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The definition of the Tchebyshev transform

For each x < y introduce an element (x , y).
Set (x1, y1) ≤ (x2, y2) if either y1 ≤ x2 or both x1 = x2 and y1 ≤ y2

hold.
The resulting poset is the Tchebyshev transform of the original.
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An example: “The butterfly poset” of rank 3
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Properties of the Tchebyshev transform

1 It preserves the Eulerian property.

2 The order complex is a triangulation of the original order
complex.

3 Takes the Cartesian product of posets into the diamond
product of their Tchebyshev transforms (Ehrenborg-Readdy)

4 Induces a Hopf algebra endomorphism on the ring of
quasisymmetric functions (Ehrenborg-Readdy)
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Why the name Tchebyshev?

Definition

The F -polynomial of a (d − 1)-dimensional simplicial complex 4 is
given by

F (4, x) =
d∑

j=0

fj−1

(
x − 1

2

)j

The F -polynomial of the order complex of the butterfly poset of
rank n + 1 is xn. The F -polynomial for its Tchebyshev transform is
Tn(x).
Note to Richard: For an Eulerian poset P, substituting c = x
and e = 1 yields into the ce-index F (4(P \ {0̂), 1̂}, x).

Gábor Hetyei (and Eran Nevo) Tchebyshev triangulations



Outline
The Tchebyshev transform of a poset

The Tchebyshev triangulation of a simplicial complex
Generalized Tchebyshev triangulations (with Eran Nevo)

Why the name Tchebyshev?

Definition

The F -polynomial of a (d − 1)-dimensional simplicial complex 4 is
given by

F (4, x) =
d∑

j=0

fj−1

(
x − 1

2

)j

The F -polynomial of the order complex of the butterfly poset of
rank n + 1 is xn. The F -polynomial for its Tchebyshev transform is
Tn(x).
Note to Richard: For an Eulerian poset P, substituting c = x
and e = 1 yields into the ce-index F (4(P \ {0̂), 1̂}, x).
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Visual definition

v4

(v2, 1̂)

(v1, 1̂)

(v3, 1̂) (v4, 1̂)

(v1, v3)

(v2, v3)

(v3, v4)
(v1, v2)

v1

v2

v3

In words: pull the midpoint of every edge “in appropriate order”.

F (T (4), x) = T (F (4, x)),

where T (xn) = Tn(x).
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“The essence and mystery of Tchebyshev polynomials”

Essence:

(cos(α) + i sin(α))n = Tn(cosα) + Un−1(cosα) sinα · i.

Mystery:

xn =

bn/2c∑
k=0

(
n

k

)
Tn−2k(x).

Example: x6 = T6(x) + 6T4(x) + 15T2(x) + 10T0(x).
Combinatorial interpretation?
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Stability

(This slide is not supposed to be here.) Recall how we solve a
linear differential equation

d∑
i=0

hi

(
d

dt

)i

y(t) = 0

Write y(t) as a linear combination of exponential functions eλt ,
where λ is a root of the characteristic equation

hnλ
n + · · ·+ h1λ+ h0 = 0.

(For each root of multiplicity m also use tkeλt for
k = 0, 1, . . . ,m.) limt→∞ tkeλt = 0 iff λ has negative real part.
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Stability

(This slide is not supposed to be here either.) We say that h(t) is
Hurwitz stable if all its roots are in the left t-halfplane. There is
also a notion of Schur-stability, defined as having all the roots
inside the unit disk.
The Möbius transformation z 7→ z+1

z−1 takes the left t-halfplane into
the unit disk.
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Stability

(1− t)d · F4
(

1 + t

1− t

)
= (1− t)d

d∑
j=0

fj

(
t

1− t

)j

= h4(t).

Corollary

If F (4, x) is Schur stable (=its zeros are inside the disk |x | < 1)
then h(4, t) is Hurwitz stable (=its zeros are inside the left
t-halfplane). The converse also holds for homology spheres (or
whenever deg h(4, t) = deg F (4, x)).
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Facts and conjectures about stability

Proposition

The join 41 ∗42 is S-stable (H-stable) if and only if both 41 and
42 are S-stable (H-stable).

Theorem

If P is an S-stable graded poset then the same holds for the direct
product P × I .

Corollary

All Boolean algebras Bn = I × I × · · · × I are S-stable.
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Facts and conjectures about stability

Proposition

The join 41 ∗42 is S-stable (H-stable) if and only if both 41 and
42 are S-stable (H-stable).

Theorem

If P is an S-stable graded poset then the same holds for the direct
product P × I .

The proof uses Lucas’ theorem stating that the roots of the
derivative are in the convex hull of the roots of the original
polynomial.

Corollary

All Boolean algebras Bn = I × I × · · · × I are S-stable.
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Connection to the Brenti-Welker result

Theorem (Brenti-Welker)

Consider a Boolean cell complex whose h-vector is nonnegative.
Then the h-polynomial of its barycentric subdivision has only real
and simple roots.

The order complex of a Boolean algebra is the barycentric
subdivision of a simplex.
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Connection to the Brenti-Welker result

Theorem (Brenti-Welker)

Consider a Boolean cell complex whose h-vector is nonnegative.
Then the h-polynomial of its barycentric subdivision has only real
and simple roots.

The order complex of a Boolean algebra is the barycentric
subdivision of a simplex. The h-vector entries being all positives,
all roots must be real and negative.
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An application to the derivative polynomials for tangent
and secant

They are defined by

dn

dxn
tan(x) = Pn(tan x) and

dn

dxn
sec(x) = Qn(tan x) · sec(x).

Proposition

The zeros of Pn(x) and Qn(x) are pure imaginary, have multiplicity
1, belong to the line segment [−i, i] and are interlaced with −i and
i being zeros of Pn(x).
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Elements of the proof

Define U,T : R[x ]→ R[x ] as the linear maps, sending xn into
Tn(x) and Un−1(x), respectively. (Tchebyshev polynomials of the
first, resp. second kind.)

Proposition

Assume p(x) ∈ R[x ] of degree d is Schur stable. Then all roots of
T (p) and U(p) are real, have multiplicity 1, and lie in the open
interval (−1, 1). Moreover, the roots t1 < · · · < td of T (p) and
the roots u1 < · · · < ud−1 of U(p) are interlaced, i.e.,
t1 < u1 < t2 < u2 < · · · < ud−1 < td holds.
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Elements of the proof

Define U,T : R[x ]→ R[x ] as the linear maps, sending xn into
Tn(x) and Un−1(x), respectively. (Tchebyshev polynomials of the
first, resp. second kind.)

Proposition

Assume p(x) ∈ R[x ] of degree d is Schur stable. Then all roots of
T (p) and U(p) are real, have multiplicity 1, and lie in the open
interval (−1, 1). Moreover, the roots t1 < · · · < td of T (p) and
the roots u1 < · · · < ud−1 of U(p) are interlaced, i.e.,
t1 < u1 < t2 < u2 < · · · < ud−1 < td holds.

The proof uses Schelin’s theorem “backwards”.
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A visual example

v1

v2

v4 v4 v4

K K ′ K ′′

L

v2 v2

v3 v3 v3

v1v1

Different triangulations, same face numbers.
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Gábor Hetyei (and Eran Nevo) Tchebyshev triangulations



Outline
The Tchebyshev transform of a poset

The Tchebyshev triangulation of a simplicial complex
Generalized Tchebyshev triangulations (with Eran Nevo)

The definition of a generalized Tchebyshev triangulation

Fix a triangulation L of a k simplex that introduces no new vertex
on the boundary. List all k-faces of a complex K in an arbitrary
order: σ1, . . . , σm. Let K0,K1, . . . ,Km be the list of simplicial
complexes such that K0 = K , Km = K ′ and, for each i ≥ 1, the
complex Ki is obtained from Ki−1 by replacing the face σi with an
isomorphic copy Li of L and the family of faces
{σi ∪ τ : τ ∈ link(σi )} containing σi with the subdivided complex
{σ′ ∪ τ : σ′ ∈ Li , τ ∈ link(σi )}.

Theorem (H.-Nevo)

The face numbers of K ′ do not depend on the order of the k-faces
and they depend on the face numbers of K in a linear fashion.
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Easy facts on generalized Tchebyshev polynomials

1 T L
n (x) is defined as the image of xn under the linear transform

that takes F (K , x) into F (K ′, x).

2 It is also the F -polynomial of the generalized Tchebyshev
triangulation of the boundary of an n-dimensional
crosspolytope.

3 (−1)nT L
n (−x) = T L

n (x) (Dehn-Sommerville equations).

4 All real roots of T L
n (x) belong to the interval (−1, 1).

(Nonnegativity of the h-numbers.)
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Gábor Hetyei (and Eran Nevo) Tchebyshev triangulations



Outline
The Tchebyshev transform of a poset

The Tchebyshev triangulation of a simplicial complex
Generalized Tchebyshev triangulations (with Eran Nevo)

Easy facts on generalized Tchebyshev polynomials

1 T L
n (x) is defined as the image of xn under the linear transform

that takes F (K , x) into F (K ′, x).

2 It is also the F -polynomial of the generalized Tchebyshev
triangulation of the boundary of an n-dimensional
crosspolytope.

3 (−1)nT L
n (−x) = T L

n (x) (Dehn-Sommerville equations).

4 All real roots of T L
n (x) belong to the interval (−1, 1).

(Nonnegativity of the h-numbers.)
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Easy results on (lack of) real-rootedness.

1 Let L be the subdivision of the 1-simplex by s interior vertices.
Then

T L
n (x) =

(√
x2 + s(1− x2)

)n

cos(nα(x)),

for some bijection α : [−1, 1]→ [0, π]. Thus T L
n (x) has n

distinct real roots in (−1, 1).

2 Let L be the simplex obtained from a tetrahedron just by
adding one new interior vertex and connecting it to all four
original vertices. Then T L

6 (x) = 6− 9x2 − 60x4 + 64x6 has
only 4 real roots.
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Easy results on (lack of) real-rootedness.

1 Let L be the subdivision of the 1-simplex by s interior vertices.
Then

T L
n (x) =

(√
x2 + s(1− x2)

)n

cos(nα(x)),

for some bijection α : [−1, 1]→ [0, π]. Thus T L
n (x) has n

distinct real roots in (−1, 1).

2 Let L be the simplex obtained from a tetrahedron just by
adding one new interior vertex and connecting it to all four
original vertices. Then T L

6 (x) = 6− 9x2 − 60x4 + 64x6 has
only 4 real roots.
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Real-rootedness in dimension 2

Theorem

If dim L = 2 then T L
n (x) ha only real roots.

We have T0(x) = 1, T1(x) = 1, T2(x) = x2 and

T L
n (x) = 3xT L

n−1(x) + ((e − 3)x2 − e)T L
n−2(x)

+((2m + 1− e) · x3 + (e − 2m)x) · T L
n−3(x)

for n ≥ 3.

(It is true in general that T L
n (x) satisfies T L

n (x) = xn for
n ≤ dim L, and a “Fibonacci type recurrence”.)
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The special case when m = 1
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The special case when m = 1

T L
n (x) = 3xT L

n−1(x)− 3T L
n−2(x)− 3x · T L

n−3(x) for n ≥ 3.
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The special case when m = 1

T L
n (x) = 3xT L

n−1(x)− 3T L
n−2(x)− 3x · T L

n−3(x) for n ≥ 3.

The characteristic equation associated to the above recurrence is

q3 − 3xq2 + 3q − x = 0.
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The special case when m = 1

T L
n (x) = 3xT L

n−1(x)− 3T L
n−2(x)− 3x · T L

n−3(x) for n ≥ 3.

The characteristic equation associated to the above recurrence is

q3 − 3xq2 + 3q − x = 0.

Cardano’s formula gives

qj(x) = x + ωj 3

√
(x − 1)(x + 1)2 + ω2j 3

√
(x − 1)2(x + 1)

where j ∈ {0, 1, 2} and ω = e i2π/3.
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The special case when m = 1

We get Tn(x) = x
3

(
q0(x)n−1 + q1(x)n−1 + q2(x)n−1

)
for n ≥ 1.

Gábor Hetyei (and Eran Nevo) Tchebyshev triangulations



Outline
The Tchebyshev transform of a poset

The Tchebyshev triangulation of a simplicial complex
Generalized Tchebyshev triangulations (with Eran Nevo)

The special case when m = 1

We get Tn(x) = x
3

(
q0(x)n−1 + q1(x)n−1 + q2(x)n−1

)
for n ≥ 1.

We rewrite this as

T L
n (x)/x =

||q1(x)||n−1

3

((
q0(x)

||q1(x)||

)n−1

+
q1(x)n−1 + q1(x)n−1

||q1(x)||n−1

)
.
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The special case when m = 1

We get Tn(x) = x
3

(
q0(x)n−1 + q1(x)n−1 + q2(x)n−1

)
for n ≥ 1.

We rewrite this as

T L
n (x)/x =

||q1(x)||n−1

3

((
q0(x)

||q1(x)||

)n−1

+
q1(x)n−1 + q1(x)n−1

||q1(x)||n−1

)
.

Equivalently,

T L
n (x)/x =

||q1(x)||n−1

3

((
q0(x)

||q1(x)||

)n−1

+ 2 cos((n − 1)α(x))

)
,

where α(x) is the argument of q1(x).
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The special case when m = 1

T L
n (x)/x =

||q1(x)||n−1

3

((
q0(x)

||q1(x)||

)n−1

+ 2 cos((n − 1)α(x))

)
.

The function 2 cos((n − 1)α(x)) has at least (n − 1) zeros inside
the interval (−1, 1). Before the least zero, between two consecutive
zeros, and after the largest zero this attains 2 or −2, thus leaving
(and, with the exception of the segment after the largest zero,
reentering) the region between the lines y = −1 and y = 1.
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The special case when m = 1

T L
n (x)/x =

||q1(x)||n−1

3

((
q0(x)

||q1(x)||

)n−1

+ 2 cos((n − 1)α(x))

)
.

The continuous function

−
(

q0(x)

||q1(x)||

)n−1

: [−1, 1]→ [−1, 1]

never leaves this horizontal region, thus its graph must intersect
the graph of 2 cos((n − 1)α(x)) at least n − 1 times.
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The special case when m = 1

T L
n (x)/x =

||q1(x)||n−1

3

((
q0(x)

||q1(x)||

)n−1

+ 2 cos((n − 1)α(x))

)
.

The continuous function

−
(

q0(x)

||q1(x)||

)n−1

: [−1, 1]→ [−1, 1]

never leaves this horizontal region, thus its graph must intersect
the graph of 2 cos((n − 1)α(x)) at least n − 1 times.
The proof of the general case is similar, but more complicated.
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The end (?)

HAPPY BIRTHDAY, RICHARD!
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Gábor Hetyei (and Eran Nevo) Tchebyshev triangulations


	The Tchebyshev transform of a poset
	The Tchebyshev triangulation of a simplicial complex
	Generalized Tchebyshev triangulations (with Eran Nevo)

