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Background and Motivation

In the chapter on the Landweber Exact Functor Theorem, we constructed a presheaf Ohom of
homology theories on the moduli stack of elliptic curves, as follows. A map f : Spec(R) → Mell

from an affine scheme to the moduli stack of elliptic curves provided an elliptic curve C over the
ring R, and this elliptic curve had an associated formal group Ĉ : MP0 = MU∗ → R. Provided
the map f : Spec(R)→Mell was flat, the functor EllC/R(X) = MP∗(X)⊗MP0

R was a homology

theory. The value of the presheaf Ohom on an elliptic curve was defined to be the homology theory
associated to the formal group of that elliptic curve: Ohom(f) = EllC/R. Recall that such a presheaf
is by definition simply a contravariant functor:

(Affine Schemes/(Mell))
op Ohom

−−−→ Homology Theories

C/R 7−→ EllC/R

The presheaf Ohom nicely encodes all the homology theories built from the formal groups of
elliptic curves. The only problem is that there are many such theories, and they are related to one
another in complicated ways. We would like instead a “global” or “universal” elliptic homology
theory. The standard way of building a global object from a presheaf is of course to take global
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sections. Unfortunately, the site of affine schemes over the moduli stack of elliptic curves has no
initial object, and therefore no notion of global sections. We would like to find a homology theory
Ohom(Mell) associated to the whole moduli stack. One might guess that this homology theory
should be the limit limU∈UOhom(U) of the theories Ohom(U), where U is an affine cover of the
moduli stack. The category of homology theories is not complete, though, and this limit does not
exist.

Thanks to Brown representability, we know that homology theories can be represented by spec-
tra. The category of spectra is rather better behaved than the category of homology theories—for
instance, it has limits and their homotopically meaningful cousins, homotopy limits. If we can show
that the presheaf Ohom is the presheaf of homology theories associated to a presheaf Otop of spectra,
then we can build a global spectrum, thus have a global homology theory, using a homotopy limit
construction. The main theorem is that there is indeed an appropriate presheaf of spectra:

Theorem 0.1 (Hopkins-Miller). There exists a sheaf Otop of E∞ ring spectra on (Mell)ét, the
moduli stack of elliptic curves in the étale topology, whose associated presheaf of homology theories
is the presheaf Ohom built using the Landweber Exact Functor Theorem.

That Otop is a sheaf and not merely a presheaf entails, for example, that its value Otop(Mell)
on the whole moduli stack is determined as a homotopy limit holimU∈UOtop(U) of its value on
the open sets in a cover U of the moduli stack. The spectrum Otop(Mell) represents the homology
theory we were hunting for, and warrants a special name:

Definition 0.2. TMF := Otop(Mell).

The first goal of this chapter is to explain what it means to have a sheaf of E∞ ring spectra
on the moduli stack of elliptic curves. Note that we would have been happy with a sheaf of (not
necessarily E∞ ring) spectra. That the theorem produces a sheaf of E∞ ring spectra is an artifact
of the ingenious proof: it turns out to be easier to handle the obstruction theory for sheaves of E∞
ring spectra than the obstruction theory for sheaves of ordinary spectra.

Once we have the sheaf Otop, we would like to understand the global homology theory TMF . In
particular, we would like to compute the coefficient ring TMF ∗ = π∗(Otop(Mell)). The spectrum
Otop(Mell) is, as described above, built as a homotopy limit out of smaller pieces {Otop(U)}U∈U.
There is a spectral sequence that computes the homotopy groups of the homotopy limit Otop(Mell)
in terms of the homotopy groups of the pieces Otop(U). The E2 term of this spectral sequence
is conveniently expressed in terms of the sheaf cohomology of the sheafification of the presheaf on
Mell given by U 7→ π∗(Otop(U)).

Proposition 0.3. There is a strongly convergent spectral sequence

E2 = Hq(Mell , π
†
pOtop) =⇒ πp−qTMF .

Here π†pOtop is the sheafification of the presheaf πpOtop.

The second goal of this chapter is to construct this “descent spectral sequence”. In the chapter
on the homotopy of TMF we will evaluate the E2 term of this and related spectral sequences, and
illustrate how one computes the numerous differentials.

In the following section 1, we review the classical notion of sheaves, discuss a homotopy-theoretic
version of sheaves, and describe stacks as sheaves, in this homotopy sense, of groupoids. Then in
section 2 we describe what it means to have a sheaf on a stack and recall the notion of homotopy
limit needed to make sense, in particular, of sheaves of spectra. In the final section 3, we discuss
sheaf cohomology and Cech cohomology on a stack and construct the descent spectral sequence for
a sheaf of spectra on a stack.

In writing this chapter, we have benefited enormously from discussions with Andrew Blumberg
and Andre Henriques, and from reading work of Dan Dugger, Phil Hirschhorn, Paul Goerss and
Rick Jardine, and, of course, Mike Hopkins.
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1. Sheaves and Stacks

A sheaf S of sets on a space X is a way of functorially associating a set S(U) to each open subset
U of X. It is natural to generalize this notion in two directions, by considering sheaves of objects
besides sets and by considering sheaves on objects besides spaces. Stacks are, at root, representing
objects for moduli problems in algebraic geometry, and as such might seem to have little to do
with sheaves. However, stacks can naturally be viewed as sheaves of groupoids on the category of
schemes, and this perspective is useful when discussing, as we will in section 2, sheaves on a stack.

1.1. Sheaves. We begin with the classical notions of presheaves and sheaves of sets on a space.

Definition 1.1. Given a space X, let X denote the category whose objects are open subsets U of
X and whose morphisms are inclusions U ↪→ V of open subsets. A presheaf of sets S on the space
X is a contravariant functor from the category X to the category Set of sets.

Explicitly, the presheaf provides a set S(U) for each open U and a restriction map S(V )
rV U−−−→ S(U)

for each inclusion U ↪→ V such that the composite S(W )
rWV−−−→ S(V )

rV U−−−→ S(U) is the restriction
map rWU . The prototypical example is the presheaf of real valued functions on the space: S(U) =
Map(U,R); here the restriction maps are restriction of functions. This presheaf has the special
property that an element of S(U), that is a function, is uniquely determined by its restriction to
any open cover of U by smaller open sets {Ui ↪→ U}i∈I—such a presheaf is called a sheaf.

Definition 1.2. A sheaf of sets on a space is a presheaf of sets S on a space X such that for all
open sets U ⊂ X and all open covers {Ui ↪→ U}i∈I of U , the set S(U) is given by the following
limit:

S(U) = lim

(∏
i

S(Ui) →→
∏
i,j

S(Uij) →→
→ ∏

i,j,k

S(Uijk) →→
→→ · · ·

)
Here the intersection Ui∩Uj is denoted Uij , the triple intersection Ui∩Uj ∩Uk is denoted Uijk, and
so forth. To be clear, the products above occur over unordered tuples of not-necessarily-distinct
elements of the indexing set I, and the diagram indexing the limit is the full standard cosimplicial
diagram.

Remark 1.3. We emphasize that the limit diagram in this definition does contain codegeneracy
maps, despite their frequent omission from the notation. For example, if the index set has order

two, then the limit, written out, is lim

(
S(U1)× S(U2) →←

→ S(U12)× S(U11)× S(U22)
→←
→←
→
· · ·
)

, not

lim
(
S(U1)× S(U2) →→ S(U12) →→

→ ∗ →→
→→ · · ·

)
.

Remark 1.4. The classical definition of a sheaf demands that S(U) be the limit

lim
(∏

i S(Ui) →→
∏
i,j S(Uij)

)
. This truncated limit is equal to the limit in definition 1.2. However,

only the full limit generalizes well when we consider sheaves of objects other than sets.

We can define a presheaf of sets on a category C, not necessarily the category of open subsets
of a space, simply as a contravariant functor from C to Set. Moreover we can give a definition of
sheaves of sets on C provided we have a notion of covers in the category. A Grothendieck topology
on a category C provides such a notion:

Definition 1.5. A Grothendieck topology on a category C is a collection of sets of morphisms
{{Ui → U}i∈I}; these sets of morphisms are called covering families. The collection of covering
families is required to satisfy the following axioms: 1) {f : V → U} is a covering family if f is
an isomorphism; 2) if {Ui → U}i∈I is a covering family, and g : V → U is a morphism, then
{g∗Ui → V } is a covering family; 3) if {Ui → U} is a covering family and {Vij → Ui} is a covering
family for each i, then {Vij → U} is a covering family. A pair of a category C and a Grothendieck
topology on C is called a Grothendieck site.
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The basic example of a Grothendieck site is of course the category of open subsets of a space,
with morphisms inclusions, together with covering families the sets {Ui → U} where {Ui} is an open
cover of U . More interesting are the various Grothendieck topologies on the category Sch of schemes.
For example, in the étale (respectively flat) topology, the covering families are the sets {Ui → U}
such that

∐
i Ui → U is an étale (respectively flat) covering map. A sheaf on a Grothendieck site C

is of course a presheaf S : Cop → Set such that for all covering families {Ui → U} of the site, the

set S(U) is the limit lim
(∏

i S(Ui) →→
∏
i,j S(Uij) →→

→ · · ·
)

.

Next we consider sheaves on a Grothendieck site C taking values in a category D other than
sets. We are interested in categories D that have some notion of homotopy theory—these include
the categories of groupoids, spaces, spectra, and E∞ ring spectra. More specifically, we need the
category D to come equipped with a notion of homotopy limits and a notion of weak equivalences.
We will discuss homotopy limits in detail in section 2.3. For now we content ourselves with a brief
example illustrating the idea that homotopy limits in, for example, spaces behave like limits with a
bit of homotopical wiggle room:

Example 1.6. Suppose we are interested in the diagram of spaces X →→ Y , where the two maps are
f and g. The limit of this diagram is the space of points of X whose image in Y is the same under
the two maps: lim(X →→ Y ) = {x ∈ X s.t. f(x) = g(x)}. The homotopy limit, by contrast, only
expects the two images to be the same up to chosen homotopy:

holim(X →→ Y ) = {(x ∈ X,hx : [0, 1]→ Y ) s.t. hx(0) = f(x), hx(1) = g(x)}.
A presheaf on the site C with values in the category D is a contravariant functor F : Cop → D.

These presheaves are also referred to as presheaves of objects of D on the site C: for example,
“presheaves of sets”, “presheaves of spaces”, “presheaves of spectra”.

Definition 1.7. A sheaf on the site C with values in the category D is a presheaf F such that for
all objects U of C and all covers {Ui → U}i∈I , the map

F (U)
'−→ holim

(∏
i

F (Ui) →→
∏
i,j

F (Uij) →→
→ ∏

i,j,k

F (Uijk) →→
→→ · · ·

)
is a weak equivalence. The products here occur over unordered tuples of not-necessarily-distinct
elements of the indexing set I; in particular, the indexing diagram does contain codegeneracy maps.

We will be particularly interested in the case where C is the étale site (Mell)ét on the moduli
stack of elliptic curves and D is the category of E∞ ring spectra. We describe this particular site
in section 2.2 and discuss homotopy limits of (E∞ ring) spectra in section 2.3.

1.2. Stacks. A scheme X represents a functor Schop → Set by Y 7→ Hom(Y,X). A moduli prob-
lem, such as “What are the elliptic curves over a scheme?”, also associates a set to each scheme,
for example by Y 7→ {ell curves/Y }/iso. Unfortunately, many such moduli problems are not rep-
resentable by schemes. To manage this situation, we keep track of not just the moduli set but
the moduli groupoid. We therefore consider, for example, the association taking Y ∈ Sch to
{ell curves/Y,with isoms} ∈ Gpd. This association is very nearly a presheaf of groupoids on the
category of schemes; (it is not a presheaf because pullback is only functorial up to isomorphism.)
It moreover has the sheaf-like property that elliptic curves over a scheme Y can be built by gluing
together elliptic curves on a cover of Y . Altogether, this suggests that sheaves of groupoids are a
reasonable model for studying moduli problems.

Definition 1.8. A stack on the site C is a sheaf of groupoids on C.
Recall that this definition means that for a presheaf F : Cop → Gpd to be a stack, the map

F (U)→ holim
(∏

i F (Ui) →→
∏
i,j F (Uij) →→

→ · · ·
)

must be a weak equivalence for all covers {Ui →
U}. In order to unpack this condition, we need to know what the weak equivalences and the
homotopy limits are in the category of groupoids. A weak equivalence of groupoids is simply an
equivalence of categories. The following proposition identifies the needed homotopy limit.
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Proposition 1.9 ([6]). The homotopy limit of groupoids holim
(∏

i F (Ui) →→
∏
i,j F (Uij) →→

→ · · ·
)

associated to a cover U = {Ui → U} is the groupoid Desc(F,U) defined as follows. The objects
of Desc(F,U) are collections of objects ai in ob(F (Ui)) and morphisms αij : ai|Uij → aj |Uij in
mor(F (Uij)) such that αjkαij = αik. The morphisms in Desc(F,U) from {ai, αij} to {bi, βij} are
collections of morphisms mi : ai → bi in mor(F (Ui)) such that βijmi = mjαij.

Stacks are often defined to be presheaves of groupoids such that the natural map F (U) →
Desc(F,U) is an equivalence of categories for all covers U of U . The above proposition establishes
that the more conceptual homotopy limit definition agrees with the descent definition.

Example 1.10. We will be concerned primarily with the moduli stack of elliptic curves Mell . This
is a stack on the category of schemes in any of the flat, étale, or Zariski topologies. Roughly
speaking, the stack associates to a scheme Y the groupoid of elliptic curves over Y . (Precisely, this
association must be slightly rigidified, a la [7, p.26].) Alternately, Mell is the stack associated to
the Hopf algebroid (A,Γ) := (Z[a1, a2, a3, a4, a6][∆−1], A[u±1, r, s, t][∆−1]).

2. Sheaves on Stacks

We would like to understand sheaves of spectra on the moduli stack of elliptic curves in the étale
topology. First we consider the general notion of a sheaf on a stack, then describe the étale site of
the moduli stack of elliptic curves, and finally discuss sheaves of spectra in particular.

2.1. The Site of a Stack. Suppose C is a Grothendieck site and X is an object of C. We have a
notion of sheaves on X, which are by definition sheaves on the site C/X whose objects are maps
Y → X in C and whose covers are inherited from C. We would like a notion of sheaves on a stack
M on the site C. In order to consider objects of C overM, we need objects of C to live in the same
place as stacks on C. This is accomplished by the following functors:

C ↪→ Pre C ↪→ PreGpd C
U 7→ Hom(−, U) 7→ Hom(−, U) with id

Thinking of object of C as the presheaves of groupoids they represent, we can consider the site of
objects over M.

Definition 2.1. LetM be a stack on the site C. The site C/M has objects the morphisms U →M
in presheaves of groupoids on C. The morphisms in C/M from U

a−→ M to V
b−→ M are the pairs

(c, φ) where c : U → V is a morphism of C and φ is a natural isomorphisms between the functors a
and bc. The covering families of U →M in C/M are the sets of morphisms {ci : Ui → U, φi} such
that {ci} is a covering family in C. Schematically, the definition is

C/M =



obj = {U →M in PreGpd C}

mor =


U a

&&
c

��
M

V b

88
φ

�	


cov =



Ui

&&

��
M

U

88
�	

 s.t.

 Ui

��
U

 cov in C


Definition 2.2. For a stack M on the site C, a sheaf on M with values in D is a sheaf on C/M
with values in D.

For example, we might considerMell as a stack on schemes in the étale topology Schét and then
consider sheaves onMell with values in the category of spectra. However, in the end this is not the
notion of sheaves on the moduli stack that we want, so we need to modify the site Schét/Mell .
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2.2. The site (Mell)ét. We adjust the site Schét/Mell in two ways. First, to enable later obstruc-
tion theory arguments we need to restrict the objects of our site to be étale, not arbitrary, maps
to the moduli stack. Second, it will be convenient if our sheaves take values not only on schemes
over the moduli stack but also on stacks over the moduli stack; in particular we will then be able
to evaluate a sheaf on the moduli stack itself, producing a spectrum of global sections.

We will be interested in étale maps between stacks and étale covers of stacks. These notions
are derived from the corresponding notions for schemes. Recall that a map X → Y between
schemes is étale if it is flat and unramified or equivalently smooth of relative dimension zero. The
topologist can think of étale maps as being the algebro-geometric analog of local homeomorphisms.
A collection of étale maps {Ui → U} is an étale cover if for all algebraically closed fields k and all

maps f : Spec k → U there exists an i with a lift of f to a map f̃ : Spec k → Ui:
Ui

��
U

 étale cover if

Ui

��
Spec k

∃f̃ ;;

∀f
// U

Note that these collections are the covers in the site Schét.

Definition 2.3. A map of stacks f : N →M is étale if for all maps V →M from a scheme toM,
the pullback f∗V is a scheme and the induced map f∗V → V is étale:

N f−→M étale if

f∗V
ét //

��

V

∀��
N

f
//M

Étale maps N →Mell to the moduli stack of elliptic curves will be the objects of the étale site
of the moduli stack. Roughly, the morphisms are maps of stacks N ′ → N over the moduli stack,
and covers are collections of maps {Ni → N} over the moduli stack that are étale covers in their
own right. (A collection of maps of stacks is an étale cover if it satisfies a lifting property precisely
analogous to the one for étale covers of schemes.) In more detail, the étale site is defined as follows.
Note that we are considering all stacks, the moduli stack Mell included, as stacks on the étale site
of schemes Schét.

Definition 2.4. The objects of the étale site of the moduli stack of elliptic curves (Mell)ét are the

étale morphisms N →Mell from a stack N to the moduli stack. The morphisms from N a−→Mell

to N ′ b−→ Mell are equivalence classes of pairs (c, φ), where c : N → N ′ is a map of stacks and
φ is a natural isomorphism between a and bc. A natural isomorphism ψ from c : N → N ′ to
d : N → N ′ can be viewed as an isomorphism from the pair (c, φ) to the pair (d, ψφ)—these two
pairs are therefore considered equivalent as morphisms between N → Mell and N ′ → Mell . A
collection of morphisms {[(ci : Ni → N , φi)]} of stacks over Mell is a cover of (Mell)ét if for all
algebraically closed fields k and all maps f : Spec k → N , there exists an i, a representative (c, φ)

of the equivalence class [(ci, φi)], and a lift of f to a map f̃ : Spec k → Ni such that f = cf̃ .
Schematically, we have

(Mell)ét =



obj = {N ét−→Mell}

mor =


N a

''
c
��

Mell

N ′ b

77
φ

��

 /


N

c
��

d
��

ψks

N ′


cov =



Ni

''
ci
��

Mell

N
77

φi

��

 s.t.

Ni
��

Spec k

∃f̃ ::

∀f
// N
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Though the definition of this étale site (Mell)ét is complicated by the introduction of stacks over
the moduli stack, the site (Mell)ét still contains the fundamental objects of study, namely elliptic
curves over schemes; sheaves on (Mell)ét should be thought of primarily as assignments of sets (or,
in a moment, spectra) to these elliptic curves.

We are hunting for a sheaf of spectra Otop on the étale site (Mell)ét of the moduli stack of elliptic
curves. Such a sheaf was defined in section 1.1 as a presheaf F : (Mell)

op
ét → Spec such that, for all

objects U of (Mell)ét, the natural map

F (U)→ holim

(∏
i

F (Ui) →→
∏
i,j

F (Uij) →→
→ ∏

i,j,k

F (Uijk) →→
→→ · · ·

)
is a weak equivalence. We need therefore to understand in detail the notion of homotopy limits in
the category of spectra.

2.3. Homotopy Limits and Sheaves of Spectra. A sheaf of sets on a space X is a functor
F : {U ⊂ X}op → Set whose value on large open sets is determined as a limit of the value on
smaller open sets. We could take a similar definition for sheaves of spectra F : {U ⊂ X}op → Spec,
but the limit condition ignores the topological structure of spectra, and the value of the sheaf on
large open sets would not capture any information about the topological behavior of the sheaf on
small open sets. Instead of “gluing” the values of F together with a limit, we glue them together
with a homotopy limit. The homotopy limit takes the various values of F and thickens them up
with a bit of padding, so that they aren’t too badly damaged, homotopically speaking, by the gluing
process.

In section 2.3.1, we describe colimits and limits in terms of tensors and cotensors, and use this
framework to give a concise description of homotopy colimits and limits. In section 2.3.2, we fess
up to the fact that even the homotopy limit is not always appropriately homotopy invariant, and
this leads us into a discussion of derived limits and corrected homotopy limits. In section 2.3.3, we
specialize to the case of spectra, describing the categories of orthogonal spectra, symmetric spectra,
and S-modules and specifying the tensors and cotensors needed for homotopy colimits and limits in
these categories.

2.3.1. Limits and Homotopy Limits. Limit and colimit are brutal operations in the category of
spaces: they tend to destroy homotopical information, and they are not invariant under homotopies
of maps. For example, the colimit of the diagram ∗ ← S2 → ∗ is a point and has no recollection
of the homotopy type of the middle space S2; the limit of the diagram ∗ →→ [0, 1], where both maps
send the point to 0, is also a point, but becomes empty if we deform one of the two maps away from
0.

We would like homotopy versions of limit and colimit that have more respect for the homotopical
structure of spaces. We take our cue from two fundamental examples.

Example 2.5. The colimit of the diagram of spaces A
f←− C g−→ B is (AtB)/(f(c) ∼ g(c), c ∈ C). We

can homotopify this construction by, instead of directly identifying f(c) and g(c), putting a path
between them. This is the double mapping cylinder construction and is an example of a homotopy
colimit:

hocolim(A
f←− C g−→ B) = colim (A← C → C × [0, 1]← C → B)

= (A t C × [0, 1] tB)/{(c, 0) ∼ f(c), (c, 1) ∼ g(c)}.

The suspension functor is a special case of this homotopy colimit, when A = B = ∗.

Example 2.6. The limit of the diagram of spaces X
f−→ Z

g←− Y is {(x, y) ∈ X × Y |f(x) = g(y)}.
Instead of expecting f(x) and g(y) to be equal in this limit, we can merely demand that they be
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B

Ix

A

C

connected by a chosen path. This is the double path space construction and is a homotopy limit:

holim(X
f−→ Z

g←− Y ) = lim
(
X → Z ← Z [0,1] → Z ← Y

)
= {(x,m : [0, 1]→ Z, y)|f(x) = m(0), g(y) = m(1)}.

Z

.
.

.
.

X Y

The loop functor is the special case of X = Y = ∗ and f = g.

In order to generalize these homotopical constructions to other colimits and limits, it is convenient
to have a concise description of the colimit and limit functors. Let C be the category we are working
in, typically spaces or spectra or more generally a simplicial model category, let I be a small
category, and let X : I → C be a diagram in C indexed by I. The colimit and limit can be explicitly
constructed as follows:

colimI X ∼= X ⊗I ∗I
limI X ∼= homI(∗I , X)

Here ∗I is the I-diagram of simplicial sets with ∗I(i) = ∗ for all i ∈ I. (Full disclosure: here we are
using ∗I to refer both to this trivial I-diagram and to the trivial Iop-diagram.) The constructions

⊗I and homI are the tensor and cotensor on the diagram category CI ; these are special cases of,
respectively, coends and ends, and are discussed in the following remark and example.

Remark 2.7. We recall the tensor and cotensor on the diagram category CI , following Hirschhorn [5,
§18.3.1]. For X an I-diagram in C and A an Iop-diagram in simplicial sets, the tensor of X and A
is as follows:

X ⊗I A := colim

 ∐
i
α−→j

X(i)⊗A(j) →→
∐
i

X(i)⊗A(i)


This is the coend

∫ i
X(i)⊗A(i). Here ⊗ is the tensor action of simplicial sets on the category C.

For X again an I-diagram in C and A an I-diagram in simplicial sets, the cotensor of A and X
is as follows:

homI(A,X) := lim

∏
i

X(i)A(i) →→
∏
j
α−→i

X(i)A(j)


This is the end

∫
i
X(i)A(i). Here the superscript refers to the cotensor coaction of simplicial sets on

the category C.

Example 2.8. When C is the category of spaces, the colimit tensor expression X ⊗I ∗I boils down

to the space
(∐

i∈I X(i)
)
/{x ∼ α(x) ∀ (i

α−→ j) ∈ I, x ∈ X(i)}—this is the disjoint union of all the
objects in the diagram, mod equivalences introduced by the arrows of the diagram. Similarly, the
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limit cotensor homI(∗I , X) is simply {(xi) ∈
∏
i∈I X(i)|α(xj) = xi ∀ (j

α−→ i) ∈ I}. This last space
can conveniently be thought of as the space of maps of diagrams from the trivial I-diagram to X,
and this justifies the “hom” notation for the cotensor.

The point of all this abstract hoopla is that we can replace ∗I in the constructions X ⊗I ∗I and
homI(∗I , X) by a diagram of larger contractible spaces—this replacement gives us the homotopical
wiggle room we were looking for and produces the homotopy colimit and homotopy limit. The min-
imal natural choices for these contractible spaces come from the nerves of over and under categories
in the diagram. Specifically we have the following definitions:

hocolimI X := X ⊗I N(−/I)op

holimI X := homI(N(I/−), X)

Here N(I/−) and N(−/I)op are respectively the functors taking i to the nerve of the over respec-
tively opposite under categories I/i and (i/I)op. See section 2.3.2 for a discussion of why these are
sensible replacements for the trivial diagram ∗I . It is worth writing out this tensor and cotensor:

Definition 2.9. For X an I-diagram in the simplicial model category C, the homotopy colimit and
limit are defined as follows:

hocolimI X = colim

 ∐
i
α−→j

X(i)⊗N(j/I)op →→
∐
i

X(i)⊗N(i/I)op


holimI X = lim

∏
i

X(i)N(I/i) →→
∏
j
α−→i

X(i)N(I/j)

.
The casual reader can safely ignore the “op” here, referring if desired to Hirschhorn [5, Remark
18.1.11] for a description of how and why it arises and also for a comparison of these definitions to
the original treatment of homotopy colimits and limits by Bousfield and Kan.

The reader is invited to check that this definition specializes to the description of the homotopy
colimit and limit in example 2.5 and example 2.6. Such a specialization requires, of course, knowing
the tensor and cotensor on spaces, namely, for a space Y and simplicial set B, that Y ⊗B = Y ×|B|
and Y B = Map(|B|, Y ).

To pin down the homotopy limit and colimit of spectra, it remains only to specify the tensor
and cotensor on some particular category of spectra—see section 2.3.3 for these constructions in
orthogonal spectra, symmetric spectra, and S-modules. Note that once we have a complete picture
of homotopy limits of spectra, we have, combining definitions 1.7 and 2.4, our desired notion of
sheaves of spectra on the moduli stack of elliptic curves.

2.3.2. Derived Limits and Corrected Homotopy Limits. Unfortunately, the above definitions of ho-
motopy limit and colimit do not always behave as well as we would like, particularly when we are
working in categories other than spaces or simplicial sets. In particular, they are not always homo-
topy invariant and so do not induce functors on the level of homotopy categories. Problems tend
to arise when the objects of our diagram are not fibrant or not cofibrant. In this section we discuss
these technicalities and describe and differentiate the four relevant notions: limits, derived limits,
homotopy limits, and corrected homotopy limits (and, of course, their co- analogs).

As before, let C be a simplicial model category, I a small category, and X : I → C an I-diagram
in C. As discussed above, the limit is the functor

lim : CI → C

X 7→ homI(∗I , X)

This functor is not homotopy invariant, in that an objectwise weak equivalence X
∼−→ Y of I-

diagrams need not induce a weak equivalence of their limits. The most straightforward way to
attempt to fix this problem is to derive the limit functor.
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The diagram category CI can itself have a model structure, and it may even have several depending
on particular properties of C and I. If C is a combinatorial model category, then CI has an injective
model structure, where the weak equivalences and cofibrations are detected objectwise [1, 8, 11]. If
C is merely a cofibrantly generated model category, then CI has a projective model structure, where
the weak equivalences and fibrations are detected objectwise [5, p.224]. If the diagram I is Reedy,
then for any model category C, the category of diagrams CI has a Reedy model structure, where
only the weak equivalences are detected objectwise. In the following, we assume without comment
that C and I have appropriate structure to ensure the existence of injective, projective, or Reedy
model structures, as needed.

Limit is a right Quillen functor from the injective model structure on CI to C [11, p.16]. It
therefore makes sense to take the total right derived functor of the limit:

R lim : Ho(CI)→ Ho(C)

[X] 7→ [homI(∗I , FX)]

Here F is fibrant replacement in the injective model structure, and brackets refer to the object in
the homotopy category. By construction this derived limit is homotopy invariant and so is in a sense
the “right” replacement for the limit. The derived limit and the homotopy limit are occasionally
conflated in the literature, but they are distinct functors and are easy to tell apart because the
derived limit is a functor from Ho(CI) to Ho(C), while the homotopy limit is a functor from CI to
C. In retrospect, it might have made more sense to call the derived limit the “homotopy limit” and
to have a different name for the particular not-always-homotopy-invariant functor now called the
homotopy limit—but it is much too late for a terminological switcheroo.

The biggest disadvantage of the derived limit is that it can be quite difficult to calculate the fibrant
replacement FX. In general, such a calculation is hopeless, but if the diagram is particularly simple,
we can proceed as follows. Suppose the diagram I is Reedy and has cofibrant constants. (A diagram
I is said to have cofibrant constants if the constant I-diagram at any cofibrant object of any model
category is Reedy cofibrant.) In this case, the limit is right Quillen not only with respect to the
injective model structure, but also with respect to the Reedy model structure [5, Thm 15.10.8].
The derived limit (which up to homotopy does not depend on the model structure we use) can

therefore be described as R limX = [homI(∗I , FRX)], where FR is fibrant replacement in the Reedy
model structure. We can then go about explicitly calculating the Reedy fibrant replacement of our
diagram.

Example 2.10. If the diagram X is Y
f−→ Z

g←− W , then a Reedy fibrant replacement FRX is a

diagram Y ′
f ′−→ Z ′

g′←− W ′ with an objectwise weak equivalence X → FRX such that Y ′, Z ′, and
W ′ are fibrant, and f ′ and g′ are fibrations. The derived limit R limX of the original diagram is the
limit limFRX of the new diagram. Notice that this method, replacing maps by fibrations and then
taking the ordinary pullback, is the usual means for calculating homotopy pullbacks. It happens to
be the case that it is often enough to convert only one of the two maps to a fibration.

All this said, we would be better off if we could avoid replacing X in either the injective or Reedy
model structures.

The homotopy limit is a compromise solution: it avoids the fibrant replacement that plagues
the derived limit and is therefore more explicit and calculable, at the expense of some weakening
of homotopy invariance. It has the further advantage that it is a “point-set level” functor, not
a functor on homotopy categories. Here the key motivation for the homotopy limit comes from
shifting attention from the injective to the projective model structure. The derived limit was
[homI(∗I , FX)]. Though this cotensor homI is not in fact a mapping space, it behaves rather like

one. In particular note that ∗I is cofibrant in the injective model structure on sSetI , and FX is by
definition fibrant in the injective model structure on CI , and so we expect homI(∗I , FX) to have, as
it does, a well behaved homotopy type. Suppose that instead of fibrantly replacing X in the injective
model structure on CI , we cofibrantly replace ∗I in the projective model structure on sSetI . That

10



is, consider the cotensor homI(C(∗I), X), where C is cofibrant replacement in the projective model
structure. Provided X is objectwise fibrant (therefore fibrant in the projective model structure), we
might expect this cotensor to have a reasonable homotopy type. Indeed this is the case:

Lemma 2.11. If the I-diagram X in C is objectwise fibrant, then the cotensors homI(∗I , FX)

and homI(C(∗I), X) are weakly equivalent, where F is fibrant replacement in the injective model

structure on CI and C is cofibrant replacement in the projective model structure on sSetI .

The lemma is also true if we substitute the Reedy model structure fibrant replacement FRX (if it
makes sense) in place of the injective model structure fibrant replacement FX.

Note that the construction homI(C(∗I), X) has the huge advantage that the replacement C(∗I)
only depends on the category I and not on the category C or the particular diagram X. We can
therefore make such a choice of replacement once and for all. The nerve N(I/−) of the overcategory

is a cofibrant object in the projective model structure on sSetI and so provides such a choice [5,
Prop 14.8.9]. The definition of homotopy limit follows:

holim : CI → C

X 7→ homI(N(I/−), X)

We reiterate that this is a point-set level functor, and is functorial both with respect to the diagram
X and with respect to the category I; this would have been difficult to arrange using the cotensor
homI(∗I , FX) because we would need to have made a choice, compatible for all diagram categories
CI , of a functorial fibrant replacement functor F . Instead, we make use of the simple functorial
cofibrant replacement C(∗I) = N(I/−).

The main disadvantage of the homotopy limit is, as one might guess from Lemma 2.11, that
it is not homotopy invariant when the diagram X is not objectwise fibrant. In some categories,
such as spaces, this does not present a problem (and indeed the proper behavior of holim on spaces
probably accounts for its widespread use and the general lack of clarity concerning its deficiencies).
As we intend to work in categories of spectra and ring spectra, though, we must correct this lack
of invariance by precomposing with a functorial fibrant replacement. The resulting functor is called
the corrected homotopy limit:

corholim : CI → C

X 7→ homI(N(I/−), FobjX)

Here Fobj is objectwise functorial fibrant replacement. According to the extent that one views
objectwise fibrant replacement as a minor adjustment, one might welcome or disdain the occasional
conflation of holim and corholim.

The corrected homotopy limit brings us full circle in so far as it represents the derived functor
of the limit: by Lemma 2.11, the cotensor homI(∗I , FX) (or homI(∗, FRX) in the case of a Reedy
diagram, either of which represent the derived limit) is weakly equivalent to the corrected homotopy

limit homI(N(I/−), FobjX).

Remark 2.12. The reader may be wondering why we did not define sheaves to be presheaves satis-
fying a corholim, rather than a holim, condition. Indeed, in all respects that probably would have
been wiser, but for reasons of convention we stick to the holim definition. We can get away with
this because in the end we will restrict our attention to presheaves of fibrant objects, in which case
a holim and a corholim condition amount to the same thing. Further justification for brushing
off this distinction will come in the chapter on model categories and model structures on cate-
gories of presheaves; there we will see that the fibrant objects in an appropriate model structure
on presheaves are objectwise fibrant and satisfy a holim condition (which in particular is then the
same as a corholim condition).

——–
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We briefly describe the colimit analog of the above discussion. The ordinary colimit is, as before,
the functor

colim : CI → C
X 7→ X ⊗I ∗I

This functor is not homotopy invariant. It is, though, a left Quillen functor from the projective
model structure on CI to C, and therefore has a total left derived functor:

L colim : Ho(CI)→ Ho(C)
[X] 7→ [CX ⊗I ∗I ]

Here C is cofibrant replacement in the projective model structure.
This cofibrant replacement can be painful to calculate, so instead of replacing X we replace

∗I . If X is objectwise cofibrant, then CX ⊗I ∗I and X ⊗I C(∗I) are weakly equivalent—here CX
is, as before, the cofibrant replacement in the projective model structure on CI , while C(∗I) is

the cofibrant replacement in the projective model structure on sSet(I
op). The nerve N(−/I)op is

cofibrant in the projective model structure on sSet(I
op) and so provides a particular choice of the

latter cofibrant replacement, and thereby the definition of homotopy colimit:

hocolim : CI → C
X 7→ X ⊗I N(−/I)op

We can reestablish homotopy invariance by precomposing this functor with an objectwise cofi-
brant replacement; the result is the corrected homotopy colimit:

corhocolim : CI → C
X 7→ CobjX ⊗I N(−/I)op

The corrected homotopy colimit represents the derived functor, as desired: the tensor CX ⊗I
∗I (which represents the derived colimit) is weakly equivalent to the corrected homotopy colimit
CobjX ⊗I N(−/I)op. Here CX is the cofibrant replacement in the projective model structure on
CI , and Cobj is objectwise functorial cofibrant replacement.

Example 2.13. If the diagram I is Reedy and has fibrant constants (that is every constant I-diagram
at a fibrant object is Reedy fibrant), then the colimit is a left Quillen functor from the Reedy model
structure on CI [5, Thm 15.10.8]. We can therefore calculate the derived colimit using a Reedy

cofibrant replacement: L colimX = [CRX ⊗I ∗I ]. If the diagram X has the form B
j←− A

k−→ C, a

Reedy cofibrant replacement CRX is a diagram B′
j′←− A′ k

′

−→ C ′ with an objectwise weak equivalence
CRX → X such that B′, A′, and C ′ are cofibrant and j′ and k′ are cofibrations. The derived limit is
the pushout colimCRX of this modified diagram. Indeed, replacing maps by cofibrations in such a
diagram is the usual way to calculate homotopy pushouts. Note that it is often sufficient to convert
one of the two maps to a cofibration.

Remark 2.14. A last important distinction between the homotopy limit and colimit and their cor-
rected versions is that the latter depend on a choice of model structure on the underlying category
C, while the former do not.

2.3.3. Sheaves of Orthogonal Spectra, Symmetric Spectra, and S-Modules. It is time to bite the
bullet and specify the particular categories of spectra in which we intend to work. The relevant
options are symmetric spectra, orthogonal spectra, S-modules, and the categories of commutative
symmetric ring spectra, commutative orthogonal ring spectra, and commutative S-algebras. We
briefly review the definitions of these various categories. Along the way we describe the tensor
and cotensor over simplicial sets that we needed in the definition of hocolim and holim. We refer,
however, to the chapter on model categories of spectra for the notions of fibrancy and cofibrancy
needed for the corrected homotopy colimit and limit.
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Remark 2.15. At the end of the day, we are trying to make sense of the notion of a “sheaf of E∞
ring spectra”. By definition an E∞ ring spectrum in a particular category S of spectra is an algebra
in S over an E∞ operad. However, provided S is for example symmetric or orthogonal spectra or S-
modules, the category of E∞ ring spectra in S is Quillen equivalent to the category of commutative
monoids in S. Therefore, we stick to these various categories of commutative monoids.

The reader may wonder, then, why the notion of E∞ comes in at all, if the technicalities of
sheaves of commutative ring spectra are best handled directly with commutative monoids in spectra.
The answer is that the obstruction theory we need to actually construct such spectra uses in a
fundamental way the operadic formulation of the commutativity conditions on ring spectra.

Orthogonal spectra and symmetric spectra are both examples of diagram spectra, and as such
their formulations are nearly identical. We describe orthogonal spectra and then mention the modi-
fications for symmetric spectra. An excellent reference for diagram spectra is [9] and our discussion
follows the treatment there.

The basic “diagram” J for orthogonal spectra is the category of finite-dimensional real inner
product spaces, together with orthogonal isomorphisms. From this diagram, we define the category
J T of J -spaces to be the category of continuous functors from J to based spaces, together with
natural transformations between these functors.

The key observation is that J T is a symmetric monoidal category with product as follows:

J T × J T ∧−→ JT

(X,Y ) 7→
(
V

X∧Y7−−−−→
∨
W⊂V

X(W ) ∧ Y (V −W )
)

Note that the wedge product
∨
W⊂V X(W ) ∧ Y (V −W ) is topologized using the ordinary topology

on subspaces of V . There is a natural commutative monoid S in J T , namely S(V ) = SV ; here SV

denotes the one point compactification of V . The product on S is induced by direct sum of vector
spaces:

∨
W⊂V S

W ∧ SV−W → SV ; here V −W is the orthogonal complement of W in V and the
map W × (V −W ) → V is (a, b) 7→ i(a) + j(b) for i : W → V and j : V −W → V the inclusions.
The reader is invited to check that this monoid really is strictly commutative, simply because direct
sum of disjoint orthogonal vector subspaces is strictly commutative.

Definition 2.16. An orthogonal spectrum is a J -space with an action by the monoid S. In other
words, it is an S-module in J T . Denote the category of orthogonal spectra by JS.

Because S is a commutative monoid, the category JS itself has a symmetric monoidal structure
with product denoted ∧S :

X ∧S Y := colimJT (X ∧ S ∧ Y →→ X ∧ Y )

This coequalizer is, of course, the usual way to define tensor products of modules in algebra. Finally
we have our desired notions of ring spectra:

Definition 2.17. An orthogonal ring spectrum is a monoid in JS. A commutative orthogonal ring
spectrum is a commutative monoid in JS.

The tensor and cotensor on the category of orthogonal spectra are particularly simple: they are
both levelwise, which is to say that for X an S-module in J T and A a (based) space, the tensor
X ⊗ A is given by (X ⊗ A)(V ) = X(V ) ∧ A and the cotensor XA is given by (XA)(V ) = X(V )A.
Note that these tensors over topological spaces can be extended to simplicial sets via the realization
functor. The cotensors on both orthogonal ring spectra and commutative orthogonal ring spectra
are also levelwise. However, the tensors on these categories are rather less explicit and we do not
discuss them; luckily, we only need the cotensors for our discussion of sheaves.
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The definition of symmetric spectra is entirely analogous. The diagram Σ in question is the
category of finite sets with isomorphisms. The category ΣT of Σ spaces is symmetric monoidal:

ΣT × ΣT ∧−→ ΣT

(X,Y ) 7→ (X ∧ Y )(N) =
∨

M⊂N
X(M) ∧ Y (N\M)

The distinguished commutative monoid S in ΣT has S(N) = SN . A symmetric spectrum is a
Σ-space with an action of S. The category of symmetric spectra ΣS has a smash product, given by
an appropriate coequalizer, and (commutative) symmetric ring spectra are (commutative) monoids
in ΣS.

Remark 2.18. Symmetric spectra are sometimes defined using the skeleton diagram Σskel whose
objects are the rigid finite sets n = {1, . . . , n}, for n ≥ 0. This variant may look more elementary
but requires a rather less intuitive formula for the smash product of Σskel-spaces: (X ∧ Y )(n) =∨
m≤n Σn+ ∧Σm×Σn−m X(m) ∧ Y (n−m).

The tensor and cotensor on the category of symmetric spectra and the cotensors on symmetric
ring spectra and commutative symmetric ring spectra are all levelwise, as in the case of orthogonal
spectra. The tensors for (commutative) symmetric ring spectra are not levelwise, and we leave them
as a mystery.

The last category of spectra we consider is the category of S-modules. S-modules are somewhat
more technical than diagram spectra, and we give only the most cursory treatment, closely following
EKMM [3]. Fix a universe, that is a real inner product space U isomorphic to R∞. A prespectrum
is an assignment to each finite dimensional subspace V ⊂ U a based space E(V ) together with
compatible (adjoint) structure maps E(V ) → ΩW−V E(W ). Denote the category of prespectra by
PU or simply P. A (Lewis-May-Steinberger) spectrum is a prespectrum in which all the structure
maps are homeomorphisms, and the category of such is denoted SU or S. The forgetful functor
S → P has a left adjoint L : P → S called spectrification.

There is an external smash product of spectra SU × SU ′ ∧−→ S(U ⊕ U ′). Given a pair of spectra
(E,E′), the assignment F : V ⊕ V ′ 7→ E(V ) ∧ E′(V ′) defines a prespectrum on the decomposable
subspaces of U⊕U ′. There is a spectrification functor here as well that produces from F a spectrum
LF on the decomposable subspaces of U ⊕ U ′; there is moreover a left adjoint ψ to the restriction
to such subspaces, which in turn produces our desired smash E ∧ E′ := ψLF ∈ S(U ⊕ U ′) indexed
on all finite dimensional subspaces of U ⊕ U ′.

We would like to internalize this smash product, using the space of linear isometries from U ⊕U
to U . If we have a linear isometry f : U → U ′ we can transport a spectrum E ∈ SU to a
spectrum f∗E ∈ SU ′: define f∗E to be the spectrification of the prespectrum taking V ′ ⊂ U ′ to
E(V ) ∧ SV ′−f(V ), where V = f−1(V ′ ∩ im f). Given an A-parameter family of linear isometries,
that is a map α : A → I(U,U ′), there is a spectrum A n E ∈ SU ′ called the twisted half smash
product, which is in an appropriate sense a union of all the spectra α(a)∗E for a ∈ A.

Let L(j) = I(U j , U) be the space of all internalizing linear isometries. Given E,F ∈ SU , the
twisted half smash L(2) n (E ∧ F ) is a canonical internal smash product, but it is not associative.
We fix this by restricting to L-spectra: an L-spectrum is a spectrum E with an action L(1)nE → E
by the isometries L(1). The smash product of L-spectra is M ∧L N := L(2) nL(1)×L(1) (M ∧ N).
(Here the twisted half smash over L(1)× L(1) is given by the expected coequalizer.) We would be
done, except that the category of L-spectra doesn’t have a point-set-level unit.

We can conjure up a unit as follows. There is a natural map λ : S ∧L M → M , where S is
the spectrification of the prespectrum V 7→ SV . An S-module is by definition an L-spectrum such
that λ is an isomorphism. The smash product of two S-modules is simply their smash product as
L-spectra. The category of S-modules is our desired symmetric monoidal, unital category of spectra.
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S-algebras and commutative S-algebras are simply monoids and commutative monoids respectively
in S-modules.

Given an S-module M and a based space X, the tensor S-module M ⊗ X is defined to be the
spectrification of the prespectrum V 7→M(V )∧X. The cotensor MX is defined to be S ∧L φ(M)X ,
where φ forgets from S-modules to spectra, and the cotensor on spectra is EX(V ) = E(V )X .

The cotensors on S-algebras and on commutative S-algebras are simply given by taking the
cotensor in S-modules. The tensors on S-algebras and commutative S-algebras by contrast are not
created in S-modules. However, the tensor on commutative S-algebras has a convenient description,
as follows. Given a finite set [n] and a commutative S-algebra R, define the tensor R⊗ [n] := R∧[n].
Now for X a finite simplicial set, the tensor R⊗X in commutative S-algebras is the realization as
a simplicial S-module of the levelwise tensor R⊗X∗.

Picking one of the above three models for spectra, and feeding the cotensors back into the
construction of homotopy limits, we now have a precise definition of sheaf of spectra, sheaf of ring
spectra, and sheaf of commutative ring spectra.

Remark 2.19. The reader may worry that there could be a confusing difference between sheaves of
ring spectra and presheaves of ring spectra that are sheaves of spectra. Luckily, this is not the case:
the two notions agree because the sheaf condition is a homotopy limit condition, and this homotopy
limit is built using limits and cotensors; these limits and cotensors are, in any of the above categories
of ring and commutative ring spectra, simply computed in the underlying category of spectra.

We invite the reader to ruminate on the fact that cosheaves of ring spectra are very different
objects from precosheaves of ring spectra that are cosheaves of spectra.

3. The Descent Spectral Sequence

Recall that the main theorem (of Hopkins and Miller) is that there exists a sheaf Otop of spectra
on the moduli stack (Mell)ét of elliptic curves in the étale topology. Sections 1 and 2 described
what it means to have such a sheaf. In particular, section 2.2 described the Grothendieck site of
the moduli stack in the étale topology, while section 1.1 defined sheaves on such a site with values
in a category (as presheaves satisfying a homotopy limit condition), and section 2.3 discussed the
homotopy limits of spectra needed for this definition of sheaves.

Given the sheaf Otop, we are primarily interested in understanding its spectrum of global sections
Otop(Mell)—recall that this spectrum is called TMF . By the definition of a sheaf, information about
the global sections Otop(Mell) is contained in the spectra Otop(U) associated to small open subsets
U of the moduli stack Mell ; the goal of this section is describe precisely how this local information
is assembled into the desired global information. In particular, we construct a spectral sequence
beginning with the sheaf cohomology of the moduli stack with coefficients in the sheafification of
the presheaf of homotopy groups of Otop, strongly converging to the homotopy groups of the global
spectrum Otop(Mell):

E2 = Hq(Mell , π
†
pOtop) =⇒ πp−qOtop(Mell)

In the chapter on the homotopy groups of TMF , we will compute the E2 term and describe the
elaborate pattern of differentials.

We begin in section 3.1 by reviewing the notions of sheaf cohomology and Cech cohomology and
discussing how they are related. Then in section 3.2 we construct a spectral sequence beginning
with Cech cohomology and converging to the homotopy of the global sections of a sheaf of spectra.
Finally, in section 3.3, we specialize to the sheaf Otop, using properties of this particular sheaf to
simplify the spectral sequence from the preceding section.

3.1. Sheaf Cohomology and Cech Cohomology. We are studying a sheaf Otop of spectra on
the moduli stack of elliptic curves. We can consider the homotopy groups π∗(Otop(U)) of the spectra
Otop(U) associated to particular objects U of the étale site of the moduli stack. These homotopy
groups fit together into a good-old down-to-earth presheaf of graded abelian groups. The spectral
sequence computing the homotopy groups of TMF will begin with the sheaf cohomology of the
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sheafification of this presheaf. We review sheaf cohomology, and the related Cech cohomology, in
some generality.

Let A be an abelian category. A morphism f : X → Y in A is a monomorphism if fg1 = fg2

implies g1 = g2. Recall that an object I ∈ A is injective if for all maps m : X → I and all
monomorphisms X ↪→ Y , there exists an extension of m to Y . The category A is said to have
enough injectives if for all objects A ∈ A there is a monomorphism A ↪→ I into an injective object
I. We are interested, of course, in the category of sheaves on a site:

Note 3.1. For any site C, the category ShvAb(C) of sheaves of abelian groups on the site is an
abelian category with enough injectives.

We can therefore use the usual definition of sheaf cohomology:

Definition 3.2. For π ∈ ShvAb(C) a sheaf of abelian groups on a site C, the sheaf cohomology of
an object X ∈ C of the site with coefficients in π is

Hq(X,π) := Hq

(
0→ I0(X)→ I1(X)→ I2(X)→ · · ·

)
where 0→ π|X → I0 → I1 → I2 → · · · is an injective resolution of π|X in ShvAb(C/X).

Sheaf cohomology has a more concrete cousin, Cech cohomology, which does not involve an
abstract resolution:

Definition 3.3. Let π ∈ ShvAb(C) be a sheaf of abelian groups, and let U = {Ui → U} be a cover
in the site C. The Cech cohomology of U with respect to the cover U and with coefficients in π is

Ȟq
U(U, π) := Hq

(
0→

∏
π(Ui)→

∏
π(Uij)→

∏
π(Uijk)→ · · ·

)
Here UI refers to the intersection (ie fibre product over U) of the Ui, i ∈ I, and the maps are the
alternating sums of the various natural restriction maps.

Cech cohomology is computable by hand, while sheaf cohomology is evidently independent of a
particular choice of cover. If the object U of C has an acyclic cover, then the two theories agree:

Proposition 3.4. For π ∈ ShvAb(C) a sheaf of abelian groups, and U = {Ui → U}i∈I a cover
in C such that Hq(UJ , π) = 0 for all J ⊂ I and all q ≥ 1, sheaf and Cech cohomology agree:
Hq(U, π) = Ȟq

U(U, π).

The proof is the usual double complex argument: build the double complex [Iq(
∐
|J|=p UJ)] from an

injective resolution I∗ of π, and show that the two resulting spectral sequences collapse respectively
to sheaf and to Cech cohomology.

Remark 3.5. We will be interested in cases where the site C has a global terminal object, usually
denoted (confusingly) C, and from now on we assume we are in that situation.

3.2. The Spectral Sequence for a Sheaf of Spectra. We begin with a sheaf of spectra O on the
étale site (Mell)ét of the moduli stack of elliptic curves, and we would like to construct a spectral
sequence converging to the homotopy groups π∗(O(Mell)). The spectral sequence is meant to start
with the local data of O; we therefore chose a cover {Ni →Mell} of the moduli stack. In outline,
we use this cover to build a simplicial object of the site, then apply the sheaf O to get a cosimplicial
spectrum, from which we get a tower of spectra, which we wrap up into an exact couple, and thereby
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arrive at our desired spectral sequence:

cover N = {Ni →Mell} in (Mell)ét

e

��
simplicial object

∐
Ni ←←

∐
Nij · · · in (Mell)ét

d

��
cosimplicial spectrum O∗ = {O(

∐
Ni) →→ O(

∐
Nij) · · · }

c
��

tower of spectra · · · → (TotO)2 φ2−→ (TotO)1 φ1−→ (TotO)0

b

��
exact couple

⊕
πp+q(TotO)q →

⊕
πp+q(TotO)q →

⊕
πp+q(corhofibφq)

a

��
spectral sequence E2

pq = Ȟq
N(Mell , πpO) =⇒ πp−qO(Mell)

In this section we describe this chain of constructions in detail. In section 3.3 we use particular
properties of the sheaf Otop to compare the E2 term of this spectral sequence for π∗(Otop(Mell)),
which is the Cech cohomology of the presheaf πpOtop, to the sheaf cohomology of the sheafification
π†pOtop of the presheaf πpOtop.

We begin at the end (step a) and work our way back to the beginning (step e). We assume
the reader is familiar with the construction of a spectral sequence from an exact couple—see Mc-
Cleary [10] for a detailed presentation of the construction and Boardman [2] for a careful treatment
of convergence issues. We therefore proceed to step b, building an exact couple from a tower of
spectra.

3.2.1. The Spectral Sequence of a Filtration of Spectra and of a Tower of Spectra. We are interested
in towers of spectra and their associated inverse limits. Along the way we address the slightly more
intuitive situation of a filtration of spectra and its associated direct limit.

Suppose we have a filtration of spectra:

∗
φ0 // F0

φ1 //

ww
F1

φ2 //

ww
F2

//

ww
· · ·

corhocofibφ0 corhocofibφ1 corhocofibφ2

Denote the corrected homotopy colimit corhocolimi Fi by F . We think of the sequence Fi as a
filtration of F , and expect any spectral sequence constructed from the filtration to give informa-
tion about F . Take homotopy groups of the spectra Fi and of the corrected homotopy cofibres
corhocofibφi, and wrap up the resulting triangles into an exact couple. This produces a spectral
sequence with E1

pq = πp+q(corhocofibφq). This spectral sequence is a half plane spectral sequence
with exiting differentials (in the sense of Boardman [2]), and converges strongly to πp+qF :

E1
pq = πp+q(corhocofibφq) =⇒

strong
πp+q corhocolimi Fi.

Note 3.6. Lest there be any confusion, note that for X a spectrum, by πiX we mean the set of
maps HoSpec([S

i], [X]) in the homotopy category of spectra between the sphere [Si] and [X], not for
instance homotopy classes of maps in the category of spectra from a sphere Si to X. The above
spectral sequence converges, a priori, to colimi πp+qFi; we have used implicitly the equality

colimi πp+qFi = πp+q corhocolimi Fi.
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In the dual picture, we begin with a tower of spectra:

· · · // F 2 φ2 // F 1 φ1 // F 0 φ0 // ∗

corhofibφ2

gg

corhofibφ1

gg

corhofibφ0

gg

Let F denote the corrected homotopy limit corholimi F
i. Again we take homotopy groups of the

whole diagram of the F i and corhofibφi, and wrap up the resulting triangles into an exact couple.
The spectral sequence associated to this exact couple has E1

pq = πp−q(corhofibφq). It is a half plane

spectral sequence with entering differentials and converges conditionally to limi πp−qF
i:

E1
pq = πp−q(corhofibφq) =⇒

cond
limi πp−qF

i.

In general, one must address two issues: whether or not this conditionally convergent spectral
sequence in fact converges strongly, and whether or not limi πp−qF

i = πp−qF , the latter of which is

of course a lim1 problem.

Note 3.7. The spectral sequence of a tower has target limi πp−qF
i, but we are usually more

interested in the homotopy πp−q corholimi F
i of the corrected homotopy limit of the tower. These

are related by the Milnor exact sequence:

0→ lim1
i πp−q−1F

i → πp−q corholimi F
i → limi πp−qF

i → 0.

3.2.2. The Realization of a Simplicial Spectrum and Tot of a Cosimplicial Spectrum. Here we note
that a simplicial spectrum leads to a filtration of spectra, and dually that a cosimplicial spectrum
leads to a tower of spectra. We also identify the colimit (resp. limit) of the resulting filtration
(tower) in terms of the homotopy colimit (limit) of the original (co)simplicial spectrum.

Notation 3.8. We begin by fixing some notation. The cosimplicial category ∆ has objects [0], [1], [2], . . .,
(where we think of [n] as {0, 1, . . . , n}) and morphisms weakly order preserving maps. The bold ∆
will denote the standard cosimplicial simplicial set, whose simplicial set of n-cosimplicies ∆(n) is
the simplicial n-simplex ∆[n]; this n-simplex ∆[n] has k-simplicies ∆[n]k = ∆([k], [n]). We use the
symbol ∆n

0 to denote the full subcategory of ∆ whose objects are [0], . . . , [n].

Let A be a simplicial spectrum, that is a simplicial object A : ∆op → Spec in the category of
spectra. The realization of A is defined as follows:

|A| := A⊗∆op ∆ = colim

( ∐
φ:n→m

Am ⊗∆[n] →→
∐
n≥0

An ⊗∆[n]

)
.

We construct a filtration whose colimit is the realization |A| as follows. Recall that the n-skeleton
sknA of A is the left Kan extension to ∆op of the restriction of A from ∆op to (∆n

0 )op. Intuitively,
sknA consists of the simplicies of A of dimension less than or equal to n, together with the possible
degeneracies of those simplicies; (here “possible” means possible in a simplicial spectrum agreeing
with A through dimension n). Let |A|n denote the realization | sknA|. We have the sequence

∗ → |A|0 → |A|1 → |A|2 → · · ·

The colimit of this sequence is, by construction, the realization |A|.

Note 3.9. We can build the skeleta of A inductively as follows. Define the n-th latching object of
A as

LnA = (skn−1A)n.

This latching object can, roughly speaking, be thought of as the spectrum of degenerate n-simplicies
of A—in general, though, the map LnA→ An need not be a cofibration, which means in particular
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that the latching object LnA may record more degenerate simplicies than are present in A itself.
We have a pushout diagram [4, p.367]:

An ⊗ ∂∆n ∪LnA⊗∂∆n LnA⊗∆n //

��

skn−1A

��
An ⊗∆n // sknA

Here only, by “⊗” we mean the external tensor, taking a spectrum and a simplicial set and giving
a simplicial spectrum.

Ignoring the terms involving LnA, the pushout says that the n-skeleton sknA is built by gluing an
n-simplex along its boundary onto the (n− 1)-skeleton skn−1A, for each “element” of the spectrum
An of n-simplicies. But in fact, the (n − 1)-skeleton already includes degenerate n-simplicies, and
the pushout accounts for this by quotienting out the latching object LnA⊗∆n.

Example 3.10. Consider the first stage |A|1 = | sk1A| of the filtration of |A|. Ignoring degeneracies,
the realization of the 1-skeleton is roughly speaking the colimit

colim
(
A1 ⊗∆0 tA1 ⊗∆0 →→ A0 ⊗∆0 tA1 ⊗∆1

)
.

We can schematically picture this 1-skeleton glued together as follows:

0

A1

A

Notice that the filtration ∗ → |A|0 → |A|1 → · · · above has colimit the realization |A|. However,
recall that the spectral sequence from section 3.2.1 converges to the homotopy groups of the corrected
homotopy colimit of the filtration. We therefore need to address the issue of when these two agree.
Conveniently, the condition ensuring this agreement can be expressed in terms of Reedy cofibrancy,
as follows.

Definition 3.11. A simplicial spectrum A is Reedy cofibrant if the maps LnA→ An are cofibrations
for all n. Roughly speaking, this is true when the degenerate simplicies of A are freely generated,
and for all n the degenerate n-simplicies of A map by a cofibration into all the n-simplicies of A.
A sequence of spectra ∗ → X0 → X1 → · · · is Reedy cofibrant if all the maps in the sequence are
cofibrations.

If a simplicial spectrum A is Reedy cofibrant, then the morphisms |A|n−1 → |A|n are cofibrations
(see [4, p.385]), which is to say the realization sequence ∗ → |A|0 → |A|1 → · · · is Reedy cofibrant.
In section 2.3.2, we saw that the corrected homotopy colimit represents the derived colimit and
observed that in the case of a Reedy cofibrant diagram, this derived colimit is represented by the
honest colimit. Altogether, when the simplicial spectrum A is Reedy cofibrant, we have a weak
equivalence

corhocolimi |A|i '
RC

colimi |A|i = |A|.

The subscript “RC” will serve as a reminder that an equivalence depends on Reedy cofibrancy.

Remark 3.12. When the sequence ∗ → |A|0 → |A|1 → · · · is Reedy cofibrant, all the terms in the
sequence are necessarily cofibrant (though this is not, per se, part of the Reedy condition). This
objectwise cofibrancy implies that the corrected homotopy colimit corhocolim |A|i agrees with the
usual homotopy colimit hocolim |A|i. We will not, however, need this fact.
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Confusingly, there is another homotopy colimit floating around, namely the homotopy colimit of
the ∆op-diagram A itself. We also need to compare the realization |A| to this homotopy colimit
hocolim∆op A: when we are studying a cosheaf of spectra, we will care about the homotopy colimit of
the associated simplicial spectrum, but the spectral sequence constructed in section 3.2.1 converges,
if A is Reedy cofibrant, to the homotopy groups of the realization of this simplicial spectrum.

Recall that the homotopy colimit of the ∆op-diagram A was defined as A⊗∆op N(−/∆op)op. We
might therefore expect a close relationship between the realization and the homotopy colimit:

Proposition 3.13 ([5, Thm 18.7.4]). If the simplicial spectrum A is Reedy cofibrant, then there is
a natural weak equivalence (the Bousfield-Kan map)

|A| '←− hocolim∆op A.

This equivalence is most plausible: the reader can note that, ignoring degeneracy maps, the nerves
N(−/∆op)op of the overcategories in ∆op are the barycentric subdivisions of the standard simplicies
of ∆. The Reedy cofibrancy condition will be automatically satisfied (see Lemma 3.20) in the
situation we care about, and so need not concern us.

In summary, we have the following chain of equalities, relating the target of our spectral sequence
to the homotopy of the homotopy colimit of our simplicial spectrum:

colimi π∗|A|i = π∗ corhocolimi |A|i =
RC

π∗ colimi |A|i = π∗|A| =
RC

π∗ hocolim∆op A.

The indicated equalities depend on A being Reedy cofibrant.
——–
The dual, cosimplicial picture is the one that concerns us more directly. Let B : ∆ → Spec

be a cosimplicial spectrum. The “corealization” is traditionally called the “totalization” of the
cosimplicial spectrum and is defined as follows:

TotB := hom∆(∆, B) = lim

(∏
n≥0

(Bn)∆(n) →→
∏

φ:n→m

(Bm)∆(n)

)
.

Here again ∆ is the cosimplicial standard simplex with ∆(n) the standard simplicial n-simplex
∆[n].

The key feature of Tot of a cosimplicial spectrum is that it is the inverse limit of a tower of spectra
built from the coskeleta of the cosimplicial spectrum, and this tower leads to our desired spectral
sequence. We define the n-coskeleton cosknB of a cosimplicial spectrum B : ∆ → Spec to be the
right Kan extension to ∆ of the restriction of B from ∆ to ∆n

0 . Intuitively, cosknB consists of the
cosimplicies of B of dimension between 0 and n; for k > n the coskeleton has a k-cosimplex for
every possible combination of n-cosimplicies of B that could be the image under the codegeneracy
maps of a k-cosimplex of a cosimplicial spectrum agreeing with B through dimension n. Let TotnB
denote the totalization Tot cosknB of the coskeleton of B. We have a tower

· · · → Tot2B → Tot1B → Tot0B → ∗

The limit of this sequence is the full totalization TotB.

Remark 3.14. The above definition of Totn is not formally the same as the usual one in the literature,
for instance as the definition in Bousfield-Kan or Goerss-Jardine, and we would like to spell out and
emphasize the difference.

For a simplicial spectrum A, recall that the n-skeleton sknA and n-coskeleton cosknA of A
are defined respectively as the left and right Kan extensions of A|(∆n

0 )op to ∆op. These are both
simplicial spectra in their own right. Now, somewhat unconventionally, for a cosimplicial spectrum
B, we define the n-skeleton sknB and n-coskeleton cosknB to be respectively the left and right Kan
extensions of B|∆n

0
to ∆. These are, of course, both cosimplicial spectra.
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It is standard to define

|A|n := | sknA| = sknA⊗∆op ∆

TotnB := hom∆(skn ∆, B)

This is unsettling for two reasons. First, here skn ∆ does not refer to a left Kan extension of the
cosimplicial object ∆, but to a levelwise left Kan extension of the simplicial levels of ∆. Second, it
does not express the layers Totn as totalizations in their own right, and moreover entirely obscures
the precise duality between the skeletal filtration and the totalization tower.

Instead we prefer

|A|n := | sknA| = sknA⊗∆op ∆

TotnB := Tot cosknB = hom∆(∆, cosknB)

We leave it to the reader to verify that this results in the same spectrum TotnB as the usual
formulation.

Note 3.15. As we could for the skeleta of a simplicial spectrum, we can build the coskeleta of our
cosimplicial spectrum B inductively. In a classic example of mathematical nomenclature, the duals
of latching objects are called matching objects:

MnB = (coskn−1B)n.

Readers should be warned that this indexing is not the same as that in Goerss-Jardine or Bousfield-
Kan; instead we specialize the abstractly consistent scheme of Hirschhorn. The inductive pullback
diagram is

cosknB //

��

(Bn)∆n

��
coskn−1B // (Bn)∂∆n ×(MnB)∂∆n (MnB)∆n

The totalization of this diagram gives a corresponding pullback for TotnB in terms of Totn−1B.
Ignoring the terms involving matching objects, this pullback would indicate that TotnB can

be seen as the pairs of maps φ : ∆n → Bn and “points” ψ ∈ Totn−1B that agree as maps
θ : ∂∆n → Bn; here, ψ determines θ by the coface maps of B. This idea is illustrated in the
following example. More precisely, though, the matching terms in the pullback account for the fact
that the (n− 1)-coskeleton already contains a collection of potential n-cosimplicies.

Example 3.16. We consider the first stage of the Tot tower. Ignoring codegeneracy issues, the
totalization of the 1-coskeleton is, roughly, the limit

lim
(

(B0)∆0

× (B1)∆1

→→ (B1)∆0

× (B1)∆0
)
,

which is to say a 0-cosimplex, together with a path of 1-cosimplicies agreeing at the ends with the
cofaces of the 0-cosimplex:

.

1
B

0

.
.

B

By construction the limit of the Tot tower is TotB. There is the pesky issue of whether this limit is
the same as the corrected homotopy limit of the tower—recall that, in the absence of lim1 problems,
the spectral sequence of the tower has target the homotopy groups of the corrected homotopy limit.
The condition on the cosimplicial spectrum B that tethers the limit and the corrected homotopy
limit is, as expected, Reedy fibrancy.
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Definition 3.17. A cosimplicial spectrum B is Reedy fibrant if the maps Bn →MnB are fibrations.
A tower of spectra · · · → Y 1 → Y 0 → ∗ is Reedy fibrant if the maps in the tower are all fibrations.

When a cosimplicial spectrum B is Reedy fibrant, the maps TotnB → Totn−1B are fibrations, so
the Tot tower is Reedy fibrant. We saw in section 2.3.2 that the corrected homotopy limit represents
the derived limit; in the case of a Reedy fibrant diagram, the honest limit also represents this derived
limit, and the limit and corrected homotopy limit agree. When the cosimplicial spectrum B is Reedy
fibrant, we therefore have a weak equivalence

corholimi TotiB '
RF

limi TotiB = TotB.

Remark 3.18. When the tower · · · → Tot1B → Tot0B → ∗ is Reedy fibrant, all the terms in the
tower are fibrant, even though this is not explicitly part of the Reedy condition. This objectwise
fibrancy implies that the corrected homotopy limit corholim TotiB is equal to the homotopy limit
holim TotiB, though we do not need to consider the latter homotopy limit.

We have a tower of spectra whose limit is the totalization of our cosimplicial spectrum, and a
spectral sequence with target the homotopy of this totalization (provide we have Reedy fibrancy, and
no lim1 problem). However, in the end we will be interested in the homotopy limit of the cosimplicial
spectrum (not its totalization), because that homotopy limit will carry the global homotopical
information in a sheaf of spectra. Therefore, we need to compare the totalization of the tower to
the homotopy limit of the cosimplicial diagram itself:

Proposition 3.19 ([5, Thm 18.7.4]). If the cosimplicial spectrum B is Reedy fibrant, then there is
a natural weak equivalence (again called the Bousfield-Kan map)

TotB
'−→ holim∆B.

The totalization is hom∆(∆, B), while the homotopy limit is hom∆(N(∆/−), B). We already
remarked that, glossing over degeneracy issues, the nerves of the undercategories N(∆/−) are the
barycentric subdivisions of the standard simplicies of ∆, and so this weak equivalence is unsurprising.
The cosimplicial spectra coming from our sheaves of spectra will always be Reedy fibrant—see
Lemma 3.20.

In summary, we have the following chain relating the target of the spectral sequence of the Tot
tower to the homotopy of the homotopy limit of our cosimplicial spectrum:

limi π∗TotiB  
lim1

π∗ corholimi TotiB =
RF

π∗ limi TotiB = π∗TotB =
RF

π∗ holim∆B.

Here the first arrow refers to the Milnor short exact sequence, and the indicated equalities depend
on B being Reedy fibrant.

3.2.3. Cosheaves and Simplicial Spectra, and Sheaves and Cosimplicial Spectra. In the last section,
we constructed a filtration of spectra out of a simplicial spectrum, and a tower of spectra out of
a cosimplicial spectrum. In either case we have an associated exact couple and therefore spectral
sequence. In this section, given a cosheaf (resp. sheaf) of spectra, we build a simplicial (resp.
cosimplicial) spectrum, and we describe in detail the E1 and E2 terms of the resulting spectral
sequence.

Let C be a site, for instance the étale site of the moduli stack of elliptic curves, and let U = {Ui →
U}i∈I be a cover in C. Assuming we have coproducts in C, this cover yields a simplicial object in C:

U. :=

(∐
i

Ui ←←
∐
i,j

Uij ←←
← ∐

i,j,k

Uijk ←←
←← · · ·

)
.

A precosheaf of spectra on C is a covariant functor G : C → Spec; similarly of course we may
have precosheaves with values in other categories. If we apply such a precosheaf G to the simplicial
object U., we get a simplicial spectrum:

G(U.) =
(
G(
∐

Ui) ←← G(
∐

Uij) ←←
← · · ·

)
.
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A cosheaf of spectra is a precosheaf G such that for all objects U of the site C and for all covers U
of U , the map

G(U)
'←− hocolim∆op G(U.)

is a weak equivalence.
The spectral sequence associated to the the simplicial spectrum G(U.) has the form

E1
pq = πp+q(corhocofib(|G(U.)|q−1 → |G(U.)|q)) =⇒ πp+q corhocolimi |G(U.)|i.

In order to better identify both the E1 term and the target of this spectral sequence, we need to
know that simplicial spectra built from precosheaves are well behaved:

Lemma 3.20. Let G be a precosheaf on a site C with values in cofibrant objects of a (model)
category D; suppose moreover that G preserves coproducts. Let U = {Ui → U} be a cover in C, and
U. = (

∐
Ui ←←

∐
Uij ←←
← · · · ) the associated simplicial object of C. The simplicial object G(U.) of

D is Reedy cofibrant. Similarly, if F is a presheaf on C with values in the fibrant objects of D, and
if F takes coproducts to products, the associated cosimplicial object F(U.) is Reedy fibrant.

We assume our precosheaf G takes values in cofibrant spectra and preserves coproducts. The
associated simplicial spectrum G(U.) is therefore Reedy cofibrant, and the maps |G(U.)|q−1 →
|G(U.)|q are cofibrations between cofibrant spectra. The corrected homotopy cofibres of these maps,
which appear in the E1 term of the spectral sequence, are then simply ordinary cofibres. We can
identify the cofibre of |G(U.)|q−1 → |G(U.)|q explicitly as the q-fold suspension of the q-simplicies∐
|Q|=q G(UQ) of the simplicial spectrum G(U.):

cofib
(
|G(U.)|q−1 → |G(U.)|q

)
= Σq

( ∐
|Q|=q

G(UQ)

)
.

For example, in picture 3.10 the cofibre of the inclusion of the 0-skeleton is evidently the 1-fold
suspension of the 1-simplicies; (note that the 0-skeleton includes degeneracies of the 0-simplicies).
The E1 term of the spectral sequence is therefore E1

pq = πp(
∐
|Q|=q G(UQ)). Tracing the d1 differ-

ential from the exact couple through to this description of the E1 term, we find the E2 term of the
spectral sequence is E2

pq = ȞU
q (U, πqG)—the Cech homology of U with respect to the cover U with

coefficients in the precosheaf of abelian groups (πpG)(V ) := πp(G(V )).
Now suppose G is a cosheaf of cofibrant spectra. The simplicial spectrum G(U.) is Reedy cofibrant,

and the results of section 3.2.2 identify the target of the spectral sequence:

corhocolimi |G(U.)|i ' colimi |G(U.)|i = |G(U.)| ' hocolim∆op G(U.) ' G(U).

The last equivalence here comes from the cosheaf condition. Altogether then, for such a cosheaf of
spectra we have a strongly convergent spectral sequence

E2
pq = ȞU

q (U, πpG) =⇒
strong

πp+qG(U).

——–
The reader can imagine how the dual story progresses. Given a presheaf F of spectra, we have

a cosimplicial spectrum

F(U.) =
(
F(
∐

Ui) →→ F(
∐

Uij) →→
→ · · ·

)
.

The spectral sequence associated to this cosimplicial spectrum has the form:

E1
pq = πp−q(corhofib Totq F(U.)→ Totq−1 F(U.)) =⇒ limi πp−q Toti F(U.).

Suppose the presheaf F takes values in fibrant spectra, and takes coproducts to products. The
cosimplicial spectrum F(U.) is then Reedy fibrant, and the maps Totq F(U.) → Totq−1 F(U.) in
the Tot tower are fibrations between fibrant spectra. The corrected homotopy fibres appearing in
the E1 term of the spectral sequence are therefore ordinary fibres, which are explicitly identifiable.
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The fibre of the map Totq F(U.) → Totq−1 F(U.) is, up to homotopy, the q-fold loop space of the
q-cosimplicies

∏
|Q|=q F(UQ) of our cosimplicial spectrum:

fib(Totq F(U.)→ Totq−1 F(U.)) ' Ωq(
∏
|Q|=q

F(UQ)).

For example, for a cosimplicial spectrum B, the map Tot1B → Tot0B is, roughly speaking,
projecting to the 0-cosimplicies B0; the fibre over a given 0-cosimplex is an end-fixed path space in
the 1-cosimplicies B1, which (provided the 1-cosimplicies B1 are connected) has the homotopy type
of the loop space ΩB1—consider picture 3.16. The E1 term of the spectral sequence associated to
the cosimplicial spectrum F(U.) is now E1

pq = πp(
∏
|Q|=q F(UQ)). The corresponding E2 term is

E2
pq = Ȟq

U(U, πpF), the Cech cohomology with coefficients in the presheaf (πpF)(V ) := πp(F(V )).

Provided there is no lim1 problem, that is if lim1
i πr Toti F(U.) = 0, the target of the spectral

sequence is limi πp−q Toti F(U.) = πp−q corholimi Toti F(U.). Finally suppose that our presheaf F
is actually a sheaf taking values in fibrant spectra. The associated cosimplicial spectrum is Reedy
fibrant, and using the results of section 3.2.2 this allows us to further identify the target spectrum:

corholimi Toti F(U.) ' limi Toti F(U.) = TotF(U.) ' holim∆ F(U.) ' F(U).

The last equivalence is the sheaf condition on F . The spectral sequence, at long last, is

E2
pq = Ȟq

U(U, πpF) =⇒
cond,no lim1

πp−qF(U).

3.3. The spectral sequence for π∗TMF . We specialize the spectral sequence of Section 3.2 to
the particular sheaf Otop of (fibrant) spectra on the moduli stack (Mell)ét of elliptic curves in the
étale topology. We use particular properties of this sheaf and the results of Section 3.1 to identify
the E2 term as a sheaf cohomology of the moduli stack. Moreover, we address the lim1 problem
for the relevant tower of spectra, thereby pinning down the target of the spectral sequence as the
spectrum of global sections Otop(Mell).

For a cover U = {Ui → Mell} of Mell in the site (Mell)ét, and U. the associated simplicial
object of (Mell)ét, the spectral sequence associated to Otop and U has the form

E2
pq = Ȟq

U(Mell , πpOtop) =⇒
cond

limi πp−q TotiOtop(U.).

We can remove the dependence of the E2 term on the particular cover U by restricting attention
to covers of the moduli stack by affine schemes.

Proposition 3.21. Suppose the cover U = {Ui →Mell} is by affine schemes Ui. In this case, for
any collection of indices J = {i1, . . . , ij}, the value of the presheaf πpOtop on UJ is the same as the
corresponding value of the sheafification of πpOtop:

πpOtop(UJ) = (π†pOtop)(UJ).

It follows from this proposition that there is an equality of Cech cohomology groups:

Ȟq
U(Mell , πpOtop) = Ȟq

U(Mell , π
†
pOtop).

The same affine condition on the cover gets us the rest of the way to sheaf cohomology:

Proposition 3.22. Suppose again the cover U is by affine schemes. Then for all J , the intersection
UJ is acyclic for the sheaf π†pOtop, that is

Hi(UJ , π
†
pOtop) = 0, i > 0.

By the general Proposition 3.4, the acyclicity of UJ for the sheaf π†pOtop implies that in this case
Cech and sheaf cohomology agree:

Ȟq
U(Mell , π

†
pOtop) = Hq(Mell , π

†
pOtop).
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Having identified the E2 term, we reconsider the target of the spectral sequence. Both the
convergence properties of the spectral sequence and the potential lim1 term are controlled by the
same finiteness condition on the differentials—see Boardman [2]:

Proposition 3.23. Let E1
pq = πp−q(corhofibφq) =⇒ limi πp−qF

i be the spectral sequence associated

to the tower of spectra ··· −→ F 2 φ2−→ F 1 φ1−→ F 0 φ0−→ ∗. If for all p and q there are only finitely many
r such that the differential originating at Erpq is nonzero, then the spectral sequence convergences

strongly and lim1
i πp−q−1F

i = 0.

The spectral sequence associated to the sheaf Otop evaluated on an affine cover of the moduli stack
Mell has the feature that there are only finitely many nonzero differentials originating at any term.

Corollary 3.24. For U. the simplicial object of (Mell)ét associated to an affine cover U of the

moduli stack Mell , the lim1 term in the Milnor sequence for Tot∗Otop(U.) vanishes:

lim1
i πp−q−1 TotiOtop(U.) = 0.

The target limi πp−q TotiOtop(U.) of our spectral sequence is therefore equal to

πp−q corholimi TotiOtop(U.), which is, in turn, equal to πp−qOtop(Mell). The spectrum TMF
is by definition this spectrum Otop(Mell) of global sections of the sheaf Otop.

Though we have restricted our attention to the moduli stack Mell of smooth elliptic curves, the
sheaf Otop extends to the Deligne-Mumford compactification Mell . The process we have described
also provides a spectral sequence for the homotopy of the spectrum Otop(Mell) of global sections
over the compactification—this spectrum is denoted Tmf . Altogether then, we have reached the
end of our road:

Proposition 3.25. There are strongly convergent spectral sequences

E2
pq = Hq(Mell , π

†
pOtop) =⇒ πp−qTMF ,

E2
pq = Hq(Mell , π

†
pOtop) =⇒ πp−qTmf .

As the spectrum tmf is by definition the connective cover of Tmf , the second spectral sequence
gives in particular a means of computing the homotopy groups of tmf .

Appendix. Degenerate simplicies and codegenerase cosimplicies

We hope we are not alone in thinking that cosimplicial objects, totalization, matching objects, and
Reedy fibrancy appear at first more abstruse than the dual notions of simplicial objects, realization,
latching objects, and Reedy cofibrancy. We think this is in part due to some missing terminology,
which we advertise here. We restrict attention to pointed model categories C that behave like the
category of based spaces in the sense that fibrations are categorical epimorphisms, and the image
of a cofibration P ↪→ Q is isomorphic to its source P .

Let A be a simplicial object in such a model category C. The object An is called, of course,
the n-simplicies of A. This object receives degeneracy maps from the k-simplicies Ak for k < n.
We would like to build an object DgntnA, the degenerate n-simplicies, that contains precisely the
targets of these degeneracy maps in A. In order to do this, we first use a left Kan extension to glue
together the possible n-simplicies that could be targets of degeneracy maps from the k-simplicies
Ak for k < n—this forms the latching object LnA, which we think of as the possible degenerate n-
simplicies of A. This latching object was described in section 3.2.2, where we noted that “possible”
refers to n-simplicies that may exist in simplicial objects agreeing with A in levels less than n.

There is a natural map λn : LnA → An from the n-th latching object to the n-simplicies.
Define the object DgntnA of degenerate n-simplicies of A to be the fibre of the cofibre (that is the
image) of the map λn. The degenerate n-simplicies DgntnA are the possible degenerate simplicies
that actually occur in A. (Note that in an arbitrary model category, it would be wiser to define
the degenerate n-simplicies to be the cofibre of the fibre (that is the coimage) of λn; however, in
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topological contexts coimage rarely coincides with our intuition about the target of a map, and we
scuttle the coimage formulation.)

Recall that A is Reedy cofibrant if λn : LnA → An is a cofibration. This occurs precisely when
the map LnA→ DgntnA is an isomorphism and the map DgntnA→ An is a cofibration—the first
condition says that all possible degeneracies actually occur, which is to say the degenerate simplicies
are freely generated, while the second condition says that the degenerate simplicies include into all
simplicies by a cofibration. This pair of conditions is a convenient mnemonic for Reedy cofibrancy
of simplicial diagrams.

Now let B be a cosimplicial object in the category C. The object Bn is called the n-cosimplicies
of B. The n-cosimplicies map by codegeneracy maps to the k-cosimplicies, for k < n. We would
like to build an object that encodes information about the sources of these codegeneracy maps—we
will call the resulting object CodgnsnB, the codegenerase n-cosimplicies. Note well that these are
not the “codegenerate n-cosimplicies”, a term which would refer to n-cosimplicies in the target of
codegeneracy maps, and this object also has nothing to do with coface maps. In order to build this
codegenerase object, we first use a right Kan extension to assemble the possible n-cosimplicies that
could be sources of codegeneracy maps to the k-cosimplicies Bk for k < n—this forms the matching
object MnB, which we think of as the possible codegenerase n-cosimplicies of B. Matching objects
were defined in section 3.2.2; the “possible” here refers to cosimplicies that could appear in cosim-
plicial objects agreeing with B below level n. (Pedantically speaking, we could emphasize the left
versus right Kan extension by thinking of LnA as the “copossible degenerate” n-simplicies and MnB
as the “possible codegenerase” n-cosimplicies, but we draw a line before the term “copossible”.)

There is a natural map µn : Bn → MnB from the n-cosimplicies to the n-th matching object.
Define the object CodgnsnB of codegenerase n-cosimplicies of B to be the fibre of the cofibre
(that is the image) of the map µn. (Note that we do use the image here, not as one might expect
the coimage.) The codegenerase n-cosimplicies CodgnsnB is the object of possible codegenerase
cosimplicies that actually occur in B.

The cosimplicial object B is Reedy fibrant if µn : Bn →MnB is a fibration. This happens exactly
when the map Bn → CodgnsnB is a fibration and the map CodgnsnB →MnB is an isomorphism—
the first condition is that the n-cosimplicies map by a fibration onto the codegenerase cosimplicies,
and the second condition is that all possible codegenerase cosimplicies occur, which is to say that
the codegenerase cosimplicies are cofreely generated. This provides a convenient perspective on the
meaning of Reedy fibrancy for cosimplicial diagrams.
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