a graded space is det−1/2n⊗Λ∗(Π∗).

Now for loop groups γ ∈ LG and H a PER, we might want to look at
TrH(γ), but this need not be trace class. We can use E = −i d

dt
acts on H

with positive spectrum, as some kind of damping term. It turns out that for
any q ∈ C with |q| < 1, qEγ is trace class on H, and Tr(qEeγ) is holomorphic
in q. Then we have for a fixed level `

χλ =

∑
µ∈W c+`

aff (λ+ρ) ε(µ)eµq(||µ||2−||λ+ρ||2)/2

∆(Lg/t)

where

Waff = W n π1(T ),

and `+ c defines a map π1T → π1(T )∗ (the weight) and ∆ is the character of
the spin representation of Lg/t. THERE WAS A THOM CLASS COMMENT
HERE I DIDN’T CATCH THAT HAD TO DO WITH t OR SOMETHING
(JESSE - ME NEITHER).

As an aside, we have the transgression map:

H4(BG;Z)→ H3
G(G),

and from

Sym2((π1T )∗)→ H1(T )⊗H2(BT ) ∼= (π1T )∗ ⊗ (π1T )∗

THERE IS SOME PROBLEM IF OUR LEVEL IS NOT TRANSGRESSED
IN DEFINING A CIRCLE ACTION (JESSE - DIDN’T CATCH THIS), i.e.
there is no q in the game.

Recall from the Dirac construction

D : Hλ ⊗ S±(Lg)

and then τKG(G) classifies the PER of τLG n Cliff(Lg), so we’re really
classifying PER of spinors. The character we actually see is just the Kac
numerator. Think: S(Lg) =Kac denominator × Thom class along T .

So for example for U(1) at level 2, we get∑
u2nqn

2
∑

u2n+1qn(n+1)

for u ∈ U(1). Now let’s get rid of this circle action and focus on Chern-Simons
at q = 1.

Say π1G is torsion free. Then the Kac numerator at q = 1 becomes a linear
combination of δ-functions supported at

Γ ↪→ T
d(`+c)→ T ∗.
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Proposition 14.1. This inclusion is a C-linear isomorphism between C −
Rep`+c(LG) and the span of such δ functions. Moreover, this is in fact the
RG-linear under the multiplication action of the character of G and the natural
action of RG = KG(pt) on τKG(G), which is the same as the action of Rep(G)
on Rep`+c(LG).

So after a normalization, the Kac numerator diagonalizes the multiplica-
tion in the complexified K`+c

G (G).
So recall that the twisted global Chern character

τKG(X)→ Γ(GC/GC; sheaf τK)

and recall GC/GC = Tσ/W . In the case that X = G and τ nondegenerate
the sheaf is a sum of skyscraper sheaves of rank 1 at the regular points in
F/W ↪→ T/W , where by regular we mean not fixed by an Weyl group element.
Now the stake is

τH∗T (T ; τL(f))
∼=

integrationinT C.

Theorem 14.2. The Kac numerator agrees with the Chern character image:∑
f∈F

cfδf = (f 7→ cf ).

(after an overall normalization).

Recall the ordinary Chern character can be described as

K∗G(pt)
ch→ H∗(BG;C = (C[[g]])G,

and given V ∈ K∗G(pt), χV is a function on the group, and

ch[V ] = exp∗χV .

Now the loop group version is basically the same, but we have the spinors in
the game.

Now let’s recall the Kirilov versus the Dirac family construction. Kirillov
takes a Hλ and identifies it with a coadjoint orbit Ωλ ∈ A. The Dirac family
construction takes a Cλ ⊂ G and a K-theory class on it, L-family up to
stabilization is the Thom pushforward of [Lλ] along inclusion Cλ ↪→ G.

Theorem 14.3. The following match:

G/G ∼= A/LG
fλ 7→ Ωλ/LG

(14)

where note G/G ∼= T/W .

Where is this fλ? fλ ∈ F ∗ ↪→ T → T ∗. A word of caution: the map here
is the transpose of the map

H1(T )⊗H2(B)) = π∗1 ⊗ π∗1.
FELL A LITTLE BEHIND ABOVE, LOOK OUT FOR MISTAKES.

Proposition 14.4. The bilinear form d(`+ c) gives a duality pairing between
F and F ∗.
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Note that in the interesting case (symmetric levels) F ∼= F ∗.

Theorem 14.5. The two constructions are related by the Fourier transform.
The first generalizes the product and the 2nd sees the integral forms.

Conjecture 14.1. The product in the Kirillov or Dirac family picture is given
by “Dirac convolution of conjugacy classes.”

Where Dirac convolution is something like Cλ ? Cµ
m→ G. There is a baby

(or decategorified version) of this. The big version is secretly a 3d-TQFT
statement.

If we take
δλ ? δµ =

∑
Nν
λµδν ? δρ/`+c

where the N are structure constants in the Verlinde algebra and the δρ/`+c
plays the role of a unit.

Now for transgressed levels, F = F ∗, so the Fourier transform happens on
the same space. Then

S : τKG(G)⊗ C→ τKG(G)⊗ C
diagonalizes the product. It is known that KG(G) is the “reduction along ρ”
of Chern-Simons theory for G at level `. Take

τKG(G)⊗ C = CS(S1 × S1)

which is also associated to S1 in the 2-d theory, and there is an S ∈ SL2(Z),

S =

[
0 1
−1 0

]
.

Theorem 14.6. S = S

Then
CS(?× S1) = HH∗(CS(?)).

Let’s make everything precise and let G be a finite group. Then in the
2-d theory, what we assign to a circle is what we assign to a torus in Chern-
Simons. So a circle in the 2-d theory gets KG(G), and the torus in CS theory
gets a vector space

Γ(space of G− bundles on T ;C)

which are functions onG-bundles on C, which is C[commuting pairs]G. Think-
ing about KG(G) as G-equivariant vector bundles on G, each conjugacy class
in G is a representation of ZG(repofg) which gives character class function
on ZG(g). Claim: if you repeat the previous story for finite G, you see that
s∗ corresponds to switching commuting pairs in C[commuting pairs]G, i.e.
(g, h) 7→ (h, g−1).

Have said that KG(G)⊗C = HH0((semi-simple) braided tensor category),
which is Chern-Simons of a circle. A canidate category here is V ectG[G] with
convolution along G because we want something like

S1 7→ G//G,

and so we should assign Γ(G//G;V ect), which is exactly V ectG[G].



68 DANIEL BERWICK-EVANS AND JESSE WOLFSON

Picture at beginning of Matt's talk, line 2898

Pictures describing assignations of OC TFT, middle one corresponds to map on line 2909Figure 10. Open-Closed field theories.

Proposition 14.7. We can “see” the braided structure.

We want V ? W ∼= W ? V . This is untwisted, as otherwise we would need
some braiding.

Now

V ? W (g) = ⊕hV (h)⊗W (h−1g) ∼= ⊕hV (gh)⊗W (h−1) ∼= ⊕hW (h−1)⊗ V (gh)
∼= ⊕hW (h)⊗ V (gh−1) ∼= ⊕hW (h)⊗ V (h−1g) ∼= W ? V (g)

where we used equivariance of the conjugation in the second to last isomor-
phism. This gives a braiding.

15. Open-Closed Field Theories, Matt Young, SUNY Stony
Brook

We’ll go through open closed things in increasingly complex situations,
starting with Atiyah’s notion and working up to Costello’s theorem about
open-closed TCFTs. Everything here will be a 2-1 theory.

An open-closed TFT is roughly about cobordisms between manifolds with
boundary. What this means practically is that we have two types of boundaries
to our bordisms: open boundaries (which are intervals) and free boundaries.
This is coming from string theory where the “usual” notion of field theory
and cobordism is for closed strings and open-closed stuff should describe open
strings. Now, if you take the physics seriously, open strings should be attached
to some D-brane, a set denoted by Λ.

So let’s define a category MΛ whose objects are closed circles or intervals
and morphisms are as usual, with free boundaries labeled by D-branes. This
is easily seen to be a symmetric monoidal category. So an open closed TFT
is a symmetric monoidal functor Z from this category to V ect:

Z ∈ Fun⊗(MΛ, V ectC).

Then Z(S1) = H is a commutiative Frobenius algebra. Let Z(Iab) = Oab
where a, b are labels for D-branes. Then

Oab ⊗Oba → Oaa → C
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Picture at beginning of Matt's talk, line 2898

Pictures describing assignations of OC TFT, middle one corresponds to map on line 2909

Picture at beginning of Matt's talk, line 2898

Pictures describing assignations of OC TFT, middle one corresponds to map on line 2909

Figure 11. Data of an open-closed field theory.

is a perfect pairing, so Oaa is also a Frobenius algebra, but it need not be
commutative!

A whistle is an example of a morphism from an open string to a closed
one. Notice that we need some free boundary to make this possible. Then

Z(whistle) : H
ia→ Oaa,

and we also have the dual, ia. The claim is that ia is central. We also have
the Cardy condition, which we will explain now. Let

πab = ib ◦ ia

So fix a basis ψµ of Oab and ψµ for the dual, Oba. Then

πab (ψ) =
∑

ψµψ
µ,

see the picture.

Theorem 15.1 (Sewing). This data is the same as an open-closed TFT.

There is a D-brane category B, whose objects are element of Λ and

HomB(a, b) = Oab.
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Picture for Cardy condition, line 2927

Double complex in Kevin's talk, line 3293

Figure 12. Cardy condition.

Corollary 15.2. B is a CY category, which just means there is a non-
degenerate pairing coming from the Frobenius pairing:

Hom(a, b)⊗Hom(b, a)→ C.

(Maybe this should also be called a Frobenius category.)

We can think of this as the usual theorem involving commutative Frobenius
algebras. So, can we classify/construct these things? For example, is there a
way of getting an open-closed field theory from a closed one? A good reference
for this is Moore-Segal or Lazarvin (the latter being the physics perspective).

Theorem 15.3. Given H a semisimple commutative Frobenius algebra, we
can reconstruct B ' V ect(X) where X = Spec(H), which is unique up to
tensoring with a line bundle on X. We can also recover the Frobenius structure
on B.

Conversely, given a semisimple CY category B (it’s hom-spaces are semisim-
ple), then we can reconstruct H as the ring of endomorphisms,

H = EndB(id).

In the above, if B is not semisimple, we may run into issues with defining
a trace, giving uniqueness problems. Notice when H is semisimple, spec(H) is
a finite space. If it weren’t finite we would have some twistings, which is more
interesting but also more difficult. I THINK THERE ARE SOME ISSUES
HERE TO BE DISCUSSED.

Then given ξ ∈ H, ξa = La(ξ) ∈ Oaa gives

ξa ◦ η = η ◦ ξb,

for η ∈ Oaa.
Now let’s look at some examples. Let G be a finite group, and

B = RepC(G).
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Now if Σ is a closed 2−manifold, then

Z(Σ) =
∑

P→Σ/∼

1

|Aut(P )|

where P → Σ is a principle G-bundle. We take

H = C[G]G.

Then

Z(Σ, ∂Σ) =
∑

bundles with
prescribed holonomy

1

|Aut(P )|
.

Also let

OAA = EndGA.

Consider the pair of pants where the boundaries are free boundaries and we’ve
shrunk the open strings to points.Then

Z(Σ, decorations) =
∑

P→Σ/∼

ΠχA(holP (Ci))

|Aut(P )|
.

Now let’s look at open-closed TCFTs. To do this, we replace V ectC by
ChainC. This is supposed to record something about ghost numbers and
BRST differentials.

Now,

OCΛ := C•(Mconf
Λ )

Definition 15.4. An open-closed TCFT is an h-split symmetric monoidal
functor

Z : OCΛ → ChainC

where

φ(a⊗ b) 7→ φ(a)⊗ φ(b).

There are restrictions of these to functor to OΛ and C. It turns out by
pullback, we also get field theories from these restrictions (the inclusions of the
categories make things h-split still) but there is no obvious way to pushforward
open field theries, unlike the topological case.

Theorem 15.5 (Costello). (1) The category of open-closed TCFTs is equiv-
alent to the category of unital extended CY A∞-categories.

(2) Also, there is a way to make the pushforward above exact so that we
get a functor

Open TCFT → Open− Closed TCFT.

where the map is given by

Z 7→ j∗Li!Z.
(3) Finally

HH∗(Z) = H∗(j
∗Li!Z)

where i is the inclusion of open stuff into open-closed.
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The unital part comes from a strip that gives a map Oaa → Oaa. THERE
WAS SOME CONFUSION ABOUT HOW THIS MIGHT ALSO BE THE
DIFFERENTIAL SINCE NOW WE ARE IN CHAIN COMPLEXES, NOT
VECTOR SPACES.

A is an A∞ algebra if
A = ⊕p∈ZAp

and degree 2d maps md : A⊗d → A, where m1 is a differential, m2 measure
how much if fails to satisfy Leibniz, m3 measures how much it fails to be
associate, etc.

Definition 15.6. A is an A∞-category if

md : HomA(A0, A1)⊗HomA(A1, A2)⊗· · ·⊗HomA(An−1, An)→ HomA(A0, An)

satisfying the analogous properties to an A∞-algebra.

For example and A∞ category with a single object is just an A∞-algebra.

Definition 15.7. A CY A∞-category has a pairing

< , >A,B: Hom(A,B)⊗Hom(B,A)→ C
and cyclic symmetric, i.e. < md(ϕ0, . . . ϕd−1), varphid >= ± < ϕ1, . . . , ϕd), ϕ0 >.

So in particular, the CY category in the Costello theorem is the category
of D-branes.

Now we need to talk about HH• of an A∞-category.
Recall the cobar construction for an associative C-algebra. We can do this

exactly the same way for a dg-category. To compare with Moore-Segal, we
just need to check that HH∗ is just the endomorphisms of the identity functor.
We can choose a quasi-isomorphic dg-category to our A∞-category, or there is
some A∞-category construction to calculate HH∗.

A motivation for this increase in abstraction is to understand string topol-
ogy. IT WAS UNCLEAR FROM THE DISCUSSION HOW CLOSE WE
ARE. THERE WERE SOME INTERESTING AND INTRICATE COMMENTS
HERE. JACOB MAY OR MAY NOT HAVE CONSTRUCTED THIS, CLAIMS
SOMETHING LIKE IT IN HIS SURVEY?

Let’s talk about the B-model as an example. Take X to be a compact
Calabi-Yau. Define Perf(X) or P (X) as having objects complexes of holo-
morphic vector bundles on X and morphisms

HomP (X)(E,F ) = Ω0,•(E∗ ⊗ F )

This is naturally a dg-category and you can get a nondegenerate pairing on
the homology of this category.

Theorem 15.8. For A and A∞-algebra H•(A) can be made into A∞ such that
m1 = 0, m2 = mA

2 , with a map,

H•(A)→ A.

So then we use the theorem to get a CY A∞ structure on

H•(P (X)) = Db
∞(X)
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So then we take this, apply Costello’s theorem to get an open-closed TCFT,
and then use the other part of the theorem to a closed TCFT. This is the
B-model, though it is still unclear exactly how this relates to the physicists
B-model.

16. Landau-Ginzburg B-Models, Kevin Lin, UC Berkeley

We’ll start with some rambling on homological mirror symmetry for com-
pact Calabi-Yau (after Kontsevich ‘94). Recall that a manifold is CY if it is
compact Kähler with trivial canonical bundle, or equivalently if it has vanish-
ing c1(TX) (this equivalence being Yau’s theorem). So if X is a compact CY,
there is a mirror Y , which is also a compact CY, satisfying some relations:

DbCoh(X) ∼= DπFuk(Y ), DbFuk(X) ∼= DbCoh(X)

relating the derived category of coherent sheaves on one manifold (“B-Model”)
with the Fukaya category on the other (“A-Model”).

We can extend mirror symmetry beyond the CY case. For example, Let
X be Fano (compact Kähler with ample anticanonical bundle). The mirror
model Landau-Ginzburg model is a noncompact Kähler manifold Y with a
holomorphic function W : Y → C called the superpotential.

Now the A-model on X is DπFuk(X) and the B-Model on Y is DbCoh(X).
The B-model on (Y,W ) is DbSing(W ), MF (W ) (the latter being “matrix
factorization”), and the A-model on (Y,W ) is the Fukaya-Seidel category.
And there are relations among these models.

There is something called the C-Y/L-G correspondence which says that

DbCoh(X) ∼= MF (W )

Let X be a variety over C (not necessarily smooth or compact, and more
generally X can be a nice scheme). Now

Db(X) = Db(Coh(X)) = localization of Kb(X) at quasi− isomorphisms

where Kb(X) has as objects bounded complexes of coherent sheaves on X and
morphisms are morphisms of complexes up to homotopy. Then the universal
property of localization says that for every functor Kb(X)→ C that preserves
quasi-isomorphisms, it factors uniquely through Db(X).

Now inside of Db(X) we have Perf(X) which is the full subcategory of
objects quasi-isomorphic to locally free sheaves, i.e. vector bundles. So we
think of it as just complexes of vector bundles. Then we take

DbSing(X) := Db(X)/Perf(X)

that has universal property that any functor from Db(X) → C that sends
DbSing(X) to stuff quasi-isomorphic to zero factors uniquely throughDbSing(X).

Proposition 16.1. If X is nonsingular, then

DbSing(X) = 0

This is just some result from algebraic geometry saying that coherent
sheaves can be resolved by locally free ones.

So now let’s think about the L-G model, (Y,W : Y → C).
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Definition 16.2. The cateogry of B-branes in the L-G model are

Πλ∈critical values of WD
bSing(Yλ)

where Yλ = W−1(λ).

Definition 16.3. The category of B-Branes for matrix factorization models
is

MF (W ) = Πλ∈Crit(W )MFλ(w).

Now assume Y an affine variety, Y = Spec(A), as this will make MFλ(W )
easier to define.

So MFλ has as objects P which consists of P0, P1, finitely generated
projective A-modules with maps dP : P0 → P1, dP : P1 → P0, where
dP ◦ dP = (W − λ) which we think of as “curvature;” and MFλ has as mor-
phisms for P = (P0, P1, dP ), Q = (Q0, Q1, dP ):

⊕i,jHomA(Pi, Qj)

with obvious Z/2 grading and differential

dφ = dq ◦ φ− (−1)|φ|φ ◦ dP .

So this is a differential Z/2-graded category.
There is an obvious triangulated structure on both of these categories, and

an equivalence of triangulated categories:

MFλW → DbSing(Yλ)

where

(P0, P1, dP ) 7→ (coker(P0 → P1))|Yλ .

Theorem 16.4 (Orlov). This is an exact equivalence of triangulated cate-
gories.

THERE WAS SOME CONFUSION ABOUT WHETHER THE SINGU-
LARITIES SHOULD BE ISOLATED OR NOT. FOR NOW WE’LL ASSUME
THEY’RE ISOLATED. CONSTANTINE SAYS THE RESULT IS KNOWN
FOR NONISOLATED, BUT NONE OF US KNEW IT.

For example, let’s look at the mirror L-G model to CP1. Then

W : C× → C.

Now, C× = Spec(C[x±1], and we define

W = x+
1

x
,

and so to find the critical points of W ,

∂W/∂x = 1− 1

x2
= 0

so we get x = ±1, and thus the critical values are λ = ±2. Then

W − 2 = x+
1

x
− 2 =

1

x
(x2 + 1− 2x) =

1

x
(x− 1)2
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and so we get maps C[x±1] → C[x±1] given by multiplication by (x − 1) and
1
x
(x − 1), so we clearly satisfy the relation for an object of MFλ(M), so we

have a matrix factorization.
As an exercise one can check that

H0(HomMF (P, P ) ∼= C[t]/(t2 − 1)

which has complex dimension 2. Notice that

H0(⊕i,jHomA(Pi, Qj), d) =
chain maps

homotopy

THEN THERE WAS SOMETHING ABOUT GREAT CIRCLES AND MIR-
ROR STUFF I DIDN’T CATCH (JESSE - ME NEITHER).

We can do noncommutative and graded cases. So say B is a nice (possibly
noncommutative) graded algebra. Then we can define

DbSinggr(B) = Db(gr(B))/Db(gr Proj(B))

where Db(gr(B)) is the category of finitely generated graded right modules,
and Db(gr Proj(B)) is the category of finitely generated projective right mod-
ules.

We again want to define MF gr
λ λ(W ), and so say W ∈ Bn, the nth grade

of B. Now we say dP : P1 → P0 is a degree n map and W in the center of B.

Theorem 16.5 (Orlov). Say W is in the center of B. Then

DBSinggr(A) ∼= MF gr
0 (W )

where A = B/WB

Here the quotient comes about because we’re thinking of Spec(B) ... MISSED
IT (JESSE - ME TOO).

Theorem 16.6 (Orlov, C-Y/L-G correspondence). If W is a homogeneous
polynomial in k[x1, . . . , xn] then consider

W : An → A1, (or Cn → C),

Then we have an equivalence of categories MF?(W ) ∼= DbCoh(X) where X is
the hypersurface defined by W in Pn−1.

THE QUESTION MARK MAY OR MAY NOT BE A ZERO. SEEMS
LIKELY. (JESSE - I DIDN’T HAVE A SUBSCRIPT ON THE MF(W). I
DON’T KNOW IF IT WAS A STRAY MARK ON THE WHITEBOARD
OR IF I JUST MISSED IT).

A remark: these matrix factorization should be thought of as curved mod-
ules over A.

Let’s return to the commutative case and compute the Hochschild homol-
ogy of this category.

C∗(A,W ) := ΠkA⊗ A⊗k

we have a differential

∂1 : A⊗ A⊗k → A⊗ A⊗k−1
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which is the usual bar construction differential. But we have a second differ-
ential:

∂W : A⊗ A⊗k → A⊗ A⊗k+1

where we plug in a W in various spots of the tensor product with signs, but
only at either the beginning or the end (kind of like thinking of the list as
living on a circle and plugging between all gaps, so the beginning and the end
are the same). Now let ∂ = ∂1 + ∂W . WE COULDN’T QUITE TELL IF
THIS THING SQUARES TO ZERO, BUT IT SHOULD COME DOWN TO
SIGNS. We can also define

C•(MF (W )) := Πk ⊕α0,...,αk
αi∈Ob

Hom(αk, α0)⊗ · · · ⊗Hom(αk−1, αk).

Proposition 16.7. There is a quasi isomorphism

C∗(MF (W ))→ C∗(A,W ).

Now assume Y is nonsingular.
Then

Proposition 16.8. There is a quasi isomorphism

C∗(A,W )→ (Ω∗Y ,∧dW ).

Sketch of Proof.

C3
∂W← C2 ← C1

∂1 ↓ ↓ ↓
C2

∂W← C1 ← C0

∂1 ↓ ↓ ↓
C1

∂W← C0 ← 0
↓ ↓
C0

∂W← 0
↓
0

(15)

and there is another double complex, together with a map φ : Ck → Ω of
double complexes,

a0 ⊗ · · · ⊗ ak 7→
1

k!
a0da1 ∧ · · · ∧ dak.

It is a theorem of Hochschild, Konstant and Rosenburg that this map is a
quasi-isomorphism. Then we do some things with spectral sequences of these
double complexes to prove our theorem. Say dim(Y ) = n. Then isolated
singularities implies that

Hn(Ω∗,∧dW ) ∼= Ωn/dW ∧ Ωn−1

and 0 otherwise. This shows that both spectral sequences collapses in the E2

plane. Now we’d like to compute

coker(Ωn−1 ∧dW→ Ωn)
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Picture for Cardy condition, line 2927

Double complex in Kevin's talk, line 3293

Figure 13. The other double complex.

and if we assume Y has a volume form then HH∗ is isomorphic to HH∗ and
we compute HH∗ as

coker(T
idW→ O)

which when Y = An is

O/(∂x1W, . . . , ∂xnW ).

The CY structure comes from the pairing on Ω∗ × Ω∗ → C,

(ω, η) 7→
∫

ω ∧ η
∂x1W . . . ∂xnW

.

THEN THERE WERE SOME QUANTUM COHOMOLOGY COMMENTS.

17. Twisted KG(G) as open closed theory, Constantin

Say X is a CY manifold, but not necessarily compact. Then DCoh(X) is
not quite a CY category, but we can get a partial TQFT in 2-d (partial in the
sense of string topology). One fix is to add a superpotential W with proper
critical set. Then we get a CY category and a full B-model TQFT.

So how is this related to equivariant K-theory? Well KG(G) is a version
of K(LBG). Then this is a “string-topology-like” structure from

S1 7→ KG(G)

resulting in differentials on Z[x1, . . . , x`] (HOW?) (JESSE - I HAVE IN MY
NOTES THAT WE GET THIS BECAUSE WE CAN INTEPRET KG(G) AS
KAHLER DIFFERENTIALS ON Z[x1, . . . , x`]. I’M NOT SURE HOW THIS
HELPS OR IF I MISHEARD).

As soon as we turn on a twisting τ ∈ H3
G(G), then we get an honest TQFT

from a Frobenius algebra on τKG(G). Now we want to see how such TQFTs
are related to the B-model. Some of these “results” have not been precisely
proved or even precisely stated! One of the things we’ll find is that the L-G
model story is a bit of a lie: W shouldn’t really be a function, but instead an
element of the Brauer group.
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Let’s back up and talk about the difficulty here. First we need to talk a
little about string topology. So say X is a compact, oriented, simply connected
manifold (though for string topology we want X = BG). Now consider the
following algebras:

C∗(X), C∗(Ω), with convolution.

These algebras are related by Koszul duality (or bar/cobar duality):

RHomC∗X(k, k) ∼= C∗(ΩX), C∗(X) ∼= RHomC∗ΩX(k, k).

We have an equivalence of categories:

Perfect C∗ΩX −Modules→ k−finite C∗X−Modules.

and an equivalence of subcategories of these

k − finite C∗ΩX−Modules→ Perfect C∗X −−Modules.

Morally this equivalence comes from taking a fiber at base point and taking
the action of holonomy, which is equivalent to choosing a local system:

RHomC∗X(k,M)←M.

Theorem 17.1. The subcategory, C above is obviously a CY category (using
Poincare duality pairing on X). Furthermore

HH∗(C) ∼= HH∗(C
∗X) ∼ C∗(LX)

From this we should get something about string topology, since now we’re
looking at cochains on loop space.

Theorem 17.2. The “larger” category, C ′ above can also be made into a CY
object in linear categories. Furthermore

HH∗(C ′) ∼ C∗(LX)

and
HH∗(C∗ΩX) ∼= C∗(LX)

Now we want to twist these guys to try to get some string topology stuff,
hoping

HH∗(
τC∗ΩX) ∼= τC∗(LX).

So let τ ∈ H1(ΩX;GL(h∗) for h∗ a cohomology theory. Then we can form
τC∗ΩX. So can we define a Pontryagin product and hence a TQFT?

ΩX × ΩX
m→ ΩX.

Need m∗τ = τ ⊗ 1 + 1 ⊗ τ (so that τ is primitive), and it suffices to get a
TQFT if τ is transgressed from X.

Now, if X is a ringed space with a sheaf of rings U 7→ h∗(U), then we
have a map Br(X;h∗) = H2(X;GL1(h∗))→ H1(ΩX;GL1(h∗)) so for example
(JESSE: I THINK THIS IS WHAT WAS MEANT) Z/2×K(Z, 2) ↪→ GL1(K∗)
and H2(X;K(Z, 2)) = H4(X;Z).

So candidates for twisted string topology: start with β ∈ Br(X;h∗), and
form

βh∗(ΩX)

with its Pontryagin product.
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Theorem 17.3. HH∗(
βh∗(ΩX)) = βh∗(LX) has a string product and a partial

TQFT algebra.

Now let’s try this with KG(G). Now X becomes BG, and the Brauer
group is H4(BG) and ΩX = G. Get “twisted group ring of G over K.” Also
τK∗(G) has a Pontryagin product. We would hope

HH∗(
τK∗(G) ∼= τKG

∗ (G),

but this isn’t true. We get the completion at the augmentation ideal. However,
if we had a twisting there would not be a completion problem.

Theorem 17.4 (Brylinski,?). For G simple, simply connected,

KG(G) ∼= HH∗(KG(pt))

and notice that the right hand side is differentials on Spec(RG).

So we need to twist h∗(X) by a class β ∈ H2(X;Gl1(h∗)). So if we have
K∗, then we would get stuff in H4(G) but this is not where twistings come
from, though this somehow gets fixed by curved modules.

So what are curved modules over K∗(X), β? So think by analogy to vector
bundles, but now rather than the sheaf of functions we have some sheaf with
values in K-theory.

So cover X by opens {U} where β = δαU . Then on U
⋂
V we get

αU − αV ∈ C1(X;Gl1(K)) = C3(X;Z),

and K(U
⋂
V ) is a module over K(U) and K(V ). Then a curved module is a

K ∗ U -module MU for each U and an “isomorphism”

MU ⊗K(U) K(U
⋂

V ) ∼= MV ⊗K(V ) K(U
⋂

V )

together with some Cech compatibility conditions.

Conjecture 17.1. This will be a CY category and give the same TQFT as
βK∗(ΩX).

Also note that Koszul duality is a bit funny here, as it uses a bimodule
k which is neither a module over either of the things that act on it, but the
failures cancel.

So now let’s comment about what happens for BG. This definition for
H4-curved modules over KG(pt) fails. The completion business doesn’t go
away. If we tensor with C, this seems to work with a bit of creativity.

KG(pt)⊗ C = C[G]G,

class function on GC. Now what’s the potential? Well, β ∈ H4(BG;Z) are
quadratic invariant function on the Lie algebra,

β ∈ H4(BG;Z) ∼= (Sym2g)G.

and we get these badly multivalued functions

g 7→ β(log g, log g).
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In physics, we’re used to multivalued functions because all one cares about
are the critical points, that is the derivative. Then we get a map dW : T → t∗

given by

t 7→ ilog tβ.

(JESSE - I HAVE t 7→ logt∆β HERE).
If we postcompose with the map t∗ → T ∗ we get a well-defined map. The

critical points are the kernel of the deriviative F , and locally it has Morse
singularities. Then

MF (Rep(G); β)
∼= sheaves on F

where F ↪→ T is the critical set. Then we consider F reg/W . The twisted
KG(G) has an analogue with higher twistings (can only define over C) that
also gives a TQFT related to the index over moduli space of flat connections of
virtual vector bundles of virtual dimension 1. From the Hessian determinants,
we get the correct trace for computing the index above.

How do we interpret twistings of string topology geometrically? Take
β ∈ H4(X) and βL ∈ H3(LX) and β′ ∈ H3(ΩX). Assume β pairs nontrivially
with π4X. Then β′ is not trivial. Then look at τC∗(ΩX) with differential ∂β′∩.

If β vanishes on π4X, e.g. is decomposable then if given a quadratic form
on H2 = π2, we get an extension of the group ΩX and a deformation of
C∗(ΩX).

We’ll try quickly to explain the connection to Chern-Simons. Let G be
finite, τ ∈ H4(BG;Z). Chern-Simon gives us a 3-d TQFT/C in dimensions
3-2-1-0. We dimensionally reduce to 2-d TQFT/C, we assign τKG(G)⊗ C to
the circle. But we have something slightly better here, a 2-d TQFT/K∗(pt),
which aspires to be an extended 3-d TQFT, but isn’t. This is also related to
the completion problem.

Let’s spell out CS a bit more. To a point we want to assign a tensor
category, to 1-manifolds we want to assign the Drinfeld center (a braided
tensor category with ...). So our braided tensor category is τV ect[G], vector
bundles on G with τ -twisted convolution. For τ = 0, the center ends up being
V ectG[G] that we saw earlier. Before we tried to get τKG(G) from τK∗(G),
which failed; instead we got the completion.

Turn to Koszul duality: KG(G)→ (V ect[G], ?), K∗G(pt)→ (Rep(G),⊗).

V ect[G] = Hom(Rep(G),⊗)(V ect, V ect)

We’d like to get the curved version of this tensor category.
The take-away point is that the 2-d TQFT over K∗(pt) above is some

intermediate between Chern-Simons and its dimensionally reduced theory.

18. Chern-Simons as a 3-2-1 Theory, Hiro Tanaka,
Northwestern

The goal here is to relate Chern-Simons to the 2-1 theory coming from
KG(G).

In 1989, Ed Witten told a fairytale. The characters were a 3-manifold M ,
and a simple, simply connected group G (think SU(2), as usual), and a trivial
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Picture in Hiro's talk, line 3535

Bordism Sigma to from circle to empty set, line 3604

Dimension reduction by example, line 3692

Figure 14. Cutting the 3-manifold along a surface Σ.

principle G-bundle over M . Then take a connection A ∈ Ω1(M ; g) and find a
number

CS(A) =
1

8π2

∫
M

tr(A ∧ dA+
2

3
A ∧ A ∧ A).

So far this isn’t such a fantastic tale, but now let’s do something crazy: let’s
integrate over the space of all connections

Zk(M) =

∫
AM/GM

e2πikCS(A)

where AM is the space of connections and GM denotes C∞(M,G), the space
of gauge transformations. An element of the gauge group g ∈ C∞(M,G) acts
on a connection by

g∗A = g−1Ag + g−1dg.

Then it is an exercise to show that

CS(g∗A) = CS(A) + n, n ∈ Z.

It is another exercise to show that for G = SU(2), n = deg(g). The reason
this is a fairtale is that there is no measure on the space of connections mod
gauge transformations. However, it still appears that we can define some 3-
dimensional TFT from this data. So let’s think heuristically for now. Here is
a table that will say what we assign in each dimension for this extended TFT.

3−manifold M partition function
2−manifold ?

1−manifold Rep(L̃G), a linear category
(16)

Now let’s figure out what to assign to a surface. So say we cut our 3-manifold
along M , leaving a 3-manifold with boundary ΣM , Now let AΣ be connections
on ΣM restricted to Σ. Now fix one of these a ∈ AΣ. Now define

Aa := {A ∈ Ω1(M ; g)|A|Σ = a}
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Then we can assign to this 2-manifold:

Zk(ΣM)(a) =

∫
Aa/ker(GM→GΣ)

e2πikCS(A).

As another excercise, show that

∀g ∈ GΣ, a ∈ AΣ,

Zk(M)(g∗a) = e2πikf(g,a)Zk(MΣ)(a)

where

f : AΣ ×GΣ → R/Z

(a, g) 7→ 1

8π2

∫
Σ

tr(g−1ag ∧ g−1dg)−
∫
M

g̃∗σ

where g̃ ∈ GM such that g̃|Σ = g, and σ ∈ H3(M ;Z), where σ[M ] = n in the
n above in the indeterminacy of the CS action when we change by a gauge
transformation.

The punchline of this is GΣ acts on C×AΣ,

g(z, a) = (e2πif(g,a)z, g∗a)

and then

C⊗k ×AΣ → AΣ

is a nice line bundle and Zk(MΣ) is a GΣ-equivariant section. So maybe it is
the vector space of sections of this line bundle that we should be assigning to
Σ.

18.1. Geometric Quantization. Say L→ X is a line bundle over a complex
manifold X with a G action, and c1(L) = ω for ω a Kähler form. If G preserves
ω, we may define a moment map,

µ : X → g∗

where ξ ∈ g and v ∈ TxX.

< dµX(Y ), ξ >= ωX(v, ξx)

where µ is equivariant (so that we still have an action of µ−1(0)).

Definition 18.1. µ−1(0)/G is called a symplectic quotient of X.

So just to give a sense of where we’re headed, AΣ turns out to be a sym-
plectic manifold and µ evaluates the curvature of a connection, so µ−1(0)/G
is the space of flat connections mod gauge transformation.

As a remark, notice that it might seem that µ is only defined up to a
constant, but for simple groups this ambiguity goes away.

Now we want to complexify some stuff. We need the following:

Theorem 18.2. G-equivariant sections of L are in bijection with sections of
L/GC → X/GC.
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So then we see that to a surface in Chern-Simons theory we associated
to a surface, Γhol(flat connections on Σ/Gauge;L), where the sections are
holomorphic.

It is another theorem that if we do the symplectic reduction or the quotient
by the complexification, we get the same manifold.

So now let’s explain what we assign to the circle. Let’s consider a bordism

from the circle to the empty set, Σ. Then S1 Σ→ ∅ gives

Zk(S
1)

Zk(Σ)→ Zk(∅).

We find that Zk(∅) = V ect since if Zk(S
1) assigns an object of a linear category

C, we get Zk(∅) ∈ HomC(X, Y ) ∈ V ect. What is the monoidal structure?
C ⊗ D has as objects pairs (C,D) and

Hom((C,D), (C ′, D′)) = Hom(C,C ′)⊗Hom(D,D′)

and so the unit for this tensor product is the category of vector spaces. PROB-
ABLY NEED TO REWRITE THIS MORE CLEARLY. THERE WAS ALSO
SOME ISSUE ABOUT THE CATEGORY NEEDING ENOUGH COLIMITS,
SAY FINITE COLIMITS.

So again, consider AΣ as the space of connections on the trivial bundle
over G× Σ→ Σ, and GΣ acts on AΣ as before. We have a moment map

ω(α, β) =
1

8π2

∫
Σ

tr(α ∧ β)

for α, β ∈ Ω1(Σ; g), and moment map

µ : AΣ → (Lie(GΣ))∗

is

µ(A) = Curv(A)− ψ(A)

where ψ is the composition

AΣ → AS1

A
↪→ (L̃g)∗

B→ (Lie(GΣ))∗.

where B is the dual of the map of lie algebras obtained from lifting a map
GΣ → LG to GΣ → L̃G over LG.

Theorem 18.3. Fix an irreducible representation R̂ of L̃G. Then

µ−1(W )/GΣ = {cong classes of π1(Σ)→ G s.t. π1(∂Σ)→ C}

where W is the image of the coadjoint orbit in (L̃G)∗ associated to R̂ and C
is a conjugacy class in G given by the holonomy of the LG-orbit in AS1 that
come from the L̃G-orbit (L̃G)∗.

Remark: this is closely related to the Kirillov story, but it is “holomorphic,
not Dirac,” so there are some minor differences.

Now let’s define

MΣ;C = µ−1/GΣ.

This giant theorem continues:
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Picture in Hiro's talk, line 3535

Bordism Sigma to from circle to empty set, line 3604

Dimension reduction by example, line 3692

Figure 15. Dimensional reduction.

Theorem 18.4. MΣ;C is Kähler and we pick a line bundle L with c1(L) = ω.
Then the space of sections of L⊗k →MΣ;C gives a functor

Zk(S
1)→ V ect

R̂ 7→ Γ(MΣ;C ,L⊗k)
which is the one we want.

Theorem 18.5. Zk(S
1 × S1) =Verlinde algebra for L̃G.

The way to see this is to look at the characters of the loop group repre-
sentation which can be interpreted as sections of some line bundle... CON-
STANTINE MADE A VERY INTERESTING COMMENT ABOUT THIS,
INVOLVING ELLIPTIC CURVES, ETC.

The simple objects of the Verlinde algebra are the irreducible represen-
tations of the loop group at level k and form a basis. Note that the tensor
product does not preserve the level, whereas the fusion product does, so fusion
is the right multiplication to take.

The relationship between CS assigning the Verlinde algebra to the torus
and τKG(G) assigning the Verlinde algebra to a circle is not a conicindence:
we can see it from dimensional reduction.

So let’s talk about dimension reduction by example. If we have

Z : Cob2
1 → V ect,

we want to get

Cob1
0 → V ect.

This comes about from a functor

×S1 : Cob1
0 → Cob2

1,

and then we just compose.

Proposition 18.6. The 2-1 TFT τKG(G)⊗C is dimensional reduction by S1

of the 3-2-1 TFT given by CS.
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Picture of braiding, line 3700

Chopping into elementary pieces, line 3769
Figure 16. Braiding coming from 3-d geometry.

The conjecture is that this extends down to points.
Now let’s talk about braided monoidal categories. Consider the squashed

pair of pants (a disk with two holes removed). Then consider a bordism that
“swaps the legs,” see the picture. This is going to lead to a braiding. Now a
pair of pants gives a functor

Rep(L̃G)⊗ L̃G→ L̃G,

and this braiding gives a natural transformation, which we will call σ1. The
appropriate tensor product here is again the fusion product, so that we pre-
serve the level of the representation.

More abstractly, say we have a symmetric monoidal category (C,⊗). Then
there is the natural transformation given by switching the factors

C × C swap→ C × C ⊗→ C.

However, in a braided monoidal category, swap and its inverse need not com-
pose to the identity (we can see this via looking at actual braid diagrams up
to isotopies).

So now we see the open question from yesterday: Is there a “Dirac convo-
lution” on τV ectG(G) that corresponds to the fusion product Rep(L̃G)?

Remark: for negative energy representations at negative levels, we get
some dual picture, in Chern-Simons, but it doesn’t give anything new.

Another remark: τV ectG(G) is a categorification of τKG(G). This is the
extending-down problem, roughly stated this trying to find a product structure
that works on the vector bundles themselves, not their image under K-theory.

19. Something About Local Field Theory, Chris Douglas

So as in the last talk, we’re looking at Chern-Simons theory, and Witten
told us about making a 3-2 theory, then Resh/Turaev gave a precise way of
making it a 3-2-1 theory. So the question is: Is CS a 3-2-1-0 theory? If so,
what do we assign to a point.
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First, let’s talk about delooping. Recall the definition of TQFT as a sym-
metric monoidal functor from the bordism category to Vect. Extending means
we start with some symmetric monoidal n-category of bordisms, but we also
need an appropriate target category. We find that we want to assign to a
closed (n − 1)-manifold a vector space, so we postulate the existence of a
different category C where

ΩC := HomC(1, 1) = V ect

and we say C = BV ect.

Definition 19.1. A local field theory is

Bordn0 → C
where again C = Bn−1V ect.

A priori there are many deloopings, so constructing these is more of an art
than a science.

There are two ways of delooping, in general:

V ect
categorification7→ 2− V ect, V ect

algebraification→ Alg

The objects of 2 − V ect are linear categories, 1-morphisms are functors, and
2-morphisms natural transformations, and for 3 − V ect the story is similar,
but we also get modifications. For Alg we have algebras as objects, bimodules
as morphisms and bimodule maps as 2-morphisms.

We can fill in a rectangle:

V ect → 2− V ect → 3− V ect
↓ ↓ ↓
Alg → TensorCat
↓ ↓

2− Alg → Braided Tensor Cat

(17)

Then 2−Alg has 2-algebras, h-bimod v-alg, and h-bimod v-bimod maps.
One of the issues here is classifying 2-field theories with target C, and the
other is finding a good C.

Let’s think about local field theories in dimension 1. We draw our favorite
1-manifold and try to figure out what morphism in V ect to choose. We chop
up our 1-manifold first into elementary pieces and work with these. So the
classification goes as follows: the positively/negatively oriented point gets a
vector space, then the unit and counit get some morphisms satisfying Zoro’s
lemma, and then we get local field theory. One way to encapsulate all this
data is the the positively oriented point is dualizable:

pt+ ∈ V ectdualizable.

Now for 2− d local field theories we try to do something similar. So again
draw your favorite 2-manifold, say the torus, chop it into elementary pieces
(say via a Morse decomposition), giving us some notion of a 2-1 field theory.
Then we need to chop these elementary pieces further to get a 2-1-0 theory.
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Picture of braiding, line 3700

Chopping into elementary pieces, line 3769

Figure 17. One dimensional local field theories.Chopping into elementary pieces, line 3777

Picture from Konrad's talk, line 3933
Figure 18. Two dimensional local field theories.

THERE IS THE POSTER OF ALL THE ELEMENTARY PIECES IN
DIMENSION 2. CAN PROBABLY GET THIS PDF FROM SOMEWHERE.
(JESSE - I DIDN’T GET THESE DOWN)

As an aside: this story is a bit of a fudge: we’re classifying framed field
theories, not oriented ones, where the pictures all get framings from the black-
board framing. But let’s ignore the finesse for now.

So now what does our classification look like? The statement is that we
get a 2-dimensional local field theory provided we get something in C for pt+,
satisfying a bunch of relations.

Now, this is all painstaking and complicated, and was done in low dimen-
sions (d ≤ 3) before Jacob Lurie came along and transformed the field. So
let’s talk about his result: the cobordism hypothesis.

Theorem 19.2 (Hopkins-Lurie).

Fun⊗(FrBordn0 , C) ∼= Cfd

where Cfd are the fully dualizable objects of C.
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Recall: For C a 2-category, f : C → D and g : D → C are adjoint if there
exist

u : 1C → gf, v : fg → 1D
such that

f
fu→ fgf

vf→ f = 1f

g
vg→ gfg

gv→ g = 1g.

The picture is a left and right elbow satisfying Zoro.

Definition 19.3. (1) For C a symmetric monoidal n-category, C has ad-
joints for 1-morphisms if all 1-morphisms have left and right adjoints
in Ho2C (the homotopy 2-category)

(2) C has adjoints for k-morphisms if for 1 < k < n, HomC(a, b) has
adjoints for (k − 1) morphisms.

(3) C has duals if
(a) every object of C has a dual in ho(C)
(b) C has adjoints for k-morphisms, 0 < k < n.

(4) c ∈ C is dualizable if it is int he maximal symmetric monoidal sub-n-
category with duals.

As a remark: I’m on a crusade to remove the word “fully” from the typical
notion of “fully dualizable,” replacing dualizable with k-dualizable, and fully
dualizable with simply dualizable.

For example, dualizable objects in vector spaces are finite dimensional
vector spaces.

In algebras, dualizable objects are finite dimensional semi-simple algebras.
In tensor categories, we would like G 7→ S(G) ∈ TC and S(G) dualizable,

giving rise to 3-dimensional local field theories. It isn’t exactly clear how to
do this. Here is one result:

Theorem 19.4 (D-Schommer-Pries-Snyder). If C ∈ TC is fusion, then C is
dualizable.

Here fusion roughly means finite dimensional hom sets, semi-simple, finitely
many simple, and duals.

We are reasonably sure that if C is dualizable, then C is fusion.

Corollary 19.5. Rep(LG, k) ∈ TC is dualizable.

Corollary 19.6. There exists a 3-dimensional local field theory that sends a
point to Rep(LG, k)

But, this is not the same theory as Chern-Simons! In fact, calling this ψ
and Chern-Simons φ

ψ(M3) = φ(M)φ(M).

THIS THEORY GOES BY SOME OTHER NAME, BUT I DIDN’T CATCH
IT. (JESSE - ME NEITHER)

THERE WAS SOME CONFUSION IN THE AUDIENCE ABOUT THIS.
Explaining how TC is a three category seems to resolve all the issues.

What happens:
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We have a 4-category BTC with ΩBTC = TC and there is an A ∈ BTC
dualizable, giving a 4-dimensional field theory. This is supposed to help us
with the CS anomaly. Then there is a morphisms

A
S(T )→ 1

in BTC, that is dualizable, and S(T ) should lead to the localization of CS.
We can ask for the value of this theory on a circle, and in general we’d get

C ⊗C⊗Cop C, which we can define as some kind of Drinfeld center of C, Z(C).
THERE IS SOME ISSUE HERE ABOUT DUALIZABILITY, SOMETHING
ABOUT HH∗ AND HH∗. SEEMS FINE TO IGNORE FOR NOW.

As a remark, often it’s easier to guess than answer and compute a field
theory rather than construction one from the cobordism hypothesis. Really,
computing the invariant of (say) a closed manifold can by quite a chore.

Now let’s think about 2-dimensional algebras (everything from here on is
joint work with Bartels and Henriques). We’d like to go from 0-algebras to
1-algebras by adding some horizontal multiplication, and then to 2-algebras
by adding a vertical multiplication.

Then we confront the Eckman-Hilton problem, which says that if our two
multiplications commute then they must agree. To get around this you have
to give up something. The solution here is to take horizontal multiplication
as associative and unital, and take vertical multiplication a coh. associative,
while keeping the fact that horizontal and vertical multiplication commute.
In particular here, we get an algebraic incaranation of the pentagon axiom,
which is pretty awesome. THERE IS SOME PICTURE SHOWING THIS.
(JESSE - I DON’T HAVE THIS PICTURE IN MY NOTES)

One might also want to a category where multiplication is encoded by
bimodules rather than maps, and this is a weaker notion. But the reason
we don’t take this notion is that there is a lot in conformal field theory that
related to our choice.

There is a functor from 2-Algebras to tensor categories.
So now we define the category of conformal nets.

Definition 19.7. A conformal net is a cosheaf of von Neuman algebras on
the category of intervals.

What on earth is this thing? Well, a cosheaf is just a functor:

N : Int→ vNalg, I 7→ N(I)

such that certain gluing maps work.
THERE WERE SOME NICE DESCRIPTIONS OF VERTICAL MULTI-

PLICATION USING SOME PICTURES. (JESSE - I DON’T HAVE THESE
PICTURES EITHER)

Proposition 19.8. A conformal net is a 2− Alg.

Theorem 19.9. Nets for a symmetric monoidal 3-category. There exists a
conformal net associated to a loop group at level k, NLG,k ∈ Net and it is
dualizable.

Corollary 19.10. There exists a local field theory whose target is nets.
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Chopping into elementary pieces, line 3777

Picture from Konrad's talk, line 3933

Figure 19. Picture of where this talk fits in the Chern-Simons story.

We note that under the functor from 2-algebras to tensor categories NLG,k

goes to Rep(LG, k). (Though there are still some technical issues in proving
this is a 3-functor, though it appears to preserve dualizable objects.)

Now that we know the condition for dualizability we can build all kinds of
3-dimensional field theories, at least in principle. Stuff is out there related to
the monster group.

20. Chern-Simons Theory and the Categorified Group Ring,
Konrad Waldorf, UC Berkeley

Paper by FHT and L.
So as we’ve been hearing today, we would like to extend Chern-Simons

theory to the point. For all this there will be a parameter in the theory,

τ ∈ H4(BG;Z).

There appear to be two problems to take care of to implement this:

(1) Lurie: Whatever we assign to a point determines the whole theory, but
we already know Chern-Simons theory at higher levels, so we must be
very careful with our choice.

(2) The anomaly.

The above mentioned paper says we should look at:

(1) The case of a finite group (also called Dijkgraaf-Witten theory)
(2) Look at classical CS-theory and quantize
(3) We should decategorify and look for similar cases of 1- and 2-dimensional

TQFTs

There is a picture to keep in mind: have a horizontal axis labeling the
dimension of the theory, a vertical axis of going from classical to quantum,
and a third axis from from finite to compact groups. We want to end up at the
point the furthest from the origin. In this talk we start with a 2-dimensional
quantum theory on finite groups, categorify this to a 3-dimensional theory on
finite groups, and then hint about how to go to general compact groups.
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The method we use is geometric realizations of twisting parameter, τ , by
geometrically realizing Hn+1(BG;Z). We have a table:

n Group Theoretical Realization Geometrical Realization
1 characters of G multiplicative map G→ S1

2 central extentions of G by S1 multiplicative S1−bundle over G, (K, θ)
3 String extension of G by BS1 multiplicative S1−gerbe over G

So let’s think about how we construct these: a line bundle is a cover with
transition functions, and a gerbe is a cover with “transition functions” on
2-fold intersections, and we can iterate this idea as we wish.

Definition 20.1. A multiplicative gerbe is

(1) a gerbe G over a group G (like a transgressed twist, if you like)
(2) a 1-isomorphism over G×G “fiberwise:”

Kx,y : Gx ⊗ Gy → Gxy
(3) a 2-isomorphism over G×G×G:

Gx ⊗ GyGz
Kx,y⊗id→ Gxy ⊗ Gz

id⊗Ky,z ↓ ↙ θx,y,z ↓ Kxy,z

Gx ⊗ Gyz
K→ Gxyz

(4) and a pentagon axiom for θ over G×G×G×G.

As a remark, all the models we’ve taking for twists in K-theory are gerbes.
Or if you like, gerbes are geometric realizations of H3(G;Z).

Now, the underlying gerbe may trivial even though the multiplicative gerbe
is not. So what is the multiplicative structure on a trivial gerbe? A multi-
plicative structure on a trivial gerbe is a pair (K, θ) with K an S1-bundle over
G×G and θ an isomorphism:

θx,y,z : Kxy,z ⊗Kx,y → Xx,yz ⊗Ky,z

satisfying the pentagon. Note composition of morphisms becomes tensor prod-
uct of line bundles.

The G-equivariant structure on the trivial multiplicative gerbe (K, θ) is an
S1-line bundleL over G×G is given by

Lg,x = K∗g×g−1,g ⊗Kg,x

where we write (g, x) to emphasize that although both are group elements, g
is acting on x.

20.1. 2-Dimensional TQFTs for Finite Groups.

Theorem 20.2. There is an equivalence

{0− 1− 2 TQFTs for oriented manifolds with target Alg}
Lurie∼= {Dualizable objects in Alg homotopy fixed under SO(2)}
∼= {semi− simple Frobenius algebra}



92 DANIEL BERWICK-EVANS AND JESSE WOLFSON

Above Alg is the 2-category of algebras, bimodules, and bimodule maps.
We’re eventually going to categorify this picture to get to the 3-dimensional
theory.

Now choose a finite group G and

A = Cτ [G] = Γ(G;KC)

where for the K we got from our gerbe (and hence our twist τ) we define

KC := K ×S1 ×C.

We get a multiplicative structure:

(γ1 ? γ2)(g) =
∑
h∈G

θ(γ1(gh−1)⊗ γ2(h).

This is the “twisted group ring.” We get a trace,

tr(γ) =
1

|G|
γ(e) ∈ KC|e

θ∼= C.

From the theorem we get an associated 2-d TQFT: to a point we assign A =
Cτ [G]; the circle gets sent to A ⊗A⊗Aop A ∼= Z(A) where we use the trace to
identify A with its dual; and Σ is sent to∑

[p]

1

|Aut(P )|
e2πi<Σ,ξpτ>

where ξp : Σ → BG classifies a principle bundle p and we regard τ ∈
H2(BG;S1).

20.2. Categorification: From 2-d to 3-d. The theme here is to replace
elements of C to objects of V ect. So we take as our target category the
category of 2-algebras (here we’re using tensor categories as a model for 2-
algebras). Now we need to find a (fully) dualizable object. We want to go from
the twisted group ring to the category Constantine talked about, V ectτ [G].
Now,

V ectτ [G] := V Bun(G)

where we take V Bun(G) as a category. This is very bad definition when G is
not finite, and we’ll need some sheafy thing. For now let’s not worry so much.
We need a monoidal structure on V ectτ [G]:

(W ?W ′)g := ⊕hh′=gKτ
C|h,h′ ⊗Wh ⊗W ′.

You can see better motivation for all this coming from the quantization of a
classical theory (via the picture mentioned in the introduction).

Now we want to prove that V ectτ [G] is dualizable and does in fact lead to
Chern-Simons theory.

Theorem 20.3. (1) The 3d TQFT defined by V ectτ [G] assigns to the cir-
cle the Drinfeld center

S1 7→ Z(V ectτ [G]).
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(2) The Drinfeld center Z consists of vector bundles W over G together
with isomorphisms

Lx,y ⊗Wx → Wyxy−1 .

Corollary 20.4. K(Z(V ectτ [G])) ∼= τK0
G(G)

Corollary 20.5. “Z(V ectτ [G]) ∼= PERτ (LG)”

We’re being a bit imprecise here with equivalences of categories versus isos
on K-theory. Need to do some sum over conjugacy classes and then prove
product structures are the same, or something. Also there are issues with G
being disconnected in discussing PERτ (LG).

Corollary 20.6. The 3d TQFT we get is Chern-Simons theory.

Let’s try to sketch the proof of the above theorem. The 1st part Chris
has already discussed, so let’s look at the 2nd part. A Drinfeld center is the
natural generalization of the center of an algebra to the center of a monoidal
category. Then for (W, ε) ∈ Z(V ectτ [G]):

εx : Kxy−1,y ⊗Wxy−1 → Ky,y−1x ⊗Wy−1x

and for W ′ = Cy,

εxy : Kyxy−1,y ⊗Wyxy−1 → Ky,x ⊗W.

20.3. A Quick Tour of the 3d Theory in the Case of a Torus. So now,
let’s consider what happens when G = T = S1 × S1. We want vector bundles
supported over only finitely many points on the torus, and these are skyscraper
sheaves. So define the category Skyτ [G] as the category of skyscraper sheaves
with values in finite dimensional vector spaces supported over finitely many
points.

For example, for y ∈ T , Cy ∈ Skyτ [T ]. Furthermore, these guys generate
the category from the monoidal structure, which we define to be:

Cx ? Cy := Kx,y ⊗ Cxy.

Now we run into some problems:

(1) Skyτ [T ] is not dualizable in 2−Alg, so does not define a field theory,
This leads us to an anomaly.

(2) Z(Skyτ [T ]) ∼= Skyτ [t]⊗ Skyτ [F ] where F is a character lattice of the
torus. But, Skyτ [F ] is the modular tensor category we want to assign
to a cicle, so Skyτ [T ] is somehow too big.

Let’s explain this anomaly. The solution we take is to view the above “theory”
as a morphism from the trivial theory to some anomaly theory:

1
CSτ→ Aτ .

Now, a transformation between 4-functors is a 3-functor, so the dimensions
are correct. Thus, we need to describe the 4-dimensional TQFT Aτ . It assigns
to the point our “unwanted factor:”

pt
Aτ7→ Skyτ [t],
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and so we would need to show that Skyτ [t] is dualizable in 3-algebras, fixed
under SO(4).

So let’s get a feeling for what the 4-dimensional theory is by evaluating on
a 4-manifold. So let M be a oriented closed 4-manifold. Then

Aτ (M) =
√
|F |

χ(M)
µsignτ ·sgn(M)

where µ is an 8th root of unity.
Under some circumstances, Aτ is trivial on 4-manifolds:

(1) if 8|sign(τ) things are good
(2) if M is spin, 8|sgn(M), and we similarly get a trivial invariant

SOMEHOW WE CAN GET THE EULER CHARACTERISTIC PART TO
GO AWAY. (JESSE - I DIDN’T CATCH THIS)

In the above cases we can choose a trivialization

Aτ
T→ 1

and compose

1
CSτ→ Aτ

T→ 1

can be regarded as a 3-functor

Bord3 T◦CSτ→ 2− Alg.

21. Elliptic Cohomology, Nick Rozenblyum, MIT

First we’ll figure out how the title fits in with the other things we’ve dis-
cussed this week. We’ll start be reviewing orientations of cohomology theories.

21.1. Orientations of Cohomology Theories. We’ve already seen that
for complex vector bundles there is a canonical orientation for K-theory. In
what follows we won’t be too picky about the difference between oriented and
orientable cohomology theories.

Definition 21.1. A multiplicative cohomology theory E is complex oriented if
for every complex vector bundle V k → X we have a Thom class UV ∈ Ẽ∗(XV )
(where XV is the Thom space) such that

(1) there are natural maps

Ê2n(XV )→ Ẽ2n(S2n) ∼= E0(pt)

such the UV 7→ 1
(2) naturality with respect to pullbacks
(3) UV⊕W = UV · UW
We’ve seen that K theory is complex orientable. It is also true that HZ

is complex orientable. It is an interesting exercise to show that KO is not
complex orientable.

There is a universal complex oriented cohomology theory MU (called com-
plex cobordism), i.e. if E is a complex oriented cohomology theory, then there
exists a canonical map MU → E.
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What can we do with complex oriented cohomology theories? For one,
we can define Chern classes. So recall that CP∞ ' (CP∞)ξ where ξ is the
tautological line bundle. To see this notice that

(CP∞)ξ ∼= D(ξ)/S(ξ)

because D(ξ) deformation retracts onto the zero section mathbbCP∞, and
S(ξ) is the universal principle U(1) bundle, so it is contractible.

So if E is complex oriented then there is x ∈ CP∞ such that under the
map

Ẽ2(CP→ Ẽ2(CP1) ∼= E0(pt),

we have that x 7→ 1. From this we have that E(pt)[x]→ E(CPn) for all n and
that xn+1 7→ 0. Furthermore, from the Atiyah-Hirzebruch spectral sequence,

E(pt)[x]/xn+1 ∼=→ E(CP∞),

and in particular

E(CP∞) ∼= E(pt)[[x]].

This might seem a bit unusual at first sight, but really we ought to take direct
limits, not direct sums.

A complex orientation gives a Thom isomorphism for V n → X:

UV : E∗(X)
∼=→ Ẽ∗+2n(XV ).

We can also define Chern classes, ci(V ) ∈ Ẽ2i(X) such that

(1) Naturality
(2) cn(V ⊕W ) = ⊕i+j=nci(V )cj(W )

(3) c1(ξ) = x ∈ Ẽ2(CP∞)

Naturality together with the splitting principle defines this for all bundles.
Recall that for line bundles L1, L2 → X,

c1(L1 ⊗ L2) = c1(L1) + c1(L2)

for E = HZ, the additive formal group law, and for K theory we get the mul-
tiplicative formal group law. Now what happens for other E? Let’s consider
the universal example, the map

S : BU(1)×BU(1)→ BU(1)

which classifies the tensor product of line bundles. The multiplication is in-
duced the the multiplication on U(1), the we apply the functor B. So the
what does this do on E? We get

S∗ : E(pt)[[x]]→ E(pt)[[x, y]],

and let x 7→ F (x, y) be some power series in two variables determining S∗.
We see that

c1(L1 ⊗ L2) = F (c1(L1), c1(L2)).

We claim that F is a formal group law.
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21.2. Formal Groups, Formal Group Laws and Cohomology Theo-
ries.

Definition 21.2. A formal group law +F over R is a power series in two
variables over R such that

(1) x+F y = y +F x
(2) 0 +F x = x+F 0
(3) x+F (y +F z) = (x+F y) +F z

where x+F y := F (x, y)

This behaves like an abelian group, but there are no elements. We can
also take Spf(R[[x]]) and get a formal group scheme from this.

Suppose that F (x, y) is a formal group law:

F (x, y) =
∑

aijx
iyj.

Notice that we can express conditions 1-3 above as polynomial relations for
the coefficients, aij.

The functor

Rings→ Sets

sending

R 7→ {formal group laws over R},
is corepresented by L = Z[aij]/I where I is the ideal of relations. That is,

Hom(L,R) ∼= {formal group laws over R}.

Theorem 21.3 (Lazard). L is a polynomial ring.

Now we get to put some of this picture together: we have a universal
oriented cohomology theory and a universal formal group law, so one might
guess the following:

Theorem 21.4. π∗MU ' L

So, an obvious question is can we go the other way, i.e. is there a functor

{formal group laws} → {cohomology theories}.

A first guess might be that for a formal group law classified by

L = MU(pt)
F→ R

define a new “cohomology” theory

h∗F (X) = MU∗(X)⊗MU∗(pt) R.

(One has to be a little careful, and at first only define this finite complexes, and
then extend by colimits.) However, in general this doesn’t work because we
don’t preserve long exact sequences. It does work if R is flat over L. However,
L is such a huge ring that this rarely happens.
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Theorem 21.5 (Conner-Floyd).

K∗(X) ∼= MU∗(X)⊗MU∗(pt) K
∗(pt)

where MU∗(pt) → K∗(pt) = Z[β, β−1] classifies the multiplicative formal
group law,

x+ y + βxy.

There are cohomology operators for MU are given by

MU∗MU = π∗(MU ∧MU).

We can think about Spec(π∗(MU)) as classifying formal group laws and
Spec(π∗(MU ∧ MU) classifies two formal group laws and an isomorphism
between them. So

Spec(π∗MU ∧MU)
↓↓

Spec(π∗MU)
(18)

is a presentation for the moduli stack MFG of formal group laws. Now if we
have a cohomology theory, choosing an orientation is equivalent to choosing
a coordinate on the corresponding formal group, giving a formal group law.
But the more fundamental thing to work with is the formal group itself.

Now let X be a sheaf. Then π∗(X ∧ MU) is a quasicoherent sheaf on
Spec(L) = Spec(π∗MU) and π∗(X ∧ MU ∧ MU) is a quasicoherent sheaf
on Spec(MU∗MU), and these are compatible, and we can descend to get a
quasicoherent sheaf on MFG. So we find that

MU∗(X) ' p∗(Fx).
The upshot of this is that for MU∗(X)⊗MU∗(pt) R to be a cohomology theory
we only need that R is flat over MFG, i.e.

Spec(R)→ Spec(L)→MFG

is flat. There is a theorem due to Landweber that gives a criteria for this.
For convenience, let’s pass to even periodic theories, E∗(pt) = 0 for ∗ = 1

mod 2. Then there is a class β ∈ E−2(pt) such that β is invertible. Examples
of this are K,

Hp = Πk∈ZΣ2kHZ,
and MP where π0PMP = π∗MU .

So how to we construct formal group laws? One approach is to start with
an algebraic group and complete at the identity. There aren’t that many
algebraic groups of dimension one around: the additive group Ga (leading
to ordinary cohomology), the multiplicative group Gm (leading to K-theory),
and elliptic curves (leading to elliptic cohomology). So now lets work over C,
and then every elliptic curve is of the form

Eτ = C/Z < 1, τ >

for τ ∈ H, the upper-half plane, and Eτ ∼= E ′τ if and only if τ ′ = gτ for
g ∈ SL2(Z). We can consider the stack

MEll“ ∼= ”H/SL2(Z)).
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Note that the j-invariant, j : MEll → A1 realizes A1 as the course moduli
space. The noncompactness here can be a problem, so we might want to
complete it. That aside, there is a canonical map, given by completing the
group law of an elliptic curve at the identity

MEll →MFG,

and this map is flat. This doesn’t give us a cohomology theory yet because
we’ve only done this for rings, and the moduli stack of elliptic curves is not
affine. There isn’t an obvious way to proceed. It turns out you need to work
with E∞ ring spectra.

Theorem 21.6 (Hopkins-Miller, Lurie). There is a sheaf Otop of E∞-ring
spectra on MEll such that

π0(Otop) = OEll
and Γ(MEll,Otop) = tmf [∆−1].

First we need to construct MEll. Let’s think complex analytically first.
Then we have

D = {q ∈ C|0 < |q| < 1}.
Then there is a family of elliptic curves over D given by

Eq = C×/qZ,
where here we are using the exponential map, C → C×, taking τ 7→ e2πiτ .
This family has a natural extension over

D = {q ∈ C| |q| < 1}
where E0 is the nodal rational curve. This is the usual “fishtail” family of
elliptic curves. In fact, it is possible to construct this family T algebraically
over the formal disk, Spec(Z[[q]]). The fiber at q = 0 is the ration nodal curve.
This is the guy we want to glue into our moduli stack. We can consider the
restriction of this family to Spec(Z((q))). This gives the Tate curve and “is”
Gm/q

Z.
Now we will call Ell the fiber of Otop at Spec(Z((q))). This is the Tate

elliptic cohomology. The formal group law this corresponds to is still Gm, and
in fact

Ell = K((q)).

There is a G-equivariant version of Ell that differs from the usual G equivari-
ant K-theory, and this is what will be related to loop groups.
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