ELLIPTIC CURVES AND MODULAR FORMS

CARL MAUTNER

ABSTRACT. In the first section we introduce elliptic curves as certain smooth curves in P2. In
the second section we then consider the group law on their points and formulate an equivalent
definition as projective one dimensional group varieties, sketching the equivalence. We conclude
by considering the more general notion of a pointed curve of genus 1 over an arbitrary base
scheme and define the notion of a modular form. The first two sections follow parts of Silverman’s
books [3, 4] and the third section is based on the short note [1] by Deligne.

1. ELLIPTIC CURVES AS CUBICS IN P2. ..

Definition 1.1. An elliptic curve over an algebraically closed field K is a nonsingular curve C' in
P2 defined by a cubic equation such that C NPL = [0:1: 0] (where PL_ is the points [ : x : 0]).

If we ask only that the curve be nonsingular at infinity, in coordinates [X,Y, Z], any such cubic
can be written in the form

Y?Z+a1XYZ +aYZ? = X+ axX?Z + as X Z° + as Z°.
In affine coordinates, this becomes what is called the Weierstrass form:
y2 + a1y + asy = x> + a2x2 + asx + ag.
If char(K') # 2, then using the change of coordinates

Y1 = %(y —a1r —03),
ry =,

we obtain the equation:
y% = 43:? + be% + 2bsx1 + bg,

by = a% + 4aq,
where by = 2a4 4+ aqas,
bg = a% + dag.

Of course, we do not need any restrictions on K to define these numbers. Similarly, we can define
the following objects associated to a fixed Weierstrass equation.

bg = a%aﬁ + 4dasag — arazay + a2a§ — ai,

Cqp = b% — 24b4,
Cg = —bg + 36bby — 216bg,
A = —b2bg — 8b4b® — 27b% + 9bababg,
w=dz/(2y + a1x + a3) = dy/(32* + 2a2x + a4 — ar1y).
The last three have names: A is called the discrimanent, j the j-invariant, and w the invariant

differential.
If the field’s characteristic is neither 2 nor 3, by the following change of coordinates:

Xro = (.231 — 3b2)/36
yg = y1/108,
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ual = aj +2s

u?aly = az — sa; + 3r — s
udaly = az +ray + 2t
u*a)y = a4 — saz + 2ras — (t +rs)a; + 3r? — 2st

uSal = ag + ras + rlas +r® — tag — t* — rta;

2

u?bly = by + 12r ulc) =c4
utbly = by + rba + br? ulcl = cg
ulbly = b + 2rby + r2by + 4r3 ul2A’ = A
quls = bg + 3rbg + 3r2by + r3by + 3r* j=3
' =w

TABLE 1. a,b,c’s under change of coordinates given in equation 1.

FIGURE 1. Real points of the elliptic curve 3% = 23 — 2.

we obtain
yg = x% — 27cqx9 — Hdcg.

Now of course we are really interested in the curve itself and not so much in the equation, so
we should try to understand how things change if we change variables in a way which perserves
Weierstrass form and fixes the point [0: 1 : 0].

Such changes of variables are

(1) Lot
y=uy +usxr +1t,
where 7, s,t € K and u € K*. This changes the quantities above as shown in the table 1.
As an excuse to draw some pictures, we have included plots of real points of some Weiestrass
equations in figures 1 and 2.
We conclude the section with a few easy facts, proofs of which can be either be provided by the
reader or found in [3].

1. A Weierstrass curve is singular if and only if A = 0.

2. Two elliptic curves over a field K, C' and C’, are isomorphic over K if and only if the have
the same j-invariants, i.e., j(C)=j(C’).

3. div(w) = 0, in other words, the invariant differential is homolomorphic and nonvanishing.
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FIGURE 2. Real points of the singular cubic y? = x3.

K

FIGURE 3. Group law on curve y? = 23 — z + 1.

2. ... AND AS ONE DIMENSIONAL GROUP VARIETIES

As C is defined by a cubic, interesecting with any line in P? will provide three points (when
counted with multiplicity) of C. It turns out that one can define a group law on the points of C
by declaring that any three points of C' obtained from intersection with a line should sum to the
identity element. More directly, given two points P and @ on C, we define their sum as follows:

(1) Find the line L containing P and @ (or tangent to C at P if P = Q) and let R be the third
point on L N C. (2) Take the line L' passing through R and O = [0,1,0] and define P + Q to be
the third point of intersection in L N C.

A picture illustrating this group law is shown in Figure 3.

Theorem 2.1. The law defined above provides an abelian group structure on the points of C' with
identity element O = [0,1,0]. In fact, the maps

+:ExFE—-FE —:F—>F
are morphisms.
Proof: See [3] III.2-3.
Corollary 2.2. An elliptic curve C over K is a one dimensional group variety over K.
In fact, there is a rather strong converse to this statement.

Theorem 2.3. Let G be a one dimensional group variety over an algebraically closed field K. Then
either:



(i) G = G, the additive group,
(ii) G = G,, the multiplicative group,
or (iit) G is an elliptic curve.

Remark: Over a non-algebraically closed field, a very similar statement is true, the only modifi-
cation being that there can be ‘more multiplicative groups.’
We will only sketch a proof, for more details see [4]. We begin by recalling a lemma.

Lemma 2.4. Let B be a non-singular projective curve of genus g and S C B a finite set of points
such that:

(i) #S >3 if g=0, (i) #S > 1 if g =1, and (i) S is arbitrary if g > 2.

Then, Aut(B; S) = ¢ € Aut(B)|p(S) C S is a finite set.

Assuming the lemma, we continue by noting that as G is a group, it is non-singular and irreducible,
which together with the fact that it is one dimensional implies that it embeds as a Zariski open
subset in a non-singular projective curve G C B (cf. [2] 1.6).

Let S = B—G. Now each point P € (G provides a different translation automorphism 7p : G — G
of G as a variety. This extends to a rational map from B to B and as B is non-singular, an element
of Aut(B;S). This gives an injection of G into Aut(B;S) so this set can not be finite. Applying
the lemma above shows that either G if P! with 0,1, or 2 points removed or a genus on surface.

A simple argument shows that P! does not admit a group structure (even topologically!), and the
only group stucture on A! (resp. Al —0) is G, (resp. G,,). It then remains to show that a genus
one curve G with a base point O is isomorphic to an elliptic curve and that the only possible group
structures on the genus one surface arise from such an isomorphism. We will ignore the second issue
and focus on the first as we will want to generalize the argument later.

Theorem 2.5. Let (B,0) be a genus one curve with marked point O € B. Then (B,0) is an elliptic
curve, i.e. there erist functions x,y € K(B) such that the map

¢:B— P?
defined by ¢ = [x,y,1] is an isomorphism of B/K onto the elliptic curve
C vy + arzy + asy = z° + asx? + asx + ag
for some ay,...,a6 € K.
To prove this theorem, we will use the following special case of Riemann-Roch.

Theorem 2.6. Let B be a curve of genus 1. If D € Div(B) has positive degree and £ (D) = {f €
K(C)* : div(f) > —D} U{0}, then dimZ (D) = degD.

We now apply this version of Riemann-Roch to the sequence of divisors: O, 2(0), 3(0),....

Applied to O we see that dim#(0) = 1 so & consists of the constant functions K. £(2(0))
is 2 dimensional and thus will contain a function x with pole of order 2 at O. Similarly, .Z(3(0))
is three dimensional and thus have anoth function y with a pole of order 3 at O. Continuing on,
we see that (1,z,y,2?) is a basis for Z(4(0)) and (1,z,y, 22, zy) a basis for Z(5(0)). However,
the dimension of .Z(6(0)) is 6 and it must contain the functions (1, z,y, 2, zy, y%, 2%). Thus there
must exist a linear combination of these such that the coefficients of y? and x> are non-zero. This
is precisely a Weierstrass equation.

It remains to show that the map ¢ defined in the statement of the theorem is (1) a surjective
morphism, (2) a degree 1 map onto it’s image C, and (3) C is smooth.

To see (1) we note that ¢ is a rational map from a smooth curve, and therefore a morphism.
Moreover, any morphism between connected curves is surjective.

For (2) it is equivalent to show that K(B) = K(x,y). First consider the map [z,1] : B — P! It
has a pole of order 2 at O and no others, so is of degree 2, i.e., [K(B) : K(z)] = 2. On the other
hand, mapping E to P! by [y, 1] we see that [K(B) : K(y)] = 3. As 2 and 3 are relatively prime,
[K(B) : K(z,y)] = 1 and thus K(B) = K(z,y).
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FIGURE 4. The curve C; : y? = 23 + 222 + 6 over SpecZ.

Lastly, suppose that C' were singular. Then there would be a rational map to P! of degree one.
But composing this with ¢ would give a degree one map between smooth curves from B to P'. Any
degree one map between smooth curves is an isomorphism which would imply that B was of genus
zero, a condradiction.

Remark about elliptic curves over C

3. ELLIPTIC CURVES OVER ARBITRARY SCHEMES

Now that we have a sense of what an elliptic curve looks like, we would like to understand how
they behave in families. Once we do so, it makes sense to allow some singularities. For example, if
one wants to understand the rational points of an elliptic curve, say y? = 2% + 2z + 6, it makes
sense to look at its points after reducing modulo 2 or 3. However, in characteristic 2 (respectively
3), the curve becomes singular as y? = 2% + 222 + 6 = 23 (resp. y? = 23 + 222). So if we think of
our curve as being a scheme over SpecZ, over most primes the geometric fiber will be an elliptic
curve, but over 2 and 3 for example, it will become singular. We will examine this more carefully
below.

This motivates the following definition.

Definition 3.1. A pointed curve of genus 1 over a scheme S is a proper, flat, finitely presented
morphism p : C' — S together with a section e : § — C such that the section is contained in the
smooth locus of the fibers and every geometric fiber of p is either

(i) an elliptic curve,
(ii) a singular cubic in P? with a node (multiplicative), or
(iii) a singular cubic in P? with a cusp (additive).

Example 3.2. Consider the scheme over Spec Z given in affine coordinates as C; : y? = 2% + 222 + 6.
The discrimanant of this curve —18624 = —26.3.97. It follows that C; is singular only over the
primes (2), (3), (97). As we saw above, C' has a cusp over (2) and a node over (3), similarly one can
check that it also has a node over (97). See Figure 4.
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FIGURE 5. The curve Cs : 4% = x(x — 1)(x — \) over Spec(C[\]) = Al

Ezample 3.3. Over the base Spec(C(\)) = Al we can consider the scheme Cs : y? = z(x —1)(z — \).
Over 0 and 1, the fibers are multiplicative and all other fibers are smooth. See Figure 5.

Definition 3.4. Let w be the invertable sheaf w = e*Qlc/S.

In other words, w is the sheaf over S whose stalk at a closed point s € S is the restriction of the
cotangent space of the geometric fiber over s to e(s).

The section e is a relative Cartier divisor of C' over S and one can check, fiber-by-fiber, that
R'p.O(ne) = 0 for all n > 0. Riemann-Roch tells us that p.O(ne) is locally free of rank n and the
long exact sequence in cohomology gives the short exact sequence for n > 0:

0 — pO(ne) — p.O((n+ 1)e) — W&+ _

Further one can check fiber by fiber that Og is isomorphic to p.O(e). Putting this together we see
that we have a filtration of p.O(ne) by p.O(me) for 1 < m < n with associated graded

Gr p.O(ne) = Os @ @w@)’i.
i=2

We will use this to show that we can (locally) embed any pointed curve of genus 1 into P% by a
Weierstrass equation, just as we did for genus 1 curves over algebraically closed fields.

Let 7 be an invertable section of w. In analogy to the simpler case, we choose a basis {1, z,y} of
p.O(3e) such that z € p,O(2¢e) C p.O(3e) and under the projections to the pieces of the associated
graded:

p(O(3e)) — w®™?
y o
p(0(2€)) — w®=?
A
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If instead of 7, we had chosen a different section 7’ = um where u is an invertable function, then
all such bases with respect to v’ can be written in terms of the old as
z=uz +r
y = udy + sulz’ +t.
We notice that this is just a global version of formula 1 from the first section and that all of the
formulas in Table 1 still hold. Moreover, the section of w®* given by c47®* changes to ¢} (7)®4,

so it does not depend on the choice of 7, z, and y. The same goes for cm®°% and Ar®'? which are
sections respectively of w® and w'?. This suggests the following definition.

Definition 3.5. An integral modular form of weight n is a law associating to every pointed curve
of genus 1 a section of w®” in a way compatible with base change.

From the discussion above, examples of integral modular forms of weight 4, 6, and 12 are cym®*4,
cem®%, and Ar®12,

Remark 3.6. The product of two integral modular forms f and g of weights n and m produces an
integral modular form of weight n 4+ m. If we let modular forms live in the direct sum of the tensor
powers of w, we can then consider integral modular forms as making up a ring.

Remark 3.7. As any pointed curve of genus 1 embeds locally in IP% by a Weierstrass equation, the
curve C : y? + a1zy + azy = 22 + a22? + a4x + ag defined over Spec Zlay,az, a3, a4, ag) is universal
and any modular form will be a polynomial in the a;.

As we saw in section 1, if we only consider bases in which 2 and 3 are invertable (i.e., if we work
over Z[1/6]), then for a fixed choice of 7, there exists a unique choice of z,y such that a; = as =
a3z = 0. In analogy to the previous remark, this says that the curve given by y? = 2% — 27¢c4x — 54cg
defined over Z[1/6][c4, cg] is universal over Z[1/6]. This then implies that every Z[1/6]-modular form
is a polynomial in Z[1/6][c4, cg]. But as both ¢4 and ¢ are integral modular forms as shown above,
we are left with the following theorem.

Theorem 3.8. The ring of Z[1/6]-modular forms is the polynomial ring Z[1/6][ca, cq).
With a little more work the ring of integral modular forms can be calculated.

Theorem 3.9. The ring of integral modular forms is generated over Z by c4,cg, and A and has
only one relation:
ci — cd = 1728A.

The proof can be found in [1].
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