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Abstract. The problem of enumerating 3-noncrossing matchings (123123-
avoiding matchings) was recently raised by Klazar as the first unsolved case
of a more general problem of enumerating k-noncrossing partitions. In this
paper, we show that all the following three classes of matchings with forbid-
den patterns are in one-to-one correspondence with pairs of Dyck paths with
the same origin and the same destination: 3-noncrossing matchings (123123-
avoiding matchings), 3-nonnesting matchings (123321-avoiding matchings),
non-double-nesting matchings (123312-avoiding matchings). The enumera-
tion of 3-nonnesting matchings is solved by Gouyou-Beauchamps.
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a.

[1]LetU : A = Aand D : A — A be linear transformations defined by
U(f)=pif and

]
D(f)= 5*“fs
Pl

where 3/dp is applied to f written as a polynomial in the p;’s. Show that
DU — UD = I, the identity operator.

. [1] Show that DU* = kU*~! + U*D.
. [2] Deduce from (a) and (b) that if £ € N then

£! o
(U+.D)€= z r—H_i.U‘DJ
iTee 2rrti! ji
ri=(f—i—j)/2eN

. [2+] An oscillating tableau (or up-down tableau) of shape A and length £ is

a sequence J = AWl At =2of partitions such that forall 1 <i <
£ — 1, the diagram of A’ is obtained from that of A'~! by either adding one
square or removing one square. (If we add a square each time, then £ = [A|
and we have an SYT of shape A.) Clearly if such an oscillating tableau
exists, then £ = |A| + 2r for some r € N. Deduce from (c) that the number
f;‘ of oscillating tableaux of shape A and length £ = |A| + 2r is given by

s e fr

fo= T

e. [3—] Give a bijective proof of (d).
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CROSSINGS AND NESTINGS
OF MATCHINGS AND PARTITIONS

WILLIAM Y. C. CHEN, EVA Y. P. DENG, ROSENA R. X. DU, RICHARD P. STANLEY,
AND CATHERINE H. YAN

ABSTRACT. We present results on the enumeration of crossings and nestings
for matchings and set partitions. Using a bijection between partitions and vac-
illating tableaux, we show that if we fix the sets of minimal block elements and
maximal block elements, the crossing number and the nesting number of parti-
tions have a symmetric joint distribution. It follows that the crossing numbers
and the nesting numbers are distributed symmetrically over all partitions of
[n], as well as over all matchings on [2n]. As a corollary, the number of k-
noncrossing partitions is equal to the number of k-nonnesting partitions. The
same is also true for matchings. An application is given to the enumeration of
matchings with no k-crossing (or with no k-nesting).






Total number of peaks in Dyck paths

Exercise 6.19, EC2, Page 221.

(i) Dyck paths from (0,0) to (2n,0), i.c., lattice paths with steps (1,1) and (1, —1),
never falling below the z-axis
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Total number of peaks in Dyck paths

Exercise 6.19, EC2, Page 221.

(i) Dyck paths from (0,0) to (2n,0), i.c., lattice paths with steps (1,1) and (1, —1),
never falling below the z-axis

/\/v\/\/\/\/\/\/v\

e The number of all Dyck paths of order n is the Catalan number C,,.

c - 1 <2n)
n+1\n

e peak: an up step followed by a down step.

e Question: How many peaks are there in all Dyck paths of order n?
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Total number of peaks in Dyck paths

o (EC2, Exercise 6.36): The number of Dyck paths of order n with k peaks
is the Narayana number.

-0
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is the Narayana number.
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e Summing over k, we get the number of peaks in all Dyck paths of order n:

kz:kN(n, k) = (2”71_ 1).
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e Summing over k, we get the number of peaks in all Dyck paths of order n:

kz:kN(n, k) = (2”71_ 1).

e |s there a simple explaination without summation?

o Yes! Note that (*.") = £(*"), and (*") is the number of all super Dyck
paths, or free Dyck paths. (Dyck paths allowed to go bellow the z-axis.)
We can give a simple bijective proof.
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Total number of peaks in Dyck paths

o (EC2, Exercise 6.36): The number of Dyck paths of order n with k peaks
is the Narayana number.

-0

e Summing over k, we get the number of peaks in all Dyck paths of order n:

kz:kN(n, k) = (2”71_ 1).

e |s there a simple explaination without summation?

o Yes! Note that (*.") = £(*"), and (*") is the number of all super Dyck
paths, or free Dyck paths. (Dyck paths allowed to go bellow the z-axis.)
We can give a simple bijective proof.

o Similar relations hold for more generalized lattice paths.
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(k, a)-paths

e A (k,a)-path of order n is a lattice path in Z x Z from (0,0) to (n,0)
using up steps (1, k), down steps (1, —1) and horizontal steps (a,0) and
never goes below the z-axis.
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(k, a)-paths

e A (k,a)-path of order n is a lattice path in Z x Z from (0,0) to (n,0)
using up steps (1, k), down steps (1, —1) and horizontal steps (a,0) and
never goes below the z-axis.

o P,(k,a): the set of all (k,a)-paths of order n.

e P,(1,00) : Dyck paths; P,,(1,1) : Motzkin paths; P,,(1,2) : the set of
Schréder paths; Py, (k, 00) : k-ary paths.

e peak: an up step followed by a down step.

e hump: an up step followed by zero or more horizontal steps followed by a
down step.
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Humps and peaks of (k, a)-paths and super (k, a)-paths

e In 2008 Regev noticed the curious relation between the number of peaks in
all Dyck paths and free Dyck paths. He also counted the number of
humps in all Motzkin paths and found that similar relations holds.
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Humps and peaks of (k, a)-paths and super (k, a)-paths

e In 2008 Regev noticed the curious relation between the number of peaks in
all Dyck paths and free Dyck paths. He also counted the number of
humps in all Motzkin paths and found that similar relations holds.

e In 2013, using generating function methods, Mansour and Shattuck
generalized Regev's results to (k, a)-paths and proved the following
euqations:

(k+1) > #Humps(P) = [SPy(k,a)| — Ggjn, (11)
PeP, (k,a)

(k+1) Y #Peaks(P) = [SPy(k,a)| — |SPn_a(k,a)|,  (1.2)
PeP,(k,a)

where 6,,, = 1 if a divides n or 0 otherwise.
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What does == (|SP,.(k,a)| — dq4)n) count?

k+1

(k+1) Y #Humps(P) = [SPy(k,a)| — Sajn,

PeP, (k,a)
Is equivalent to the following:
1
> #Humps(P) = i1 (ISP (k,a)| = dapn) - (2.1)
PeP, (k,a)
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What does - (|8Pn(k‘,1 a)| — 5&\”) count?

k+1

(k+1) > #Humps(P) = [SPu(k, a)| — dajn,
PeP, (k,a)
Is equivalent to the following:

Z #Humps(P) =

PeP, (k,a)

1

k+1 (|8Pn(k’a)| - 5a|n) . (21)

The following lemma explains what the right hand side of (2.1) counts.

There is a 1-to-(k + 1) correspondence between SPY (k,a) and SPP (k,a), and

we have
1

% —
ISPY (ko) = 77

(|8Pn(kv a’)| - 6a|n) o (22)
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What does — (|8Pn(k, a)| — 5&\”) count?

A+1

(k+1) > #Humps(P) = [SPu(k, a)| — dajn,
PeP, (k,a)
Is equivalent to the following:

S #Humps(P)= 1 (8Pa(k o) ~bun) . (21)

PeP, (k,a)

The following lemma explains what the right hand side of (2.1) counts.

Lemma 2.1

There is a 1-to-(k + 1) correspondence between SPY (k,a) and SPP (k,a), and

we have
1

U
8P} (k.0)] = =

(ISP (k; a)| = dajn) - (22)
SPY(k,a) : the set of super (k,a)-paths of order n with at least one up step;
SPY(k,a) : the set of super (k,a)-paths or order n whose first non-horizontal
step is U.
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Proof of Lemma  : ¢ : SPY(k,a) — SP(k,a),

n

Given P € SPY(k,a), we can uniquely decompose it into the following form:
P=MyUM;, DMy D --- DMg,D Mgy,

in which My, My, ..., My, are (k,a)-paths, My is a super (k,a)-path, and
My consists of only horizontal steps.

M1
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Proof of Lemma  : ¢ : SPY(k,a) — SP(k,a),

n

Given P € SPY(k,a), we can uniquely decompose it into the following form:
P=MyUM;, DMy D --- DMg,D Mgy,

in which My, My, ..., My, are (k,a)-paths, My is a super (k,a)-path, and
My consists of only horizontal steps.

M1

W(P)={Pi=MyDM;D --- DM; yUM;D --- D M;:1<i<k+1}.
Here M; means the supper (k, a)-path obtained from M; by reading the steps
in reversing order, i.e., if M; = HUUDHD, then M; = DHDUUH.
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Proof of Lemma  : ¢ : SPY(k,a) — SP°(k,a),

1

WP)={Pi=MyDM,D --- DM; yUM; D -+ D My1:1<i<k+1}.

14 /33



Proof of Lemma  : ¢ : SPY(k,a) — SP°(k,a),

1

Key point to recover P from (P): find the left-most up step U in P; whose
right end point has positive y-coordinate, then decompose P; into the following
form:

Pi=MyDM D -+ DM;_1UM; D - D Mg1,1<i<k+1.

15 /33



®: LP,(k,a) = SPY(k,a).

Theorem 2.2

Let LP,,(k,a) denote the set of pairs (L,p), where L € P, (k,a), and p is a
specified hump in L. Then there is a bijection ® : LP,,(k,a) — SPY (k,a).
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®: LP,(k,a) = SPY(k,a).

/ / /
[ C N

Define ®(L,p) = LocLapLcaLpn = SL.
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&1 SPY(k,a) = LP,(k, a).

Figure : A super (3,1)-path ®(L,p) € SPY(3,1).
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e B: the point on the z-axis that following a down step, and the next down
step is the first down step that goes below the z-axis;
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&1 SPY(k,a) = LP,(k, a).
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Figure : A super (3,1)-path ®(L,p) € SPY(3,1).
e B: the point on the z-axis that following a down step, and the next down
step is the first down step that goes below the z-axis;

o A: the rightmost point that y4 =0, x4 < xp and A is followed by an up
step;
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Figure : A super (3,1)-path ®(L,p) € SPY(3,1).
e B: the point on the z-axis that following a down step, and the next down
step is the first down step that goes below the z-axis;
o A: the rightmost point that y4 =0, x4 < xp and A is followed by an up
step;
e (: the leftmost point such that z¢ > x5 and VG, g > xp implies that
ya < Yo,
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step is the first down step that goes below the z-axis;
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step;

(': the leftmost point such that z¢c > zp and VG, zg > xp implies that
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p: the leftmost hump in Lp.
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®: LP,(k,a) = SPY(k,a).

¢
SNy / /
/ /
/ /
4 B N
/
/
[i A 2 /
/ / /
0o C N
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Proof of Equation () and ()

(k+1) Y #Humps(P) = [SPy(k, a)| — dgjn,
PeP, (k,a)
follows immediately from Lemma 2.1 and Theorem 2.2.
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Proof of Equation () and ()

(k+1) > #Humps(P) = [SPy(k,a)| = Sajn,
PeP, (k,a)
follows immediately from Lemma 2.1 and Theorem 2.2.
For Equation (1.2), we see that given (L,p) € LP,,(k, a), if the specified hump
p in L is a not peak, then in the resulting super (k, a)-path SL, the leftmost
hump in L ap is not a peak. From Lemma 2.1 we know that there are

1
(|S'Pn7a(k, a)| — 5a|(n—a))

E+1
such paths in SPY(k, a).
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Proof of Equation () and ()

(k+1) > #Humps(P) = [SPy(k,a)| = Sajn,
PeP, (k,a)
follows immediately from Lemma 2.1 and Theorem 2.2.
For Equation (1.2), we see that given (L,p) € LP,,(k, a), if the specified hump
p in L is a not peak, then in the resulting super (k, a)-path SL, the leftmost
hump in L ap is not a peak. From Lemma 2.1 we know that there are
1

757 USPa-a(k, @)l = dajn—a))

such paths in SPY(k, a). Therefore we have

Z #Peaks(P)

PeP, (k,a)
1 1
= k1 + 1 (|S7D (k a’)‘ o 60«‘”) - m (|8Pn—a(kaa)| - 6a|(n7a))
= 7 SPulk,a)| = [SPn_a(k;a))).

k—i—l
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Yan also give a bijection which proofs (1.1) and (1.2), but her bijection is
different from our bijection ®.
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__Introduction and background oo i o P 0

Yan also give a bijection which proofs (1.1) and (1.2), but her bijection is
different from our bijection ®.

Remark 2

Note that when defining the bijection ®, the parameters k and a do not really
matter. Let S be a set of positive integers, we define an (S, a)-path of order n
to be a lattice path in Z x Z from (0,0) to (n,0) using up steps

U= (1,k),k €S, down steps D = (1, —1) and horizontal steps H = (a,0) and
never goes below the x-axis.
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Remark 1

Yan also give a bijection which proofs (1.1) and (1.2), but her bijection is
different from our bijection ®.

Remark 2

Note that when defining the bijection ®, the parameters k and a do not really

matter. Let S be a set of positive integers, we define an (S, a)-path of order n

to be a lattice path in Z x Z from (0,0) to (n,0) using up steps

U= (1,k),k €S, down steps D = (1, —1) and horizontal steps H = (a,0) and
never goes below the x-axis.

Therefore, our bijection @ proves the following stronger result for (S, a)-paths:

Corollary 2.3

The total number of humps in all (S, a)-paths of order n equals the total
number of supper (S, a)-paths of order n whose first non-horziontal step is an
up step.

21/33



(n, m)-Dyck paths

We also extend our study to the relation between peaks of (n,m)-Dyck paths
and free (n,m)-paths. (n, m)-Dyck paths are related to simultaneous core

partitions, and are studied by many authors: Bizley (1954), Fukukama(2013),
and Armstrong, Rhoades and Williams (2013).
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(n, m)-Dyck paths

We also extend our study to the relation between peaks of (n,m)-Dyck paths
and free (n,m)-paths. (n, m)-Dyck paths are related to simultaneous core
partitions, and are studied by many authors: Bizley (1954), Fukukama(2013),
and Armstrong, Rhoades and Williams (2013).

An (n,m)-Dyck path is a lattice path in Z x Z, from (0,0) to (n,m), using up
steps (0, 1) and down steps (1,0) and never goes below the diagonal line.

Example 1
There are 7 (3,5)-Dyck paths:

D(n,m): the set of (n,m)-Dyck paths.
F(n,m): the set of free (n, m)-paths (allowed to go below the diagonal).
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Some Known Properties of the equivalence class of P when

ged(n,m) = 1.

P =ujug - Upyn and Q = v1vg - - - Uty are equivalent if and only if there is
some 4,1 < i <n+m such that u; 1« UppmUy - U; = V1V2 -+ Uppn.
[P] : the equivalence class of P.

For any free path P from (0,0) to (n,m), if ged(n,m) =1, then
1) [Pl =n+m;
2) There is a unique (n, m)-Dyck path in [P].
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P =ujug - Upyn and Q = v1vg - - - Uty are equivalent if and only if there is
some 4,1 < i <n+m such that u; 1« UppmUy - U; = V1V2 -+ Uppn.
[P] : the equivalence class of P.

For any free path P from (0,0) to (n,m), if ged(n,m) =1, then
1) [Pl =n+m;
2) There is a unique (n, m)-Dyck path in [P].

P Py Py Ps Py Ps

Figure : A free path P from (0,0) to (2,3), and the 5 different free paths in [P]
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Number of (n,m)-Dyck paths

Corollary 3.2

If ged(n,m) = 1, then the number of (n, m)-Dyck paths is

D) = (”*m) (3.1)

n-+m n
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Corollary 3.2

If ged(n,m) = 1, then the number of (n, m)-Dyck paths is

D) = (”*m) (3.1)

n-+m n

It is also proved that when ged(n, m) = d, the number of (n,m)-Dyck paths is

> 11 (g Cmm)- (32)

where the sum )" is taken over all sequences of non-negative integers
o0

a = (a1, a9,---) such that > ia; = d.

i=1
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Theorem : & : PD(n,m;j) — FUP(n,m;j)

PD(n,m;j) = {(P,p)|P € D(n,m;j), pis a peak of P},
FUP(n,m;j) : the set of free paths in FYP(n,m; j) that start with an up step
and end with a down step.
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Enumerating (n, m)-Dyck paths with a given number of peaks

The number of free paths from (0,0) to (n,m) with j peaks is

Fomsil= (1) () (33)

|FOP (s, m )| = (’? - 1) (”? - 1); (3.4)

and

j—1 j—1
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Enumerating (n, m)-Dyck paths with a given number of peaks

The number of free paths from (0,0) to (n,m) with j peaks is

Fomsil= (1) () (33)

2 mpl= () (7)) (3.4

and

J—=1/\j—1

Theorem 3.5

When ged(n,m) = 1, the number of (n, m)-Dyck paths with exactly j peaks is:
1/n—1\/m—-1
( 2 J(J—1)<J—1> (35)
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Enumerating (n, m)-Dyck paths with a given number of peaks

The number of free paths from (0,0) to (n,m) with j peaks is

Fomsil= (1) () (33)

nd IFUD (n,m; 5)| = n—1y m—1\)
”’m’”'_<j—1>(j—1>’ ey

Theorem 3.5

When ged(n,m) = 1, the number of (n, m)-Dyck paths with exactly j peaks is:

b =2 (27)) o

(3.5) is also given by Armstrong, Rhoades and Williams, in which the authors
call it “rational Narayana number".
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There is one-to-one correspondences between the following sets: k-ary paths of
order n; (n, kn)-Dyck paths, and (n,kn + 1) paths.

(n,kn +1)
njkn)
__ |kn+1
/'/_ er
=
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k-ary paths of order of n with a given number of peaks

Corollary 4.2

e The number of k-ary paths of order n is:

1 <(k + 1)n)7 1)

kn+1 n
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kn+1 n

e The number of k-ary paths of order n with exactly j peaks is:
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k-ary paths of order of n with a given number of peaks

Corollary 4.2

e The number of k-ary paths of order n is:

1 <(k + 1)n)7 1)

kn+1 n

e The number of k-ary paths of order n with exactly j peaks is:
1/n—-1 kn
Dn,k;jz—_(, )( ) 42
ek =302 (42)

Note that when k = 1. Equation (4.1) and (4.2) coincide with the well-known
result that Dyck path of order n is counted by the n-th Catalan number

C(n) = %H(Z:) and the number of Dyck path of order n with exactly j peaks
1(/n—1

is the Narayana number N (n;5) = 5 (52) (;",)-
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Motzkin paths and Standard Young Tableaux

f* : the number of SYT of shape A;
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Motzkin paths and Standard Young Tableaux

f* : the number of SYT of shape A;
H(kv l; n) = {>‘ = (>‘17 >\27 T )|)‘ + n, )‘k+1 < l}a
S(k,l;m) = 3 \en(hiin) f : number of SYT in a (k,1)-hook.

1/2]3]4 1]2]3] 1]2]4] 1[3]4] 1]2
4] 3] 2] 34

113 [1]2] |1]3]

2[4 3 2

Figure : Standard Young Tableaux in S(2,1;4)
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In Asymptotic values for degrees associated with strips of Young tableau, Adv.
Math., 41, (1981), 115-136, A. Regev proved that S(3,0;n) equals the n-th
Motzkin number.

31/33



In Asymptotic values for degrees associated with strips of Young tableau, Adv.
Math., 41, (1981), 115-136, A. Regev proved that S(3,0;n) equals the n-th
Motzkin number.

In Skew-standard Tableaux with Three Rows, arXiv: 1002. 4060 v3 [math.CO]
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In Asymptotic values for degrees associated with strips of Young tableau, Adv.
Math., 41, (1981), 115-136, A. Regev proved that S(3,0;n) equals the n-th
Motzkin number.

In Skew-standard Tableaux with Three Rows, arXiv: 1002. 4060 v3 [math.CO]
12 May 2010, Sen-peng Eu gave a bijection between Motzkin paths of order n
and SYT of order n with at most three rows.

In Probabilities in the (k,1) hook, Israel J. Math. 169 61-88, 2009, A. Regev
computed S(2,1;n).

In Humps for Dyck and for Motzkin paths, arXiv: 1002. 4504v1 [math. CO] 24
Feb 2010, A. Regev noticed that the total number of humps in all Motzkin
paths of order n is equal to S(2,1;n) — 1.
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Is there a bijective proof?

1/2]3]4 1]2]3] 1]2]4] 1]3]4]
4] 3] 2]
13 1]2] 1]3] 1]4]
2]4 13 12 12
4] 4] 3]

Figure : Super Motzkin paths of order 4 whose first non-horizontal step is an up step
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