
INTRO TO CHIRAL ALGEBRAS

LECTURE BY JACOB LURIE BUT THESE NOTES AREN’T HIS FAULT

1. introduction

“This is our seminar on chiral algebras. Me learning this material prior to the seminar would
have defeated the point. I’m about to talk. Other people (Scott, Dennis, John) will then talk later,
and so will I, again, and then other people, again. And then there will be the second half of the
seminar.”

2. Motivation from theory of loop groups

Some motivation for the study of chiral algebras comes from the theory of loop groups. Here
let G be compact, simple Lie group. Define the loop group, LG as the space of unbased loops
Map(S1, G).

The loop group LG itself doesn’t have many interesting representations. However, one can define a
central extension of the loop group S1 → L̃G→ LG for each n > 0, and then study representations
of L̃G at level n. This category Rep(L̃G) is semi-simple, and has finitely many simple objects.
Additionally, there exists a “fusion” tensor structure, ⊗, on Rep(L̃G) which is associative and also
braided monoidal.

We can also study the Lie algebra Lie(LG) = Map(S1, g). This can be studied by Fourier series,
though this depends on what types of loops we were considering, which I didn’t mention. the most
algebraic version of these loops are Laurent series, and in this version our loop Lie algebra is g((t)).

We have a corresponding Lie algebra central extension C → g̃((t)) → g((t)). However, there are

more representations of g̃((t)) than there are of L̃G. To obtain a representation of the group from
one of the algebra, we need an integrability condition. (In fact, this is visible just at the level of
characters.)

In this setting of Lie algebras (which works over any field of characteristic 0) we can ask what
the analogue of fusion is? To answer, we’ll use chiral algebras.

Denote the unit of the fusion tensor structure on Rep(L̃G) by 1, this is the “vacuum” representa-
tion. As usual, there exists a morphism 1⊗1→ 1 in Rep(L̃G) making 1 an algebra in this category.
However, this does not the vacuum 1 an algebra in vector spaces (since the forgetful functor isn’t
monoidal). What structure does the underlying vector space of the vacuum 1 inherit from being an
algebra in Rep(L̃G)?

It is a chiral (or vertex) algebra.

3. representations

How can we construct representation of loop groups? In finite dimensions, for G, we can use
Borel-Weil. Take a parabolic subgroup P in GC. The space of flags X = GC/P is a compact
algebraic variety (the flag variety) since P was a parabolic. (This is essentially the definition of
what a parabolic subgroup is.)

Choose a line bundle L → X. If G is simply-connected then there exists an action of G on L.
From this we get a representation of G on the sheaf cohomology H0(X;L).

There is an analogue of this construction for loop groups. The analogue of a parabolic is a
parahoric. The example to keep in mind is G[[t]] in G((t)). Think of Spec C[[t]] as the disk, and
Spec C((t)) as the punctured disk. So the inclusion of the parahoric above you can think of as

1



the inclusion Map(disk,G) → Map(punc. disk,G). (For G = GLn, then GLn[[t]] is equivalent to
n× n-matrices with entries in power series in t.

The analogue of the flag variety used above is now G((t))/G[[t]] = GrG, the affine Grassmannian.
How to implement the construction of representations? Given a level n ∈ H4(BG; Z)? We can
construct a line bundle L → GrG with an action of L̃G. (For simplicity, we’ll ignore the central
extension in what follows.)

The idea is to get representation occurring on H0(GrG;L), but this doesn’t quite work given how
everything here is infinite dimensional. To get the right answer, we should write this as a limit over
finite dimensional things: limH0(fin. dimnsl.;L). But this still doesn’t work; we get something of
uncountable dimension.

The right answer is to consider H0(GrG;L)∗cont. ∼= colimH0(fin. dimnsl.;L)∗, which works good.
This construction produces the vacuum representation, which we’ll now denote by A.

4. geometry (factorization)

Let X be an algebraic curve, x ∈ X a point. Define Grx as the moduli space of G-bundles
on X equipped with a choice of trivialization of the bundle on X − {x}. To describe a point of
Grx, you can fix a trivialization over the formal disk, which has a parameter space of G((t)), and
then quotient by ambiguity of the choice, given by G[[t]]. Thus Grx ∼= G((t))/G[[t]] ∼= GrG. This
describes a family of spaces GrG parametrized by points of X. Let us denote this space Gr(1).

That is, there exists a map Gr(1) → X whose fiber over a point x is exactly Grx. The construction
of the line bundle L above can also be carried out in families, which produces a line bundle (also
denoted L) L → Gr(1). Let’s denote the associated quasi-coherent sheaf of sections on X as
A(1) → X, with fibers A.

Definition 4.1. Define Grx,y as the parameter space for G-bundles on X together with a choice of
trivialization on X−{x, y}. Again, these spaces assemble into a family of spaces Gr(2) parametrized
by X2, sitting in a pullback square:

Gr(2)

��

Grx,yoo

��
X2 {x, y}oo

It’s obvious that for x = y, you get that Grx,y = Grx = Gry. Also for x 6= y, you get that
Grx,y = Grx ×Gry. (Editor’s note: the second statement isn’t obvious, if you didn’t already know
it.)

This structure is called factorization. Note that this structure looks weird from the point of view
of finite dimensional algebraic geometry, in which you expect the dimensions of the fibers to be
upper semi-continuous. Here, it’s the opposite.

Back to the line bundle: we get another line bundle L → Gr(2), with associated sheaf we’ll denote
A(2) → X2. We see a similar factorization structure here: in the diagram X

∆→ X2 j← U := X2−∆X ,
we have that ∆∗A(2) ∼= A(1) and that j∗A(2) ∼= j∗(A � A). This is a “factorization algebra.” This
is like having a multiplication on A.
A(1) has a flat connection. In differential geometry, connections give rise to parallel transport,

i.e., some way of identifying the bundle fibers at different points given a choice of path connecting
them. Grothendieck had the idea that in algebraic geometry, a flat connection is something that
gives an isomorphism between fibers of infinitesimally close points. (x and y are infinitesimally close
means that X − x ' X − y.)

Thus Grx ' Gry if x and y are infinitesimally close, and this gives a flat connection on A(1) and
A(2).
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Remark 4.2. For X = An = Spec C[x1, . . . , xn], a flat connection on M ∈ QCohX is module
structure on M for the noncommutative ring C{x1, . . . , xn, δx1 , . . . , δxn} = DX . (In this ring, the
derivations commute with each other (i.e., “mixed partials commute”) and act on the polynomial
variables xi by the rules of calculus (i.e., Leibnitz rules).) This makes M an algebraic D-module.

So A(2) is an algebraic D-module on X2, and we have a short exact sequence that I won’t
explain going ∆!∆! → A(2) → j∗j

∗A(2). (This describes the sheaf A(2) in terms of its values
on the diagonal, complement of the diagonal, plus gluing data in the SES.) From this, we get
A(2) → j∗j

∗A(1) �A(1) → ∆∗A(1). This last map is a chiral bracket.

Incomplete Definition 4.3. A chiral algebra on a curve X is a D-module A with a chiral bracket.

This is closely related to a vertex algebra, which jfd will talk about.

5. Back to Lie algebras

Back to g̃((t)), the Kac-Moody algebra. What structure did it inherit from all this?
For a A a chiral algebra, we had this composition A � A → j∗j

∗A � A → ∆∗A, where the
composition anti-commutes.

This looks similar to the picture with the sheaf of differential operators, DX �DX
∼= DX×X →

∆∗DX , but this is commutative not anti-commutative. So DX doesn’t quite give a chiral algebra.
However, if we start with a Lie algebra g, then DX ⊗ g has a Lie∗-bracket, very similar to the

anti-commuting chiral bracket above, making DX ⊗ g a Lie∗-algebra.
There is a forgetful functor from chiral algebras to Lie∗-algebras, ch-algX → Lie∗-algX that

admits a left adjoint, the chiral envelope.
DX⊗g “is like” the Kac-Moody algebra g((t)). Modestly more precisly, consider DX⊗g over the

formal disk Spec C[[t]]. Take the “horizontal/flat” sections (which are like the kernel of covariant
differentiation, in differential geometry), and you’ll get g[[t]]. Do the same thing for the punctured
disk Spec C((t)), and the flat sections produce g((t)).

5.1. Modules. Given L ∈ Lie∗-algX , you can talk about Lie∗ L-modules and chiral L-modules on
X. This is a DX -module M together with an action of L. If M is supported at a point x ∈ X
and L = DX ⊗ g, then chiral L-modules are equivalent to g((t))-modules, and Lie∗ L-modules are
equivalent to g[[t]]-modules. (These modules are discrete, continuous, as usual.) This produces
families of categories on curves, behaving in a certain way when points collide.

6. chiral homology

The second main topic of the seminar is chiral homology. Let C denote the category of loop group
representations with fusion monoidal structure ⊗. This is a modular tensor category (i.e., rigid,
balanced, braided plus condition). This means that for every surface (with incoming δin, outgoing
boundaries δout) Σ, we get a functor FΣ : C⊗δin → C⊗δout

. For instance, for the pair-of-pants, we
get a functor corresponding to fusion.

“Rigid” means each object in C has a dual with respect to the fusion product ⊗. This is encoded
by the functor FΣ for Σ the surface with no outgoing boundary component.

This implies that Hom(FΣ(C ⊗ C ′), D ⊗D′) ∼= Hom(FΣ(C ⊗ C ′ ⊗D∗ ⊗D′∗), k).
Given Σ with marked points, together with objects of C, Mi, at each marked point, we get a

vector space denoted 〈M1,M2,M3〉Σ. We also have this structure for the category of modules over

g((t)) or g̃((t)). The construction that assigns to the collection Mi the vector space 〈M1,M2,M3〉Σ
is chiral homology.

This is a very useful idea in geometric Langlands: for G a group, and a curve X, the conjecture
is that there is an equivalence D-mod (BunGX) ∼= QCoh(Bunflat

GL X). If you understood this for
the disk X = Spec C[[t]] and you wanted to build the equivalence for more general curves X, you
might want a procedure of “integrating” over X, very similar to chiral homology. If you could prove
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geometric Langlands, then you’d be very popular. There exists a definition of a functor that is
supposed to implement this equivalence.
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