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A bijection for pairs of paths

Tidbit 1
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

Grand Dyck paths and Dyck path prefixes

We consider two kinds of lattice paths with steps U = (1,1) and
D = (1, —1) starting at the origin.

Grand Dyck paths end on the x-axis (or at height 1 for paths of odd
length):

G, = set of Grand Dyck paths
of length n.
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A bijection for pairs of paths

Grand Dyck paths and Dyck path prefixes

We consider two kinds of lattice paths with steps U = (1,1) and
D = (1, —1) starting at the origin.

Grand Dyck paths end on the x-axis (or at height 1 for paths of odd
length):

G, = set of Grand Dyck paths
of length n.

Dyck path prefixes never go below x-axis, but can end at any
height:
Pn = set of Dyck path prefixes

/V\A/\/ of length n.
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

Grand Dyck paths and Dyck path prefixes

We consider two kinds of lattice paths with steps U = (1,1) and
D = (1, —1) starting at the origin.

Grand Dyck paths end on the x-axis (or at height 1 for paths of odd
length):

G, = set of Grand Dyck paths
of length n.

Trivial: |Gp| = (LZJ)'

Dyck path prefixes never go below x-axis, but can end at any
height:
Pn = set of Dyck path prefixes

/V\A/\/ of length n.
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

Grand Dyck paths and Dyck path prefixes

We consider two kinds of lattice paths with steps U = (1,1) and
D = (1, —1) starting at the origin.

Grand Dyck paths end on the x-axis (or at height 1 for paths of odd
length):

G, = set of Grand Dyck paths
of length n.

Trivial: |Gp| = (LZJ)'

Dyck path prefixes never go below x-axis, but can end at any
height:
Pn = set of Dyck path prefixes

/V\A/\/ of length n.
Not so trivial: |P,| = (LgJ)'
2
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

A classical bijection £ : P, — G,
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A bijection for pairs of paths

A classical bijection £ : P, — G,

Pn
/\\/\/M » Match Us and Ds that

“face" each other.
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

A classical bijection £ : P, — G,

Pn
/\\/\/M » Match Us and Ds that

“face" each other.

1€ » Among the unmatched
Gn steps (which are all Us),

/\ AL change the lefmost half
NPV, \\/\/ of them into D steps.
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

A classical bijection £ : P, — G,

Pn
/\\/\/M » Match Us and Ds that

“face" each other.

1€ » Among the unmatched
Gn steps (which are all Us),

/\ AL change the lefmost half
NPV, \\/\/ of them into D steps.

To reverse, simply change unmatched Ds into Us.
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

k-tuples of non-crossing paths

For lattice paths P and Q, write @ < P if Q is weakly below P.
(P1,...,Px) is a k-tuple of nested paths if P, <--- < P;.
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

k-tuples of non-crossing paths

For lattice paths P and Q, write @ < P if Q is weakly below P.
(P1,...,Px) is a k-tuple of nested paths if P, <--- < P;.

Q- k-tuples of nested paths in G,

P = k-tuples of nested paths in P,
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

k-tuples of non-crossing paths

For lattice paths P and Q, write @ < P if Q is weakly below P.
(P1,...,Px) is a k-tuple of nested paths if P, <--- < P;.

,(,k) = k-tuples of nested paths in G,
Gessel-Viennot, MacMahon:

P = k-tuples of nested paths in P,
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

k-tuples of non-crossing paths

For lattice paths P and Q, write @ < P if Q is weakly below P.
(P1,...,Px) is a k-tuple of nested paths if P, <--- < P;.

,(,k) = k-tuples of nested paths in G,
Gessel-Viennot, MacMahon:

k
|g£k>|—det<< S ))
[5] =i+ i1

_ ﬁl+j+/—1
o i+j+1-2
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

Richard Stanley to the rescue

Computing the first few terms, it seems that

689 = P9}

| asked Richard if this was known...

Two EC tidbits



Lattice paths

Grand Dyck paths and Dyck path prefixes
A bijection for pairs of paths

Richard Stanley to the rescue

Computing the first few terms, it seems that

651 = P37
| asked Richard if this was known...

Yes!

[EC1, Exercise 3.47(f)]
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Lattice paths

Grand Dyck paths and Dyck path prefixes
A bijection for pairs of paths

Richard Stanley to the rescue

Computing the first few terms, it seems that

651 = P37
| asked Richard if this was known...

Yes!
[EC1, Exercise 3.47(f)]

Prove that the following posets have the same order polynomial:

» g X p (product of two chains),
» pairs {(i,j) 1 <i<j<p+q—i,1<i<q} ordered by
(i,j) < (i",j)ifi<iandj<j.
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Lattice paths

Grand Dyck paths and Dyck path prefixes
A bijection for pairs of paths

Richard Stanley to the rescue

Computing the first few terms, it seems that

651 = P37
| asked Richard if this was known...

Yes!
[EC1, Exercise 3.47(f)]

Prove that the following posets have the same order polynomial:

» g X p (product of two chains),
» pairs {(i,j) 1 <i<j<p+q—i,1<i<q} ordered by
(i,j) < (i",j)ifi<iandj<j.
For p = g, this is equivalent to \Q,(,k)\ = \P,gk)].



Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

Richard Stanley to the rescue

This was proved by Robert Proctor in the following form:

Theorem (Proctor '83)

# shifted plane partitions
inside shifted shape
[p+q—1,p+q-3,...,p—q+1]
with entries < k

# plane partitions inside
rectangle shape (p?) =
with entries < k
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

Richard Stanley to the rescue

This was proved by Robert Proctor in the following form:

Theorem (Proctor '83)

# shifted plane partitions
inside shifted shape
[p+q—1,p+q-3,...,p—q+1]
with entries < k

# plane partitions inside
rectangle shape (p?) =
with entries < k

Proctor's proof uses representations of semisimple Lie algebras, and
it is not bijective.
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

A bijective proof for k =2

E. '14: Explicit bijection G2 — P,

?
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Lattice paths

Grand Dyck paths and Dyck path prefixes
A bijection for pairs of paths

A bijective proof for k =2

E. '14: Explicit bijection G2 — P,

/ />, Step 1:

Consider the average
path P%Q.
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Lattice paths

Grand Dyck paths and Dyck path prefixes
A bijection for pairs of paths

A bijective proof for k =2

E. '14: Explicit bijection G2 — P,

@

Step 1:
Consider the average
path P%Q.

Find its unmatched Ds,
and turn them into Us to
get P; and Q1.
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

A bijective proof for k =2

(O]
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

A bijective proof for k =2

Q1 Step 2:

\/\/ Let Q> be the path
!

obtained by flipping the
steps of @ that end
@ strictly below the x-axis.

P, Let P, = P4.
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

A bijective proof for k =2
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

A bijective proof for k =2

Step 3:

Find the unmatched D
steps of @.

_2. .
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Lattice paths

Grand Dyck paths and Dyck path prefixes
A bijection for pairs of paths

A bijective proof for k =2

Step 3:

Find the unmatched D
steps of @.

Let P3 and Q3 be the paths
obtained by flipping the
corresponding steps of P

and Q.
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

A bijective proof for k =2

Theorem (E.'14)
This map is a bijection between Q,(,Z) and P,(,z).
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

A bijective proof for k =2

Theorem (E.'14)
This map is a bijection between Q,(,Z) and P,(,z).

It can be generalized by allowing different endpoints for the paths.
It gives a bijective proof of Proctor’s result for k = 2.
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Lattice paths Grand Dyck paths and Dyck path prefixes

A bijection for pairs of paths

A bijective proof for k =2

Theorem (E.'14)
This map is a bijection between Q,(,Z) and P,(,2).

It can be generalized by allowing different endpoints for the paths.
It gives a bijective proof of Proctor’s result for k = 2.

Open problem: Generalize to a bijection between Q,(,k) and P,(,k).
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The bijection in terms of walks

Walks in the plane A related result

The bijection in terms of walks

Pairs (P, Q) of lattice paths correspond to walks w in the plane
with unit steps N, S, E, W starting at the origin:

P @ w
u U — E
u D — N
D U ~ S
D D —~ W
21
¥ w 20438 16 15
Q 5|6 s 13|15
Sl
Y 9 10 11
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The bijection in terms of walks

Walks in the plane A related result

The bijection in terms of walks

Our bijection for paths gives bijections for NSEW-walks of length n:

. . walks in
walks in walks in upper half-plane
first octant > first quadrant > pper hait-p
. . ending at
ending ending on or
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The bijection in terms of walks

Walks in the plane A related result

A generalization

More generally, for every i > j > 0 with i 4+ j = n (mod 2), we
have bijections

walks in upper half-plane

walks in walks in endine at or
first octant — first quadrant > ng .
LT . with leftmost point
ending in ending at i
onx=—|3]
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The bijection in terms of walks

Walks in the plane A related result

Example

17 16 15

walks in first octant walks in first quadrant
ending in ending at
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The bijection in terms of walks

Walks in the plane A related result

Walks ending on the diagonal

Theorem (Bousquet-Mélou, Mishna '10)

The number of walks of length 2m in the first octant ending on the
diagonal is the product Cp,Cp11 of Catalan numbers.

Proof uses kernel method and summation of hypergeometric seq.

walks in first octant
ending on
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The bijection in terms of walks

Walks in the plane A related result

Walks ending on the diagonal

Theorem (Bousquet-Mélou, Mishna '10)

The number of walks of length 2m in the first octant ending on the
diagonal is the product Cp,Cp11 of Catalan numbers.

Proof uses kernel method and summation of hypergeometric seq.
We now get a bijective proof by combining our bijection when
i=j=0

walks in first octant o walks in first quadrant
ending on ending at

together with a bijection of Cori—-Dulucq—Viennot '86
(or a more direct one of Bernardi '07).
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Definitions
Distribution of mayj

321-avoiding involutions Distribution of Des

Tidbit 2

Descents on 321-avoiding involutions
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Definitions
Distribution of maj
321-avoiding involutions Distribution of Des

321-avoiding involutions

m € Sy is 321-avoiding if 7(1)7(2)...m(n) has no decreasing
subsequence of length 3.

7 is an involution if 7= = 7.

Z,(321) = set of 321-avoiding involutions of length n
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Definitions
Distribution of maj
321-avoiding involutions Distribution of Des

321-avoiding involutions

m € Sy is 321-avoiding if 7(1)7(2)...m(n) has no decreasing
subsequence of length 3.

7 is an involution if 7= = 7.

Z,(321) = set of 321-avoiding involutions of length n

Theorem (Simion-Schmidt '85)

a(320)] = (LJ)
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Definitions
Distribution of maj
321-avoiding involutions Distribution of Des

Descents on 321-avoiding involutions

i is a descent of 7 if w(i) > 7(i + 1).

Des(7) = descent set of 7

maj(m) = Z i

i€Des()
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Definitions
Distribution of maj
321-avoiding involutions Distribution of Des

Descents on 321-avoiding involutions

i is a descent of 7 if w(i) > 7(i + 1).

Des(7) = descent set of 7

maj(m) = Z i

i€Des()

Theorem (Barnabei-Bonetti-E.-Silimbani, Dahlberg-Sagan '14)

> (1),

TETH(321)
o _ (1=g")(1-¢""1)..(1=¢g" )
where (7) = i) (=)
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Definitions
Distribution of maj
321-avoiding involutions Distribution of Des

Richard Stanley again

From: Richard Stanley
Sent: Wednesday, January 15, 2014
To: Sergi Elizalde

Hi Sergi,

I like your paper (with various coauthors) on descent sets of
321-avoiding involutions. Perhaps you would be interested to
know that the result is easy to prove nonbijectively and extends
(in principle) to k,k-1,...,2,1-avoiding involutions. Namely, it
follows from Lemma 7.23.1 and Exercise 7.16(a) of EC2 that ...
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Definitions
Distribution of maj
321-avoiding involutions Distribution of Des

Richard Stanley again

3 g [Lem. 7:23.1] 3 gmam)

TE€TA(321) TeSYT,

<2rows

[Prop.;.19.11] (1 . q)(l _ q2) . (1 _ qn) Z 5/\(]_7 q, q27 .. )

Abn
<2parts

(1—q)---(1—q") h=(1,9.9% .. )h=1(1,9.4%, .. )

N (LJ)

Two EC tidbits
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Definitions
Distribution of maj
321-avoiding involutions Distribution of Des

A bijective proof

Recall that |G,| = (LgJ)'

Gn is in bijection with the set A, of partitions I
whose Young diagram fits inside a [ 5| x [ 5] box.

(LZJ>q =2 A= (6.3.2.2)

AEAn area(\) = 13
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Definitions
Distribution of maj
321-avoiding involutions Distribution of Des

A bijective proof

Recall that |G,| = (LgJ)'

Gn is in bijection with the set A, of partitions I
whose Young diagram fits inside a [ 5| x [ 5] box.

(LZJ>q =2 A= (6.3.2.2)

AEA area(\) = 13

To give a bijective proof of

T g = (L

m€Tn(321)

),

we need a bijection Z,(321) — A, that maps maj to area.

Two EC tidbits
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Definitions
Distribution of mayj
321-avoiding involutions Distribution of Des

A refinement

For A = m, define its hook decomposition HD(\) to be the set of
hook lengths obtained by repeatedly peeling off the largest hook.

A=(4,3,3,2,1)

HD()\) = {1,4,8)
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Definitions
Distribution of mayj
321-avoiding involutions Distribution of Des

A refinement

For A = m, define its hook decomposition HD(\) to be the set of
hook lengths obtained by repeatedly peeling off the largest hook.

A=(4,3,3,2,1)

HD()\) = {1,4,8)

Theorem (Barnabei—Bonetti—E.—Silimbani '14)

There is a bijection Z,(321) — A, that maps Des to HD (and thus
maj to area).
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Definitions
Distribution of mayj
321-avoiding involutions Distribution of Des

A refinement

For A = m, define its hook decomposition HD(\) to be the set of
hook lengths obtained by repeatedly peeling off the largest hook.

A=(4,3,3,2,1)

HD()\) = {1,4,8)

Theorem (Barnabei—Bonetti—E.—Silimbani '14)

There is a bijection Z,(321) — A, that maps Des to HD (and thus
maj to area).

Proof: Composition of bijections

Z,(321) — P, — G, — A,
Des < Peakset <« Peakset <« HD
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Definitions
Distribution of mayj
321-avoiding involutions Distribution of Des

The bijections

T,(321) — P, — G, — A
Des < Peakset ¢+ Peakset <« HD

34/1279|510(68 1112 € Z,(321)

1 RSK

—_
N

5/6[8[11]12
314/7]9]10 H

Des = {2,6,8} Peak set = {2,6,8}
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Definitions
Distribution of mayj
321-avoiding involutions Distribution of Des

The bijections

I,(321) — P, — Gn — Ay
Des < Peakset <+ Peakset <« HD

Peak set = {2,6,8}
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Definitions
Distribution of mayj
321-avoiding involutions Distribution of Des

The bijections

Z.(321) — P, — G,  — A,
Des < Peakset <« Peakset <« HD

Peak set = {2,6,8}
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Definitions
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321-avoiding involutions Distribution of Des

The bijections

Z.(321) — P, — G,  — A,
Des < Peakset <« Peakset <« HD

Peak set = {2,6,8}
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Definitions
Distribution of maj
321-avoiding involutions Distribution of Des

The bijections

Z.(321) — P, — G,  — A,
Des < Peakset <« Peakset <« HD

Peak set = {2,6,8} HD = {2,6,8}
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Definitions
Distribution of mayj
321-avoiding involutions Distribution of Des

Conclusion

If you want to know all the material in EC1 and EC2

Two EC tidbits



Definitions
Distribution of mayj
321-avoiding involutions Distribution of Des

Conclusion

If you want to know all the material in EC1 and EC2
start learning it at an early age.
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Definitions
Distribution of mayj

321-avoiding involutions Distribution of Des

Happy 70th Birthday, Richard!
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