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Abstract

Following the pioneering work [Sta75] of Stanley, in the
late 1970s a new and exciting trend of commutative
algebra, the combinatorial study of squarefree mono-
mial ideals, broke out. Since then, it has been one of
the most active areas of commutative algebra. In my
talk a quick survey of monomial ideal theory developed
for the last few decades will be supplied.

[Sta75] R. P. Stanley, The upper bound conjecture and

Cohen–Macaulay rings, Stud. Appl. Math. 54 (1975),

135–142.
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The legend of Richard Stanley,
1975–1985, again

1972 M. Hochster, Rings of invariants of tori, . . .
1975 R. P. Stanley, The upper bound conjecture . . .
1976 G. A. Reisner, Cohen–Macaulay quotients . . .
1977 M. Hochster, Cohen–Macaulay rings, . . .
1978 R. P. Stanley, Hilbert functions of . . .
1980 R. P. Stanley, The number of faces of . . .
1980 D. Eisenbud, Introduction to algebras with . . .
1980 A. Björner, Shellable and Cohen–Macaulay . . .
1983 R. P. Stanley, “Combin. and Commut. Alg.”

Commutative Algebra and Combinatorics
US–Japan Joint Seminar, Kyoto, August, 1985
(Stanley, Björner, Eisenbud, Buchsbaum, . . .)
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Commutative Algebra and Combinatorics
ICM 90 Satellite, Nagoya, August, 1990
(Stanley, Björner, Billera, Greene, . . .)

Computational Commutative Algebra and
Combinatorics, Osaka, July, 1999
(Stanley, Kalai, Herzog, Bruns, Procesi, Novik,
Babson, Wagner, Hetyei, Duval, . . .)

T. Hibi, Ed., “Computational Commutative Algebra
and Combinatorics,” Adv. Studies in Pure Math.,
Vol. 33, Math. Soc. Japan, Tokyo, 2002.

• G. Kalai, Algebraic shifting, pp. 121–163.
• J. Herzog, Generic initial ideals . . . , pp. 75–120.
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Workshop on Convex Polytopes
RIMS, Kyoto University, July, 2012
(Stanley, Kalai, Lee, Bayer, Santos,
Ziegler, Liu, Panova, Li, Athanasiadis, . . .)

The monograph [HH11] invites the reader to become
acquainted with current trends on monomial ideals in
computational commutative algebra and combinatorics.

[HH11] J. Herzog and T. Hibi, “Monomial Ideals,”
GTM 260, Springer, 2011.
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This book demonstrates current trends in research on combinatorial and 
computational commutative algebra with a primary emphasis on topics related 

to monomial ideals.

Providing a useful and quick introduction to areas of research spanning these 
fields, Monomial Ideals is split into three parts. Part I offers a quick introduction 
to the modern theory of Gröbner bases as well as the detailed study of generic 
initial ideals. Part II supplies Hilbert functions and resolutions and some of the 
combinatorics related to monomial ideals including the Kruskal‒Katona 
theorem and algebraic aspects of Alexander duality. Part III discusses 
combinatorial applications of monomial ideals, providing a valuable overview of 

some of the central trends in algebraic combinatorics. 

Main subjects include edge ideals of finite graphs, powers of ideals, algebraic 
shifting theory and an introduction to discrete polymatroids. Theory is 
complemented by a number of examples and exercises throughout, bringing 
the reader to a deeper understanding of concepts explored within the text.

Self-contained and concise, this book will appeal to a wide range of readers, 
including PhD students on advanced courses, experienced researchers, and 
combinatorialists and non-specialists with a basic knowledge of commutative 

algebra.

Since their first meeting in 1985, Jürgen Herzog (Universität Duisburg-Essen, 
Germany) and Takayuki Hibi (Osaka University, Japan), have worked together on 
a number of research projects, of which recent results are presented in this 
monograph.

2910597808579

 

ISBN 978-0-85729-105-9
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Keywords

Combinatorics
[n] = {1, . . . , n} vertex set
∆ simplicial complex on [n]
∆∨ = {[n] \ F ; F 6∈ ∆} Alexander dual
K field
S = K[x1, . . . , xn] polynomial ring over K
deg(x1) = · · · = deg(xn) = 1

If F = {i1, i2, . . . , ir} ⊂ [n], then uF = xi1xi2 · · ·xir

I∆ = (uF ; F 6∈ ∆) Stanley–Reisner ideal
K[∆] = S/I∆ Stanley–Reisner ring
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Homological algebra
Roughly speaking, a minimal graded free resolution

of a monomial ideal I ⊂ S contains all information of I.

Example S = K[x, y, z] I = (x2, y3)

0 −→ S(−5)

[
−y3 x2

]
−−−−−−−−→ S(−2)

⊕
S(−3)

 x2

y3


−−−−−→ I −→ 0

1 7→ (−y3, x2)
(1,0) 7→ x2

(0,1) 7→ y3

S = S0
⊕

S1
⊕

S2
⊕

S3
⊕ · · · where deg(1) = 0

S(−2) = (0)
⊕
(0)

⊕
S0

⊕
S1

⊕ · · · where deg(1) = 2
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Homological algebra
A minimal graded free resolution of a monomial

ideal I ⊂ S is an exact sequence of graded S-modules

0 −→ Fh −→ · · · −→ F1 −→ F0 −→ I −→ 0

where Fi =
⊕

j S(−j)βij is nonzero and

where Im(Fi −→ Fi−1) ⊂ (x1, . . . , xn)Fi−1

Example I = (x4x5x6, x1x5x6, x1x2x6, x1x2x5)

0 → S(−4)3


x1 −x4 0 0
0 x2 −x5 0
0 0 x5 −x6


−−−−−−−−−−−−−−−−−−→ S(−3)4 −→ I → 0
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Homological algebra
A minimal graded free resolution of a monomial

ideal I ⊂ S is an exact sequence of graded S-modules

0 −→ Fh −→ · · · −→ F1 −→ F0 −→ I −→ 0

where Fi =
⊕

j S(−j)βij is nonzero and

where Im(Fi −→ Fi−1) ⊂ (x1, . . . , xn)Fi−1

• βi =
∑

j βij (= rank(Fi)) i th Betti number
• reg(I) = max{ j ; βi,i+j 6= 0, ∃i } regularity
• h = proj dim(I) projective dimension
• depth(S/I) = n − h − 1 depth of S/I if I 6= 0
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Homological algebra
A minimal graded free resolution of a monomial

ideal I ⊂ S is an exact sequence of graded S-modules

0 −→ Fh −→ · · · −→ F1 −→ F0 −→ I −→ 0

where Fi =
⊕

j S(−j)βij is nonzero and

where Im(Fi −→ Fi−1) ⊂ (x1, . . . , xn)Fi−1

DEF We say that I has a linear resolution if its
minimal graded free resolution is of the form

0 −→ S(−d − h)βh −→ · · ·
−→ S(−d − 1)β1 −→ S(−d)β0 −→ I → 0
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Topics on Monomial Ideals

(a) Alexander duality

1996 N. Terai and T. Hibi
By virtue of Alexander duality theorem it is shown
that the first Betti number of a Stanley–Reisner
ideal is independent of the characteristic of the
base field. (Adv. Math. 124, 332–333)

1998 J. A. Eagon and V. Reiner
Theorem The Stanley–Reisner ideal I∆ of

a simplicial complex ∆ has a linear resolution
if and only if the Alexander dual ∆∨ of ∆
is Cohen–Macaulay. (J. Pure Appl. Alg. 130)
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Related results of Eagon–Reiner theorem

• N. Terai gives the formula
proj dim(I∆) = reg(K[∆∨]) (= reg(I∆∨) − 1)

which generalizes Eagon–Reiner theorem.
• J. Herzog proves that I∆ has linear quotients if and

only if ∆∨ is shellable.
• It is known that I∆ is componentwise linear if and

only if ∆∨ is sequentially Cohen–Macaulay.
• E. Miller studies Alexander duality for arbitrary

monomial ideals.
• T. Römer and K. Yanagawa independently discuss

Alexander duality for squarefree modules.
• By virtue of E–R theorem, the Cohen–Macaulay

bipartite graphs can be classified ([HH, JAC 22]).
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(b) Powers of monomial ideals

2004 J. Herzog, T. Hibi and X. Zheng
Theorem Let I ⊂ K[x1, . . . , xn] be an ideal

generated by quadratic squarefree monomials.
Then IN has a linear resolution for N = 1,2, . . .
if and only if the finite graph on {1, . . . , n}
whose edges are those {i, j} with xixj 6∈ I is
a chordal graph. (Math. Scand. 95)
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(c) Limit depth

Let I ⊂ S = K[x1, . . . , xn] be a monomial ideal.

f(k) = depth(S/Ik), k = 1,2, . . . depth function

It is known that f(k) is constant for k � 0. Thus one
has limk→∞f(k) which is called the limit depth of I.
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A depth function is not necessarily monotone.

Example (Bandari–Herzog–Hibi, 2013)

• S = K[a, b, c, d, x1, y1, . . . , xn, yn]

• I ⊂ S the monomial ideal generated by

a6, a5b, ab5, b6, a4b4c, a4b4d

a4x1y2
1, b4x2

1y1, . . . , a4xny2
n, b4x2

nyn.

• Then
depth(S/Ik) = 0 if k is odd with k ≤ 2n + 1;
depth(S/Ik) = 1 if k is even with k ≤ 2n;
depth(S/Ik) = 2 if k > 2n + 1.
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Example Let 2 ≤ d < n and In,d the squarefree
Veronese ideal of degree d in S = K[x1, . . . , xn].
Thus In,d is generated by all squarefree monomials
of degree d in x1, . . . , xn. Then

depth(S/Ik
n,d) = max{0, n − k(n − d) − 1 }

Conjecture (a) The depth function of a squarefree
monomial is nonincreasing.

(b) Given a nonincreasing function f : N \ {0} → N
which is eventually constant, there exists
a squarefree monomial ideal I ⊂ K[x1, . . . , xn]
for ∃n with f(k) = depth(S/Ik) for all k ≥ 1.
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2005 J. Herzog and T. Hibi
Theorem Given a bounded nondecreasing function

f : N \ {0} → N, there exists a monomial ideal
I ⊂ K[x1, . . . , xn] for ∃n with f(k) = depth(S/Ik)
for all k ≥ 1. (J. Alg. 291)

Conjecture Given an arbitrary function
f : N \ {0} → N which is eventually constant,
there exists a monomial ideal
I ⊂ K[x1, . . . , xn] for ∃n with f(k) = depth(S/Ik)
for all k ≥ 1.
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The influence of

R. P. Stanley, The upper bound conjecture and
Cohen–Macaulay rings, Stud. Appl. Math. 54
(1975), 135–142.

is really big !
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