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Plan of the talk

Introduction to the Toda lattice

The sorting property

The positive flag variety, and generalized sorting.

Bruhat interval polytopes and their faces

The generalized lifting property and R-polynomials

Combinatorics of Bruhat interval polytopes

Bruhat interval polytopes for G/P
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The Toda lattice

The Toda lattice is defined by

dL

dt
= [π(L), L],

where L = L(t) is a tridiagonal symmetric matrix and π(L) is its
skew-symmetric projection:

L =















b1 a1 0 · · · 0
a1 b2 a2 · · · 0
0 a2 b3 · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · an−1 bn















, π(L) =















0 a1 0 · · · 0
−a1 0 a2 · · · 0
0 −a2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · −an−1 0















.

Model introduced by Toda in 1967 (Def above due to Flaschka 1974)

Represents dynamics of n particles of unit mass, moving on a line
under influence of exponential repulsive forces.

Eigenvalues of L(t) are independent of t.
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Sorting property of the Toda lattice

Suppose the initial matrix L(0) is generic: it has distinct eigenvalues
λ1 < λ2 < · · · < λn and ak(0) 6= 0 for all k . Then the time evolution of
the Toda lattice sorts the eigenvalues of L!

lim
t→−∞

L(t) =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn











lim
t→+∞

L(t) =











λn 0 · · · 0
0 λn−1 · · · 0
...

...
. . .

...
0 0 · · · λ1










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The full symmetric Toda lattice

The full symmetric Toda lattice is defined as before by

dL

dt
= [π(L), L],

but now L = L(t) is any symmetric matrix.

Eigenvalues of L(t) are independent of t.

In generic case, the sorting property holds (Kodama-McLaughlin ’96).

In non-generic case, what can we say about limt→±∞ L(t)?
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The complete flag variety

Let G = SLn(R), B
+ = B and B− be the subgroups of upper and lower

triangular matrices. Then G/B is the complete flag variety. Can identify
elements with flags

Fln = {V1 ⊂ V2 ⊂ · · · ⊂ Vn = R
n | dimVi = i}.

Let W = Sn the symmetric group. For w ∈ W , let ẇ denote a
representative in G . Have two opposite Schubert decompositions of G/B :

G/B =
⊔

w∈W

BẇB/B =
⊔

v∈W

B−v̇B/B .

Define the intersection of opposite Schubert cells (Richardson variety):

Rv ,w := (BẇB/B) ∩ (B−v̇B/B)

Rv ,w is nonempty iff v ≤ w in Bruhat order.
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The totally non-negative (tnn) flag variety (Lusztig)

Let U+ and U− be the subgroups of upper and lower triangular matrices
in G with 1’s on diagonal. Let yi (m) ∈ U− be the element




















1
. . .

1
m 1

. . .

1





















Let U−
≥0 of U− be the semigroup in U− generated by the yi(p) for p ∈ R>0.

The tnn flag variety (G/B)≥0 is

(G/B)≥0 := { uB | u ∈ U−
≥0 },

where the closure is taken inside G/B in its real topology.

For comparison: G/B = { uB | u ∈ U− }.
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The cell decomposition of the tnn flag variety

Recall: U−
≥0 of U− is the semigroup in U− generated by the yi(p) for

p ∈ R>0. The tnn flag variety (G/B)≥0 is

(G/B)≥0 := { uB | u ∈ U−
≥0 }.

Rietsch’s theorem

For v ,w ∈ W with v ≤ w in Bruhat order, let

R>0
v ,w := Rv ,w ∩ (G/B)≥0.

This is a topological cell of dimension ℓ(w)− ℓ(v).
So the tnn flag variety (G/B)≥0 has a cell decomposition,

(G/B)≥0 =
⊔

w∈Sn





⊔

v≤w

R>0
v ,w



 . (1)
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From (G/B)≥0 to the full symmetric Toda lattice

Fix real numbers λ1 < λ2 < · · · < λn, and let FΛ be the set of symmetric
matrices with fixed eigenvalues {λ1, . . . , λn}.

Let Λ := diag(λ1, . . . , λn).

To each gB ∈ (G/B)≥0, we associate an initial matrix L0 ∈ FΛ as follows:

Use the QR-decomposition to write g = q0b0 where q0 ∈ SOn(R) and
b0 ∈ B . This uniquely defines q0.

Set L0 = qT0 Λq0 ∈ FΛ.

We can now consider the solution L(t) to the full symmetric Toda
lattice, with initial data L(0) := L0.
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Set L0 = qT0 Λq0 ∈ FΛ.

We can now consider the solution L(t) to the full symmetric Toda
lattice, with initial data L(0) := L0.
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Theorem (Kodama-W.): generalized sorting property

Recall that (G/B)≥0 =
⊔

w∈Sn

(

⊔

v≤w R>0
v ,w

)

.

Let L0 ∈ FΛ be the initial matrix associated to gB ∈ R>0
v ,w , defined by:

• Factoring g = q0b0 where q0 ∈ SOn(R) and b0 ∈ B

• Setting L0 = qT0 Λq0.
Then

lim
t→−∞

L(t) =











λv(1) 0 0 · · · 0

0 λv(2) 0 · · · 0
...

...
...

...
0 0 0 · · · λv(n)











lim
t→+∞

L(t) =











λw(1) 0 0 · · · 0

0 λw(2) 0 · · · 0
...

...
...

...
0 0 0 · · · λw(n)










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Other extensions

The full symmetric Toda hierarchy

The full symmetric Toda hierarchy has n − 1 parameters t1, . . . , tn−1, and
is given by

∂L

∂tk
= [π(Lk), L], for k = 1, 2, . . . , n − 1.

Theorem (Kodama - W.)

Suppose that gB ∈ R>0
v ,w and consider the corresponding solution to the

full symmetric Toda hierarchy. Then for each permutation z such that
v ≤ z ≤ w , there exists a direction t(s) such that L(t(s)) tends to











λz(1) 0 0 · · · 0

0 λz(2) 0 · · · 0
...

...
...

...
0 0 0 · · · λz(n)










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Bruhat interval polytopes

After analyzing the moment map images of flows in the full symmetric
Toda hierarchy, we were led to study the following polytopes:

Definition (Kodama -W.)

Let u ≤ v in the Bruhat order on Sn. The Bruhat interval polytope Qu,v is

Qu,v = Conv{(z(1), . . . , z(n)) | u ≤ z ≤ v}.

2314
1324

1234

2134

2143

1423

2413

3412

3421

4321

4231

3241
3142

1432

1342

1243

2431

2341 2143

1423

2413

1342

1243

2341

2431

1432

Prop. (K.W.): Qu,v is the Minkowski sum of n − 1 matroid (positroid)
polytopes. It is a generalized permutohedron (in sense of Postnikov).
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Combinatorics of Bruhat interval polytopes

Remark: Recall that the edges of the permutohedron correspond to cover
relations in the weak Bruhat order. Faces of permutohedra are isomorphic
to products of smaller permutohedra.

Theorem (Tsukerman-W.)

The face of every Bruhat interval polytope Qu,v has the form Qx ,y where
u ≤ x ≤ y ≤ v . In particular, each edge of Qu,v comes from a cover
relation in the (strong) Bruhat order.

Our proof uses:

the classical Bjorner-Wachs theorem that the order complex of every
interval in Bruhat order is homeomorphic to a sphere;

a generalization of the lifting property.
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The lifting property and a generalization

Lifting property: Suppose u < v in Bruhat order and s is a simple
reflection such that vs ⋖ v and us ⋗ u. Then u ≤ vs ⋖ v and u ⋖ us ≤ v .
Caution: such an s may not exist.

v
v(ij)

u(ij)
u

Def: Say a transposition (ij) is inversion-minimal on (u, v) if [i , j] is
minimal (with respect to inclusion) such that v(ij) < v and u(ij) > u.

Theorem (T.W.) - Generalized lifting property

Suppose u < v in Bruhat order on Sn. Choose a transposition (ij) which is
inversion-minimal on (u, v); one always exists. Then u ≤ v(ij)⋖ v and
u ⋖ u(ij) ≤ v .
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Example of the Generalized lifting property

Theorem (T.W.) - Generalized lifting property

Suppose u < v in the Bruhat order on Sn. Choose a transposition t = (ij)
which is inversion-minimal on (u, v); one always exists. Then
u ≤ v(ij)⋖ v and u ⋖ u(ij) ≤ v .

u = 2143

3142 2341

v = 3241

t = (24)(14)

t = (24) (12)
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Generalization of the recurrence for R-polynomials Ru,v (q)

Kazhdan and Lusztig introduced R-polynomials as a tool for computing
Kazhdan-Lusztig polynomials. Geometric interpretation:
Ru,v(q) = #Ru,v(Fq), the number of Fq-points in the Richardson variety.

They showed that R-polynomials can be defined by the conditions:

1 Ru,v(q) = 0, if u 6≤ v .

2 Ru,v(q) = 1, if u = v .

3 If vs ⋖ v (s a simple reflection) then

Ru,v(q) =

{

Rus,vs(q) if us ⋖ u,

qRus,vs(q) + (q − 1)Ru,vs(q) if us ⋗ u.

Theorem (T.W.)

Let u, v ∈ Sn with u ≤ v . Let t = (ij) be inversion-minimal on (u, v).
Then Ru,v (q) = qRut,vt(q) + (q − 1)Ru,vt(q).
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The dimension of Bruhat interval polytopes

Def/Lemma: Let u ≤ v in Sn, and let C : u = x(0) ⋖ x(1) . . .⋖ x(ℓ) = v be
any maximal chain in [u, v ]. Label each edge of C by the transposition
(ab) indicating the positions which are swapped. Then say a ∼ b for each
edge label on C. Let Bu,v = {B1, . . . ,B r} be the blocks of the equivalence
relation on {1, 2, . . . , n} that ∼ generates. Then Bu,v is independent of C.

1234

1243 1324 2134

1423 1342 3124 2314

1432 2413 3142 3214

3412
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The dimension of Bruhat interval polytopes

Theorem (T.W.)

The dimension dimQu,v of the Bruhat interval polytope Qu,v is

dimQu,v = n −#Bu,v .

The equations defining the affine span of Qu,v are
∑

i∈B j

xi =
∑

i∈B j

ui (=
∑

i∈B j

vi), j = 1, 2, . . . ,#Bu,v .
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An inequality description for Bruhat interval polytopes

If M is a matroid on [n] and A ⊂ [n], let rM(A) denote the rank of A.
Since Qu,v is a Minkowski sum of matroid polytopes, we get the following.

Theorem (T.W.)

Choose u ≤ v ∈ Sn, and for each 1 ≤ k ≤ n − 1, define the matroid Mk

whose bases are

B(Mk) = {I ∈

(

[n]

k

)

| ∃z ∈ [u, v ] such that I = {z(1), . . . , z(k)}}.

Then

Qu,v =







x ∈ R
n |

∑

i∈[n]

xi =

(

n + 1

2

)

,
∑

i∈A

xi ≤
n−1
∑

j=1

rMj
(A)∀A ⊂ [n]






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Bruhat interval polytopes for G/P

When G = SLn(R), the Bruhat interval polytope Qu,v has a natural
interpretation in terms of the moment map µ : G/B → R

n:

Qu,v = µ(Ru,v ) = µ(R>0
u,v ).

This leads to the notion of Bruhat interval polytope for G/P .

G – a semisimple simply connected algebraic group with torus T and
Weyl group W

P = PJ – a parabolic subgroup of G

ρJ – sum of fund. weights corresp. to J, so that G/P →֒ P(VρJ ).

Choose u ≤ v in W , where v is a min-length coset rep in W /WJ .

We define the Bruhat interval polytope for G/P to be

QJ
u,v := Conv{z · ρJ | u ≤ z ≤ v} ⊂ t

∗
R.
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Bruhat interval polytopes for G/P

Bruhat interval polytopes for G/P include:

Bruhat interval polytopes

positroid polytopes

Theorem (T.W.)

The face of a Bruhat interval polytopes for G/P is again a Bruhat interval
polytope for G/P .

Tools in proof:

work of Rietsh and Marsh-Rietsch,

the moment map, and the Gelfand-Serganova stratification of G/P
(which generalizes the matroid stratification of the Grassmannian).
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Bruhat interval polytopes for G/P

Theorem (T.W.)

The face of a Bruhat interval polytopes for G/P is again a Bruhat interval
polytope for G/P .

As part of the proof, we also show:

Theorem (T.W.)

Each cell of (G/P)≥0 is contained in one Gelfand-Serganova stratum.a

aThis was conjectured by Rietsch and partially proved in an unpublished

manuscript of Marsh-Rietsch.

Moreover, Rietsch’s cell decomposition of (G/B)≥0 is the restriction of the
Gelfand-Serganova stratification to G/B . This is analogous to the fact
that Postnikov’s cell decomposition of Gr+k,n is the restriction of the
matroid stratification to Grk,n.
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Happy birthday Richard!
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