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RESEARCH ANNOUNCEMENTS
The purpose of this department is to provide early announcement of significant
new results, with some indications of proof. Although ordinarily a research announce-
ment should be a brief summary of a paper to be published in full lsewhere, papers
results of

more Ihzn eight typewritten ouble spaced pages ong will not be conidered as ac-
ceptab! by a Council

bl Protter, Department of Mathematics, University of CAhlomu, Bﬁkzlzy,
California 94720,

STRUCTURE OF INCIDENCE ALGEBRAS AND
THEIR AUTOMORPHISM GROUPS!
BY RICHARD P. STANLEY
‘Communicated by Gian-Carlo Rota, June 9, 1970
Let P be a locally finite ordered set, i.e., a (partially) ordered set
for which every segment [X, Y]={Z|XSZsY} is finite. The
incidence algebra I(P) of P over a field K is defined [2] as the algebra

of all functions from segments of P into K under the multiplication
(convolution)

JoX, 1) = 2 6 22, D).

(We write f(X, ¥) for f([X y]) ) Note that the algebra 7(P) has an
identity element b given by

(X, Y)-l, X =7,
=0, HX#TV.

TrroreM 1. Let P and Q be locally finite ordered sets. If I(P) and
1(Q) are isomorphic as K-algebras, then P and Q are isomorphic.

SKETCH OF PROOF. The idea is to show that the ordered set P can be
uniquely recovered from I(P). Let the elements of P be denoted Xa,
where a ranges over some index set. Then a maximal set of primitive
orthogonal idempotents for I(P) consists of the functions e, defined
by

AMS 1969 subject classifications. Primary 0620, 1650, 1660; Secondary 0510,
Key words and phrases. Ordered set, partially ordered set, incidence algebra,
peimitive orthogonal idempotene, outer ‘automorphism group, Hasse diagram.
1 The was supported by an NSF Graduate Fellowship and by the Air
Force Offic of Scentifc Research AT 44620.70.C-0070.
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ON THE FOUNDATIONS OF
COMBINATORIAL THEORY (VI):
THE IDEA OF GENERATING
FUNCTION

PETER DOUBILET, GIAN-CARLO ROTA
and

RICHARD STANLEY
MassacnusETTS INSTITUTE OF TECHNOLOGY

1. Introduction

Since Laplace di th between set theoretic
operations and operations on formal power series, and put it to use with great
success to solve a variety of combinatorial problems, generating functions {and
their i Jogues, namely, ch istic functions) have become an
essential probabilistic and combinatorial technique. A unified exposition of their
theory, however. is lacking in the literature. This is not surprising, in view ot the
fact that all t00 often generating functions have been considered to be simply an
application of the current methods of harmonic analysis. From several of the
examples discussed in this paper it will appear that this is not the case: in order
to extend the theory beyond its present reaches and develop new kinds of algebras
of ing functi suited: i ialand ilisti
it seems necessary to abandon the notion of group algebra (or semigroup
algebra), so current nowadays, and rely instead on an altogether different
approach.

The insufficiency of the notion of semigroup algebra is clearly seen in the
example of Dirichlet series. The functions

(a.n n— I

defined on the semigroup S of positive integers under multiplication, are charac-
ters of 5. They are not, however, all the characters of this semigroup, nor does
there seem to be a canonical way of separating these characters from the rest
(see, for example, Hewitt and Zuckerman [32]). In other words, there does not
seem to be a natural way of characterizing the algebra. of formal Dirichlet series
asa of the semi algebra completed under a suitable
topology) of the semigroup . In the present theory, however, the algebra of
formal Dirichlet series arises naturally from the incidence algebra (definition
below) of the lattice of finite cyclic groups, as we shall see.
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ABSTRACT

The concept of p that was 1 d by
Kolmogorov and expanded by Ofman provides a quantitative means
of measuring the complexity of computing a discrete function—i.e., a
function with finite domain and range. To be precise in the work
reported here, it is assumed that the computation is done by a special
type of finite-state machine, a (p, ¢) antomaton. After revicwing
the definitions in the field of algorithmic complexity, estimates are
made for the maximum possible algorithmic complexity of a discrete
function that can be computed on the simplest possible (p, } autom-
aton, a (2, 2); this allows of the lexiti
relative to (p, ¢) automata and those relative to (2, 2) automata.
Next, bounds are obtained on the complexity of matrix multiplication.
Finally, algorithmic complexity is related to the theory of permutation
groups on the domain and range of a function, and various criteria
are discussed for ensuring a function’s having relatively low complexity.

I. INTRODUCTION

JPL TECHNICAL REPORT NO. 32-999

In this report, two fundamental problems of computer
design are considered theoretically— minimizing_the
number of components (and, therefore, the cost) of the
computer, and minimizing the computation time re-
quied: We define « mathemstiol objec culled (1)
automaton, where p and g are integers > 2, is to
be regunded as an sbatract model of & computer, The
theory is easily modified to handle many other models
of computers. Each (p,q) automaton compues a specific
function and has u well defined nuraber of components
(stages} and computation time, Our objoct is to obtain
upper and lower bounds on the number of stages and
on the computation time required to calculate various
functions. The least number of stages and least time
required to compute a function f on any (p,q) 2utomaton
for fixed p and g is defined to be the algorithmic
complexity of f velative to (p,q) automata. A precise
definition of algorithmic complexity is given bolow.

In Section 11, we consider the largest possible algorith-
mic complexity that a function can have; and in Section
111, we discuss the complexity of matrix multiplication

[over the field GF(2)]. Finally, in Section IV, by using
the concept of equivalence of functions under permu.
tation groups, we obtain criteria that gusrantee that two
functions have approximately the same complexity, and
that 4 function has a relatively low complexity,

We bogin with the necessary definitions. Let V' de-
note the space of m-tuples over an alphabet of p sym-
bols. Then, to define the algorithmic complexity of a
function f: Vi~ V3, we must first define a (p,q) autom-
aton that computes /.

A. Definitian of (p, q) Aviomaton

A (p.q) automaton, with p,g > 2, is an autonomous
finite-state machine built of storage elements and gates.
The storage elements, or stages, can be in one of p states
at any time, comesponding to the p symbols of the
alphabet. The gates determine the next state of the
stages as & function of the immediately proceding states
of, at most, q stages. In digital cirouit terminology, there
s, at most, one level of gating, and the gates have a




PACIFIC JOURNAL OF MATHEMATICS
1. 30, No. 3, 1969

ZERO SQUARE RINGS
RICHARD P. STANLEY

A ring R for which «* =0 for all e R is called a zero-
square ring. Zero-square rings are easily seen to be locally
nilpotent. This leads to two problems: (1) constructing finitely
generated zero-square rings with large index of nilpotence,
and (2) investigating the structure of finitely generated zero-
square rings with given index of nilpotence. For the first
problem we construct a class of zero-square rings, called free
zero-square rings, whose index of nilpotence can be arbitrarily
large. We show that every zero-square ring whose generators
have (additive) orders dividing the orders of the generators
of some free zero-square ring is a homomorphic image of the
free ring. For the second problem, we assume R* 0 and
obtain conditions on the additive group R. of R (and thus
also on the order of ). When n =2, we completely charac-
terize R,. When n > 3 we obtain the smallest possible number
of generators of E., and the smallest number of generators
of order 2 in a minimal set of generators, We also determine
the possible orders of R.

Trivially every null ring (that is, R* = 0) is a zero-square ring.
From every nonnull commutative ring S we can make S x S x § into
a nonnull zero square ring R by defining addition componentwise and
multiplication by

(@ Uiy 2) X (B U2 22) = (0,0, 29, — )

In this example we always have B' = 0. If §is a field, then R is
an algebra over S. Zero-square algebras over a field have been in-
vestigated in [1].

iminaries. Every ring is '
for 0= (2 + y)* =+ oy + y + ¢ = 2y + yo. From anti-commutativity
we get 2R = 0, for yzx = y(—w2) = — (yx)z = wyz and (y2)r = — w(y2),
50 2uyz = 0 for all x,y,ze¢ R. It follows that a zero-square ring R
is commutative if and only if 2R* = 0.

If R is a zero-square ring with n generators, then any product
of m + 1 generators must contain two factors the same. By applying
anti-commutativity we get a square factor in the product; hence
R**=0. In particular, every zero-square ring is locally nilpotent.

If G is a finitely generated abelian group, then by the fundamental
theorem on abelian groups we have

(1) G=C, @ BC.,a|ay forlsisk-1,

By =
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JOURNAL OF COMBINATORIAL THEORY 10, 74-79 (1971)

On the Number of Open Sets of Finite Topologies
RICHARD P. STANLEY

Department of Mathematics, Harvard University,
Cambridge, Massachusetts 02138
Communicated by Gian-Carlo Rota

Received March 26, 1969

ABSTRACT

Recent papers of Sharp [4] and Stephen [5] have shown that any finitc
topology with n points which is not discrete contains <(3/4)2" open sets, and
that this inequality is best possible. We use the correspondence between finite
Tytopologies and partial orders to find all non-homeomorphic topologies
with n points and >(7/16)2 open sets. We determine which of these topologies
are 7,, and in the opposite direction we find finite 7, and non-T,, topologies
with a small number of open sets. The corresponding results for topologies
on a finite set are also given.

If Xis a finite topological space, then Xis determined by the minimal open
sets U, containing each of its points x. X is a Ty-space if and only if
U, = U, implies x = y for all points x, y in X. If X is not T, , the space £
obtained by identifying all points x, y € X such that U, = U, , is a Ty
space with the same lattice of open sets as X. Topological properties of the
operation X — X are discussed by McCord [3]. Thus for the present we
restrict ourselves to T, -spaces.

If X is a finite T,-space, define x < y for x, y & X whenever U, C U, .
This defines a partial ordering on X. Conversely, if P is any partially
ordered set, we obtain a Ty-topology on P by defining U, = {y/y < x}
for x € P. The open sets of this topology are the ideals (also called semi-
ideals) of P, i.e., subsets Q of P such that x € Q, y < x implies y € Q.

Let P be a finite partially ordered set of order p, and define
w(P) = j(P) 2-7, where j(P) is the number of ideals of P. If Q is another
finite partially ordered set, let P + Q denote the disjoint union (direct
sum) of Pand Q. Then j(P + Q) = j(P)j(Q) and w(P + Q) = w(P) (Q).
Let H,, denote the partially ordered set consisting of p disjoint points, so
w(H,) = 1.
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JOURNAL OF COMBINATORIAL THEORY (A) 14, 53-65 (1973)

The Conjugate Trace and Trace of a Plane Partition
RICHARD P. STANLEY*

Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

Communicated by the Late Theodore S. Motzkin
Received November 13, 1970

The con a ition are defined, and i
function for the number of plane partitions = of # with <r rows and largest part
<m, with conjugate trace f (or trace f, when m = o), is found. Various proper-
ties of this generating function are studied. One consequence of these properties
is a formula which can be regarded as a g-analog of a well-known result arising
in the representation theory of the symmetric group.

1. INTRODUCTION
A plane partition 7 of n is an array of non-negative integers,

My My My

My My g o

for which 3; ;n,; = n and the rows and columns are in non-increasing
order:

My = Ngans, Mg = Mgen,  forall i1

The non-zero entries ny; > 0 are called the parts of m. If there are A;
parts in the i-th row of =, so that, for some r,

MAZXh= = > =0,

then we call the partition A, =X, >+ =2, of the integer p =
A + =+ + A, the shape of =, denoted by A. We also say that = has

* The research was partially supported by an NSF Graduate Fellowship at Harvard
University and by the Air Force Office of Scientific Research AF 44620-70-C-0079.
53
Copyright © 1973 by Academic Press, Inc.
Al rights of reproduction in any form reserved.



Studies in Applied Mathematics. Vol L No. 2, June 1971, Copyright © 1971 by The Massachuserss Insitte of Technolog,

Theory and Application of Plane Partitions: Part 1

By Richard P. Stanley

1. Introduction
1. Definitions

1L Symmetric Functions
2. The four basic symmetric functions
3. Relations among the symmetric functions
4. An inner product

HI Schur Functions

‘The combinatorial definition

‘The correspondence of Knuth

Kosta's theorem and the orthonormality of the Schur functions
Further properties of Knuth's correspondence

The dual correspondence

10. The classical definition of the Schur functions

1. The Jacobi-Trudi identity

12. Skew plane partitions and the multiplication of Schur functions
13. Frobenjus® formula for the characters of the symmetric group

1V, Enumeration of Column-Strict Plane Partitions

14. Part restrictions
15. Shape restrictions, hook lengths. and contents

16. Row and colump restrictions

17. Young tableaus, ballot problems. and Schensted's theorem

V. Enumeration of Ordinary Plane Partitions
18. Row, colomn, and part bounds
19. The conjugate trace and trace of a plane partition
20. Asymptoties
VL. Conchusion
21. Open problems
* The research was supported by the Air Force Office of Scicn; . 7 -carch AT 4620-70-C-0070,
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September 1971, Copyright © 1971 by The Mossackusers nsttute of Tecknlogy

Studies in Applied Mothematics. Vel. L.

Theory and Application of Plane Partitions.
Part 2

By Richard P. Stanley

IV. Enumeration of column-strict plane partitions
14. Part festrictions
‘We are now ready to apply our theory of Schur functions to the enumeration of
plane partitions. The first such results were obtained by MacMahon [9), using an
entirely different technique. )
f p, is the number of plane partitions of » with a certain property, we say that
the generating function for these plane partitions is the (formal) power series

Zpx" (46)

We will regard the plane partitions counted by (46) to be enumerated if an explicit
expression can be found for (46). Only in rarc cases can an explicit expression be
found for p, itsell.

We will employ the notstion

«
®)=1-x @
®=0@...&%
For instance, the generating function for plane partitions with <1 row (ie.
ordinary partitions) is []=., (#)~*,  well-known result of Euler (sec Hardy and
Wright [6, Ch. 19]). The generating function for plane partitions with <I row
and <2 columns is 1/(2)!, and here we have the explicit expression p, =
4(2n + 3 + (—1y). In these examples, the generating functions can be determined
by, “inspection.” For more general types of plane partitions, the generating func-
tions still have a simple form, but there appears to be no “obvious” reason why:
this is so.

14.1. THEOReM. (Bender and Knuth [18]). Let S be any subset of the positive
integers. The generating function for column-strict plane partitions whose parts all
liein S is

es

[ e+,
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SUPERSOLVABLE LATTICESY)

R. P. STANLEY

1. Introduction

‘We shall investigate a certain class of finite lattices which we call supersolvable
Iamces (for a reason lo be made cledr shortly). These lattices L have a number of
with the counting of chains in L,
which can be formulated in terms of Mbbius functions. I am grateful to the referee
for his helpful suggestions, which have led to more general results with simpler proofs.

1.1, DEFINITION. Let L be a finite lattice and 4 a maximal chain of L. If, for
every chain K of L, the sublattice generated by K and 4 is distributive, then we call
4 an M-chain of L; and we call (L, 4) a supersolvable lattice (or SS-lattice).

Sometimes, by abuse of notation, we refer to L itself as an SS-lattice, the M-chain
4 being tacitly assumed.

A wide variety of examples of SS-lattices is given in the next section. In this
section, we define two concepts i with SS-latti viz., the
rank-selected Mobius invariant and the set of Jordan-Holder permutations. We shall
outline their connection with each other, together with some consequences. Proofs
will be given in later sections.

If L is an SS-lattice whose M-chain 4 has length # (or cardinality 7+ 1), then
every maximal chain X of L has length  since all maximal chains of the distributive
lattice generated by 4 and K have the same length. Hence if 0 denotes the bottom
element and T the top element of L, then L has defined on it a unique rank function
r:L~{0,1,2,... n} satisfying r(0)=0, r({)=n, r(»)=r(x)+1if y covers x (i.e., y>x
and no zeL satisfies y>z>x). Let S be any subset of the set n—1, where we use the
notation

k={1,2..k.

We will also write S={m;, m,,..., m,}~ to signify that m; <m, <--- <m,. Define a(S)
to be the number of chains

O=ypo<y <<y <1

inLsuchthatr(y)=m,i=1, 2,..., 5. I particular, if S= {}, then a(S) is the number

1) The research was supported by the Air Force Office of Scientific Rescarch, AF 44620-70-C-0079,
at MIT.

Presented by R.P. Dilworth. Received June 4, 1971. Accepted for publication in final form May 17,
1972,
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FINITE LATTICES AND JORDAN-HOLDER SETSY)

RICHARD P.STANLEY

1. Introduction

In this paper we extend some aspects of the theory of ‘supersolvable lattices’ 3]
to a more general class of finite lattices which includes the upper-semimodular lattices.
In particular, all conjectures made in [3] concerning upper-semimodular lattices will
be proved. For instance, we will prove that if L is finite upper-semimodular and if L’
denotes L with any set of ‘levels’ removed, then the Mébius function of L' alternates
in sign. Familiarity with [3] will be helpful but not essential for the understanding
of the results of this paper. However, many of the proofs are identical to the proofs
in [3] (once the machinery has been suitably generalized) and will be omitted.

2. Admit

ible labelings

Let L be a finjte lattice with bottom 0 and top T, such that every maximal chain
of £ has the same length n. Hence L has a rank function g satisfying ¢(0)=0, o(1)=n,
and o()=1+¢(x) whenever y covers x in L. We calt L a graded lattice.

Let I denote the set of join-irreducible clements of L. A labeling o of L is any map
@:1-+ P, where P denotes the positive integers. A labeling e is said to be natural if
z z'cl and z<z' implies w(z)<w(z'). If x<y in L and o is a fixed labeling of Z,
define

7(x, y)=min{w(z) | zel, x<xvz<y).

Thus, 7(x. ¥) is the least label of a join-irreducible which is less than or cqual to ¥
but not less than or equal to x. Note that y(x, ) is always defined since y is a join of
join-irreducibles. We are now able to make the key definition of this paper. A labeling
@ is said to be admissible if whenever x<: in L, there is a unique unrefinable chain
X=Xo <y <+ <X,y between x and y (50 m=g(¥)—o(x)) such that

¥ (Xor X1) 7 (), X2) S 0+ S P (K g X} 1)

We then call the pair (Z, ) an admissible lattice. Our motivation for this definition
is that admissibility scems to be the weakest condition for which Theorem 3.1 holds.

*) The research was supported by a Miller Research Fellowship at the University of California
at Berkeley.

Presented by R. P Dilworth. Received July 9, 1973. Accepted for publication in final form June 20, 1974.
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ACYCLIC ORIENTATIONS OF GRAPHS*

Richard P. STANLEY

Department of Mathematics, University of California,
Berkeley, Calif. 94720, USA

Received 1 June 1972

Abstract. Let G be a finite graph with p vertices and x its chromatic polyn A combinato-
rial interpretation is given to the positive integer (~1)Px(~A), where A is a positive integer, in
terms of acyclic orientations of G. In particular, (~1)Px(~1) is the number of acyclic orienta-
tions of G. An application is given to the enumeration of labeled acyclic digraphs. An algebr
of full binomial type, in the sense of Doubilet—Rota~Stanley, is constructed which yields the
generating functions which occur in the above context.

1. The chromatic polynomial with negative arguments

Let G be a finite graph, which we assume to be without loops or mul-
tipie edges. Let ¥ = V(G) denote the set of vertices of G and X = X(G)
the set of edges. An edge e € X is thought of as an unordered pair {1, v}
of two distinct vertices. The integers p and g denote the cardinalities of
Vand X, i An of G is an assi; of a direc-
tion to each edge {u, v}, denoted by u v or v > u, as the case may be.
An orientation of G is said to be acyclic if it has no directed cycles.

Let x (\) = x(G, \) denote the chromatic polynomial of G evaluated
at A € C. If A is a non-negative integer, then x()) has the following
rather unorthodox interpretation.

Proposition 1.1. x()) is equal to the number of pairs (0, 0), where o is
any map o: V -+ {1,2,..., \}and 0 is an orientation of G, subject to the
two conditions:

(a) The orientation () is acyclic.

(b) If u~ vin the orientction 0, then o(u) > o (v).
* The reseach was supported by a Miller Research Fellowship.



19.
20.

21.
22.

23.
24.

25.
26.
217.

28.

29.
30.

3L

32.

33.

Acyclic orientations of graphs, Discrete Math. 5 (1973), 171-178.

Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J. 40 (1973),
607-632.

Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974),
295-299.

Finite lattices and Jordan-Hélder sets, Algebra Universalis 4 (1974), 361-371.
Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194-253.

Combinatorial reciprocity theorems, in Combinatorics (Part 2) (M. Hall, Jr., and J. H. Van Lint, eds.),
Mathematical Centre Tracts 56, Mathematisch Centrum, Amsterdam, 1974, pp. 107-118.

Generating functions, in Studies in Combinatorics (G.-C. Rota, ed.), Mathematical Association of
America, 1978, pp 100-141.

Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc. 81 (1975), 133-135.

Branchings and partitions (with L. Carlitz), Proc. Amer. Math. Soc. 53 (1975), 246-249.

The Upper Bound Conjecture and Cohen-Macaulay rings, Studies in Applied Math. 54 (1975), 135-142.

Binomial posets, Mobius inversion, and permutation enumeration, J. Combinatorial Theory (A) 20
(1976), 336-356.

Stirling polynomials (with 1. Gessel), J. Combinatorial Theory (A) 24 (1978), 24-33.
Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83.

Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings,
Duke Math. J. 43 (1976), 511-531.

Relative invariants of finite groups generated by pseudo-reflections, J. Algebra 49 (1977), 134-148.

Some combinatorial aspects of the Schubert calculus, in Combinatoire et Réprésentation du Groupe

Curtis Greene () Richard Stanley: The Legend Part I: Early Ye June 23, 2014

10 / 12



19.
20.

21.
22.

23.
24.

25.
26.
217.

28.

29.
30.

3L

32.

33.

Acyclic orientations of graphs, Discrete Math. 5 (1973), 171-178.

Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J. 40 (1973),
607-632.

Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974),
295-299.

Finite lattices and Jordan-Hélder sets, Algebra Universalis 4 (1974), 361-371.
Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194-253.

Combinatorial reciprocity theorems, in Combinatorics (Part 2) (M. Hall, Jr., and J. H. Van Lint, eds.),
Mathematical Centre Tracts 56, Mathematisch Centrum, Amsterdam, 1974, pp. 107-118.

Generating functions, in Studies in Combinatorics (G.-C. Rota, ed.), Mathematical Association of
America, 1978, pp 100-141.

Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc. 81 (1975), 133-135.

Branchings and partitions (with L. Carlitz), Proc. Amer. Math. Soc. 53 (1975), 246-249.

The Upper Bound Conjecture and Cohen-Macaulay rings, Studies in Applied Math. 54 (1975), 135-142.

Binomial posets, Mobius inversion, and permutation enumeration, J. Combinatorial Theory (A) 20
(1976), 336-356.

Stirling polynomials (with 1. Gessel), J. Combinatorial Theory (A) 24 (1978), 24-33.
Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83.

Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings,
Duke Math. J. 43 (1976), 511-531.

Relative invariants of finite groups generated by pseudo-reflections, J. Algebra 49 (1977), 134-148.

Some combinatorial aspects of the Schubert calculus, in Combinatoire et Réprésentation du Groupe

Curtis Greene () Richard Stanley: The Legend Part I: Early Ye June 23, 2014

10 / 12



LINEAR HOMOGENEOUS DIOPHANTINE EQUATIONS
AND MAGIC LABELINGS OF GRAPHS

RICHARD P. STANLEY

1. Introduction. Let G be a finite graph allowing loops and multiple edges.
Hence G is o psoudograph in the terminology of [10]. We shall denote the set
of vertices of @ by V, the set of edges by E, the number |V of vertices by p,
and the number || of edges by ¢. Also if an edge ¢ is incident to a vertex v, we
write v € . Any undefined graph-theoretical terminology used hero may be
found in [10). A magic labeling of G of index r is an assignment L:E —
{0,1,2, -+ of a nonnegative integer L(e) to each edge ¢ of G such that for each
vertex v of G the sum of the labels of all edges incident to vis r (counting each loop
at v once only). In other words,

@ LY =r forally € V.

For each edge e of G let 2z, be an indeterminate and let z be an additional
indeterminate. For each vertex v of G define the homogeneous linear form

@ Po=z= 3z, vEV,

where the sum is over all ¢ incident to v. Hence by (1) a magic labeling I, of G
corresponds to a solution of the system of equations

® P, =0, vEV,
in nonnegative integers (the value of z is the index of L). Thus the theory of
magic labelings can be put into the more general context of linear homogeneous
diophantine equations. Many of our results will be given in this more general
context and then specialized to magic labelings.

Tt may happen that there are edges ¢ of G that are always labeled 0 in any
‘magic labeling. If this is the case, then these edges may be ignored in so far as
studying magic labelings is concerned; so we may assume without loss of gen-
erality that for any edge e of G there is a magic labeling L of G for which L(e) > 0.
We then call G a positive pseudograph. If in a magic labeling L of G every edge
receives a positive label, then we call L a positive magic labeling. If Ly and L,
aro magie labelings, we define their sum L = Ly + Ly by L(e) = Lu(e) + La(e)
for every edge e of G. Clearly if Ly and L, are of index r, and r, , then L is
‘magic of index r, + r, . Now note that every positive pscudograph G possesses
& positive magic labeling L, e.g., for each edge ¢ of G let L, be a magic labeling
positive on ¢, and let L = 3 L, .

Reccived October 1, 1972, Revisions received April 30, 1973, This research was supported
by a Miller Research Fellowship at the University of California at Berkeley.
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MAGIC LABELINGS OF GRAPHS, SYMMETRIC
MAGIC SQUARES, SYSTEMS OF PARAMETERS,
AND COHEN-MACAULAY RINGS

RICHARD P. STANLEY

1. Introduction.

Let T be a finite graph allowing loops and multiple edges, so that T'is a
‘pseudograph in the terminology of [5). Let B = E(T) denote the set of edges
of T and N the set of non-negative integers. A magic labeling of T of index
is an assignment L : £ — N of a non-negative integer L(e) to each cdge e of T
such that for each vertex v of T, the sum of the labels of all edges incident to v
is r (counting cach loop at v once only). We will assume that we have chosen
some fixed ordering ¢, , e, -+ , e, of the edges of T; and we will identify the
magic labeling L with the vector a = (a1, s, -+ , @) € N°, where a, = L(e,).

Tet H(r) denote the number of magic labelings of T of index . It may happen
that there are edges ¢ of T' that are always labeled 0 in any magic labeling. If
these edges are removed, we obtain a pseudograph A satisfying the two condi-
tions: (i) H() = Ha(r) for all r € N, and (ii) some magic labeling I of &
satisfies L(e) > 0 for every edge ¢ of A We call a pscudograph A satisfying (i) a
positive pseudograph. By (i) and (i), in studying the function () it suffices
to assume that I' is positive. A magic labeling L of T' satisfying L(e) > 0 for
all edges ¢ € E(T) is called a positive magic labeling. Any undefined graph
theory terminology used in this paper may be found in any textbook on graph
theory, e.g., (5],

Tn [14] the following two theorems were proved.

Tugonen 1.1. (14, Thm. 1.1 Let T be a finite pseudograph. Then either
He(r) = o, (the Kronecker delta), or else there exist polynomials Pv(r) and Qu(r)
such that Hy(r) = Pr(r) + (=1)’Qe(r) for all r € N.

Trrorey 1.2 [14, Prop. 5.2]. Let T be a finite positive pseudograph with at
Least one edge. Then deg Po(r) = q — p + b, where q is the number of edges of T,
P the number of vertices, and b the number of connected components which are
bipartite.

Tor reasons which will become clear shortly, we define the dimension of T,
denoted dim T, by dim I' = 1 + deg Pr(r). In (14, p. 630], the problem was
raised of obtaining a reasonable upper bound on deg Qr(r). It is trivial that
deg Qr(r) < deg Pr(r), and [14, Cor. 2.10] gives a condition for Qu(r) = 0.
Empirical evidence suggests that if I'is a “typical” pseudograph, then deg Qr(r)

Received November 11, 1975.
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A combinatorial reciprocity theorem is a result which establishes a
kind of duality between two related enumeration problems. This rather
vague concept will become clearcr as more and more examples of such
theorems are given. We will begin with simple, known results and
see to what extent they can be generalized. The culmination of our
efforts will be the “Monster Reciprocity Theorem” of Section 10,

* The research was supported by a Miller Research Fellowship at the Unives

California at Berkeley and by NSF Grant No. P36739 at Massachusetts Institute ol
Technology.
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From Chicago (movie version, 2002), “Mama’s Good To You" (excerpt)
Sung by Queen Latifah.

Ask any of the chickies in my pen

They'll tell you I'm the biggest Mutha. . . .Hen
I love them all and all of them love me -
Because the system works;

the system called reciprocity!
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Let’s all stroke together
Like the Princeton crew -
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Let’s all stroke together

Like the Princeton crew -
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