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A bijection for pairs of paths

Grand Dyck paths and Dyck path prefixes

We consider two kinds of lattice paths with steps U = (1, 1) and
D = (1,−1) starting at the origin.

Grand Dyck paths end on the x-axis (or at height 1 for paths of odd
length):

Gn = set of Grand Dyck paths
of length n.

Trivial: |Gn| =
( n
b n2 c
)
.

Dyck path prefixes never go below x-axis, but can end at any
height:

Pn = set of Dyck path prefixes
of length n.

Not so trivial: |Pn| =
( n
b n2 c
)
.
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A bijection for pairs of paths

A classical bijection ξ : Pn → Gn

Pn

7→

ξ
Gn

I Match Us and Ds that
“face" each other.

I Among the unmatched
steps (which are all Us),
change the lefmost half
of them into D steps.

To reverse, simply change unmatched Ds into Us.
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A bijection for pairs of paths

k-tuples of non-crossing paths

For lattice paths P and Q, write Q ≤ P if Q is weakly below P .

(P1, . . . ,Pk) is a k-tuple of nested paths if Pk ≤ · · · ≤ P1.

G(k)
n = k-tuples of nested paths in Gn

Gessel–Viennot, MacMahon:

|G(k)
n | = det

((
n

b n
2 c − i + j

))k

i,j=1

=

d n
2 e∏

i=1

b n
2 c∏

j=1

k∏
l=1

i + j + l − 1
i + j + l − 2

P(k)
n = k-tuples of nested paths in Pn

|P(k)
n | = ?
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A bijection for pairs of paths

Richard Stanley to the rescue

Computing the first few terms, it seems that

|G(k)
n | = |P(k)

n |.

I asked Richard if this was known...

Yes!

[EC1, Exercise 3.47(f)]

Prove that the following posets have the same order polynomial:
I q× p (product of two chains),
I pairs {(i , j) : 1 ≤ i ≤ j ≤ p + q − i , 1 ≤ i ≤ q} ordered by

(i , j) ≤ (i ′, j ′) if i ≤ i ′ and j ≤ j ′.

For p = q, this is equivalent to |G(k)
n | = |P(k)

n |.
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A bijection for pairs of paths

Richard Stanley to the rescue

This was proved by Robert Proctor in the following form:

Theorem (Proctor ’83)

# plane partitions inside
rectangle shape (pq)
with entries ≤ k

=

# shifted plane partitions
inside shifted shape

[p+q−1, p+q−3, . . . , p−q+1]
with entries ≤ k

Proctor’s proof uses representations of semisimple Lie algebras, and
it is not bijective.
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A bijective proof for k = 2

E. ’14: Explicit bijection G(2)
n → P(2)

n .

P

Q

G(2)
n

↓

P+Q
2

P1

Q1

Step 1:

Consider the average
path P+Q

2 .

Find its unmatched Ds,
and turn them into Us to
get P1 and Q1.
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A bijective proof for k = 2

↓

P1

Q1

P2

Q2

Step 2:

Let Q2 be the path
obtained by flipping the
steps of Q1 that end
strictly below the x-axis.

Let P2 = P1.
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P2

Q2

P2−Q2
2

↓

P3

Q3

P3−Q3
2

P(2)
n

Step 3:

Find the unmatched D
steps of P2−Q2

2 .

Let P3 and Q3 be the paths
obtained by flipping the
corresponding steps of P2
and Q2.
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A bijective proof for k = 2

Theorem (E.’14)
This map is a bijection between G(2)

n and P(2)
n .

It can be generalized by allowing different endpoints for the paths.
It gives a bijective proof of Proctor’s result for k = 2.

Open problem: Generalize to a bijection between G(k)
n and P(k)

n .
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The bijection in terms of walks

Pairs (P,Q) of lattice paths correspond to walks w in the plane
with unit steps N, S ,E ,W starting at the origin:

P Q w
U U 7→ E
U D 7→ N
D U 7→ S
D D 7→ W

P

Q
3

5 8 13

20 18

4

6 7

9 10 11

14
19

1

w

2

w

12

w 15w 16w 17w
21

w
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The bijection in terms of walks

Our bijection for paths gives bijections for NSEW -walks of length n:

y = 0 (0, 0) (1, 0)

walks in
first octant

ending anywhere
↔

walks in
first quadrant

ending on x-axis
↔

walks in
upper half-plane

ending at
(0, 0) or (1, 0)
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The bijection in terms of walks
A related result

A generalization

More generally, for every i ≥ j ≥ 0 with i + j ≡ n (mod 2), we
have bijections

(i , j)
sh(i , j)

(i , j)
x = −b i

2c
(0, j) (1, j)

walks in
first octant

ending in sh(i , j)
↔

walks in
first quadrant
ending at (i , j)

↔
walks in upper half-plane
ending at (0, j) or (1, j)
with leftmost point

on x = −b i
2c
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Example

sh(i, j)

3

5 8

20

13

18

4

6 7

9 10 11

14

19

1 2

12

151617

21

(i, j)

1

4 8

1320 18
2 12

151617

19

21

3

5 6 7

9 10 11

14

(i, j)

walks in first octant
ending in sh(i , j) ↔ walks in first quadrant

ending at (i , j)
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A related result

Walks ending on the diagonal

Theorem (Bousquet-Mélou, Mishna ’10)
The number of walks of length 2m in the first octant ending on the
diagonal is the product CmCm+1 of Catalan numbers.

Proof uses kernel method and summation of hypergeometric seq.

We now get a bijective proof by combining our bijection when
i = j = 0

(0, 0)

walks in first octant
ending on diagonal

↔ walks in first quadrant
ending at (0, 0)

together with a bijection of Cori–Dulucq–Viennot ’86
(or a more direct one of Bernardi ’07).
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Descents on 321-avoiding involutions
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Definitions
Distribution of maj
Distribution of Des

321-avoiding involutions

π ∈ Sn is 321-avoiding if π(1)π(2) . . . π(n) has no decreasing
subsequence of length 3.

π is an involution if π−1 = π.

In(321) = set of 321-avoiding involutions of length n

Theorem (Simion-Schmidt ’85)

|In(321)| =

(
n
bn2c

)
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Definitions
Distribution of maj
Distribution of Des

Descents on 321-avoiding involutions

i is a descent of π if π(i) > π(i + 1).

Des(π) = descent set of π

maj(π) =
∑

i∈Des(π)

i

Theorem (Barnabei-Bonetti-E.-Silimbani, Dahlberg-Sagan ’14)

∑
π∈In(321)

qmaj(π) =

(
n
bn2c

)
q

where
(n

j

)
q

= (1−qn)(1−qn−1)...(1−qn−j+1)
(1−qj )(1−qj−1)...(1−q)

.
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Richard Stanley again

From: Richard Stanley
Sent: Wednesday, January 15, 2014
To: Sergi Elizalde

Hi Sergi,

I like your paper (with various coauthors) on descent sets of

321-avoiding involutions. Perhaps you would be interested to

know that the result is easy to prove nonbijectively and extends

(in principle) to k,k-1,...,2,1-avoiding involutions. Namely, it

follows from Lemma 7.23.1 and Exercise 7.16(a) of EC2 that ...
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Richard Stanley again

∑
π∈In(321)

qmaj(π) [Lem. 7.23.1]
= · · · =

∑
T∈SYTn
≤2 rows

qmaj(T )

[Prop. 7.19.11]
= (1− q)(1− q2) · · · (1− qn)

∑
λ`n
≤2 parts

sλ(1, q, q2, . . .)

[Ex. 7.16a]
= (1− q) · · · (1− qn) hb n2 c(1, q, q

2, . . .)hd n2 e(1, q, q
2, . . .)

=

(
n
bn2c

)
q
.
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A bijective proof

Recall that |Gn| =
( n
b n2 c
)
.

Gn is in bijection with the set Λn of partitions
whose Young diagram fits inside a bn2c× d

n
2e box.(

n
bn2c

)
q

=
∑
λ∈Λn

qarea(λ)
λ = (6, 3, 2, 2)
area(λ) = 13

To give a bijective proof of∑
π∈In(321)

qmaj(π) =

(
n
bn2c

)
q

we need a bijection In(321)→ Λn that maps maj to area.
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A refinement

For λ ` m, define its hook decomposition HD(λ) to be the set of
hook lengths obtained by repeatedly peeling off the largest hook.

λ = (4, 3, 3, 2, 1)

HD(λ) = {1, 4, 8}

Theorem (Barnabei–Bonetti–E.–Silimbani ’14)
There is a bijection In(321)→ Λn that maps Des to HD (and thus
maj to area).

Proof: Composition of bijections

In(321) −→ Pn −→ Gn −→ Λn
Des ↔ Peak set ↔ Peak set ↔ HD
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The bijections

In(321) −→ Pn −→ Gn −→ Λn
Des ↔ Peak set ↔ Peak set ↔ HD

3 4 | 1 2 7 9 | 5 10 | 6 8 11 12 ∈ In(321)

↓ RSK

1 2 5 6 8 1112
3 4 7 9 10

Des = {2, 6, 8}

7→
2

6

8

Pn

Peak set = {2, 6, 8}
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2

6

8
7→
ξ

2

6

8
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123456
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5
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Conclusion

If you want to know all the material in EC1 and EC2

start learning it at an early age.

(2) Richard Stanley
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Happy 70th Birthday, Richard!
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