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Introduction and background Humps and peaks in (k, a)-paths Peaks in (n,m)-Dyck Paths when gcd(n,m) = 1 k-ary paths with a given number of peaks Humps in Motzkin paths and Standard Young Tableaux

Total number of peaks in Dyck paths

Exercise 6.19, EC2, Page 221.

• The number of all Dyck paths of order n is the Catalan number Cn.

Cn =
1

n+ 1

(
2n

n

)
.

• peak: an up step followed by a down step.

• Question: How many peaks are there in all Dyck paths of order n?
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Total number of peaks in Dyck paths

• (EC2, Exercise 6.36): The number of Dyck paths of order n with k peaks
is the Narayana number.

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
.

• Summing over k, we get the number of peaks in all Dyck paths of order n:

n∑
k=0

kN(n, k) =

(
2n− 1

n

)
.

• Is there a simple explaination without summation?

• Yes! Note that
(
2n−1
n

)
= 1

2

(
2n
n

)
, and

(
2n
n

)
is the number of all super Dyck

paths, or free Dyck paths. (Dyck paths allowed to go bellow the x-axis.)
We can give a simple bijective proof.

• Similar relations hold for more generalized lattice paths.
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(k, a)-paths

• A (k, a)-path of order n is a lattice path in Z× Z from (0, 0) to (n, 0)

using up steps (1, k), down steps (1,−1) and horizontal steps (a, 0) and
never goes below the x-axis.

• Pn(k, a): the set of all (k, a)-paths of order n.
• Pn(1,∞) : Dyck paths; Pn(1, 1) : Motzkin paths; Pn(1, 2) : the set of
Schröder paths; Pn(k,∞) : k-ary paths.

• peak: an up step followed by a down step.
• hump: an up step followed by zero or more horizontal steps followed by a
down step.

O

p

N
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Humps and peaks of (k, a)-paths and super (k, a)-paths

• In 2008 Regev noticed the curious relation between the number of peaks in
all Dyck paths and free Dyck paths. He also counted the number of
humps in all Motzkin paths and found that similar relations holds.

• In 2013, using generating function methods, Mansour and Shattuck
generalized Regev’s results to (k, a)-paths and proved the following
euqations:

(k + 1)
∑

P∈Pn(k,a)

#Humps(P ) = |SPn(k, a)| − δa|n, (1.1)

(k + 1)
∑

P∈Pn(k,a)

#Peaks(P ) = |SPn(k, a)| − |SPn−a(k, a)|, (1.2)

where δa|n = 1 if a divides n or 0 otherwise.

11 / 33
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What does 1
k+1

(
|SPn(k, a)| − δa|n

)
count?

(k + 1)
∑

P∈Pn(k,a)

#Humps(P ) = |SPn(k, a)| − δa|n,

Is equivalent to the following:∑
P∈Pn(k,a)

#Humps(P ) =
1

k + 1

(
|SPn(k, a)| − δa|n

)
. (2.1)

The following lemma explains what the right hand side of (2.1) counts.

Lemma 2.1

There is a 1-to-(k + 1) correspondence between SPUn (k, a) and SP0
n(k, a), and

we have
|SPUn (k, a)| = 1

k + 1

(
|SPn(k, a)| − δa|n

)
. (2.2)

SP0
n(k, a) : the set of super (k, a)-paths of order n with at least one up step;

SPUn (k, a) : the set of super (k, a)-paths or order n whose first non-horizontal
step is U .

12 / 33
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Proof of Lemma 2.1: φ : SPU
n (k, a) −→ SP0

n(k, a),

Given P ∈ SPUn (k, a), we can uniquely decompose it into the following form:

P = M0 U M1 D M2 D · · · D Mk D Mk+1,

in which M0,M1, . . . ,Mk are (k, a)-paths, Mk+1 is a super (k, a)-path, and
M0 consists of only horizontal steps.

M0

. . .

. . .

M1

Mi−1
Mi

Mk+1

P

ψ(P ) = {Pi = M0 DM1 D · · · DM i−1 U Mi D · · · DMk+1 : 1 6 i 6 k+1}.
Here M i means the supper (k, a)-path obtained from Mi by reading the steps
in reversing order, i.e., if Mi = HUUDHD, then M i = DHDUUH.

13 / 33
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ψ(P ) = {Pi = M0 DM1 D · · · DM i−1 U Mi D · · · DMk+1 : 1 6 i 6 k+1}.

M0

. . .

. . .

M1

Mi−1
Mi

Mk+1

P

M0 . . .

. . .

M̄1

M̄i−1

Mi

Mk+1

Pi
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Proof of Lemma 2.1: φ : SPU
n (k, a) −→ SP0

n(k, a),

Key point to recover P from ψ(P ): find the left-most up step U in Pi whose
right end point has positive y-coordinate, then decompose Pi into the following
form:

Pi = M0 D M1 D · · · D Mi−1 U Mi D · · · D Mk+1, 1 6 i 6 k + 1.

M0 . . .

. . .

M̄1

M̄i−1

Mi

Mk+1

Pi

15 / 33
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Φ : LPn(k, a)→ SPU
n (k, a).

Theorem 2.2

Let LPn(k, a) denote the set of pairs (L, p), where L ∈ Pn(k, a), and p is a
specified hump in L. Then there is a bijection Φ : LPn(k, a)→ SPUn (k, a).

O

p

N

• A: the leftmost point in LOp that is followed by an up step, and there is
no down step in LAp;

• B: the leftmost point in L such that xB > xP and yB = yA;
• C: the rightmost point in LOA such that yC = 0.

16 / 33
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Φ : LPn(k, a)→ SPU
n (k, a).

O C

A

p

B

N

Define Φ(L, p) = LOCLABLCALBN , SL.

O

C

A

p

B N
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Φ−1 : SPU
n (k, a)→ LPn(k, a).

O N

Figure : A super (3, 1)-path Φ(L, p) ∈ SPU
41(3, 1).

• B: the point on the x-axis that following a down step, and the next down
step is the first down step that goes below the x-axis;

• A: the rightmost point that yA = 0, xA < xB and A is followed by an up
step;

• C: the leftmost point such that xC ≥ xB and ∀G, xG ≥ xB implies that
yG ≤ yC ;

• p: the leftmost hump in LAB .

18 / 33
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Φ−1 : SPU
n (k, a)→ LPn(k, a).
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Proof of Equation (1.1) and (1.2)

(k + 1)
∑

P∈Pn(k,a)

#Humps(P ) = |SPn(k, a)| − δa|n,

follows immediately from Lemma 2.1 and Theorem 2.2.
For Equation (1.2), we see that given (L, p) ∈ LPn(k, a), if the specified hump
p in L is a not peak, then in the resulting super (k, a)-path SL, the leftmost
hump in LAB is not a peak. From Lemma 2.1 we know that there are

1

k + 1

(
|SPn−a(k, a)| − δa|(n−a)

)
such paths in SPUn (k, a). Therefore we have∑

P∈Pn(k,a)

#Peaks(P )

=
1

k + 1

(
|SPn(k, a)| − δa|n

)
− 1

k + 1

(
|SPn−a(k, a)| − δa|(n−a)

)
=

1

k + 1
(|SPn(k, a)| − |SPn−a(k, a)|).
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Remark 1

Yan also give a bijection which proofs (1.1) and (1.2), but her bijection is
different from our bijection Φ.

Remark 2
Note that when defining the bijection Φ, the parameters k and a do not really
matter. Let S be a set of positive integers, we define an (S, a)-path of order n
to be a lattice path in Z× Z from (0, 0) to (n, 0) using up steps
U = (1, k), k ∈ S, down steps D = (1,−1) and horizontal steps H = (a, 0) and
never goes below the x-axis.

Therefore, our bijection Φ proves the following stronger result for (S, a)-paths:

Corollary 2.3

The total number of humps in all (S, a)-paths of order n equals the total
number of supper (S, a)-paths of order n whose first non-horziontal step is an
up step.
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(n,m)-Dyck paths

We also extend our study to the relation between peaks of (n,m)-Dyck paths
and free (n,m)-paths. (n,m)-Dyck paths are related to simultaneous core
partitions, and are studied by many authors: Bizley (1954), Fukukama(2013),
and Armstrong, Rhoades and Williams (2013).
An (n,m)-Dyck path is a lattice path in Z× Z, from (0, 0) to (n,m), using up
steps (0, 1) and down steps (1, 0) and never goes below the diagonal line.

Example 1

There are 7 (3, 5)-Dyck paths:

D(n,m): the set of (n,m)-Dyck paths.
F(n,m): the set of free (n,m)-paths (allowed to go below the diagonal).
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Some Known Properties of the equivalence class of P when
gcd(n,m) = 1.

P = u1u2 · · ·um+n and Q = v1v2 · · · vn+m are equivalent if and only if there is
some i, 1 ≤ i ≤ n+m such that ui+1 · · ·un+mu1 · · ·ui = v1v2 · · · vn+m.
[P ] : the equivalence class of P .

Lemma 3.1

For any free path P from (0, 0) to (n,m), if gcd(n,m) = 1, then

1) |[P ]| = n+m;

2) There is a unique (n,m)-Dyck path in [P ].

P P1 P2 P3 P4 P5

Figure : A free path P from (0, 0) to (2, 3), and the 5 different free paths in [P ].
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Number of (n,m)-Dyck paths

Corollary 3.2

If gcd(n,m) = 1, then the number of (n,m)-Dyck paths is

D(n,m) =
1

n+m

(
n+m

n

)
. (3.1)

It is also proved that when gcd(n,m) = d, the number of (n,m)-Dyck paths is

∑
a

d∏
i=1

(
1

ai!
Dai(

i

d
m,

i

d
n)

)
. (3.2)

where the sum
∑
a is taken over all sequences of non-negative integers

a = (a1, a2, · · · ) such that
∞∑
i=1

iai = d.
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Theorem 3.3: Φ̂ : PD(n,m; j)→ FUD(n,m; j)

PD(n,m; j) = {(P, p)|P ∈ D(n,m; j), p is a peak of P},
FUD(n,m; j) : the set of free paths in FUD(n,m; j) that start with an up step
and end with a down step.

Theorem 3.3

Then there is a bijection Φ̂ : PD(n,m; j)→ FUD(n,m; j) when
gcd(n,m) = 1.

p

P

L
1

L
2

L
3

L
4

p

P̄

L
3

L
4

L
1

L
2

Φ̂
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P = Φ̂(P, p4)
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Enumerating (n,m)-Dyck paths with a given number of peaks

Lemma 3.4

The number of free paths from (0, 0) to (n,m) with j peaks is

|F(n,m; j)| =
(
n

j

)(
m

j

)
; (3.3)

and

|FUD(n,m; j)| =
(
n− 1

j − 1

)(
m− 1

j − 1

)
; (3.4)

Theorem 3.5

When gcd(n,m) = 1, the number of (n,m)-Dyck paths with exactly j peaks is:

D(n,m; j) =
1

j

(
n− 1

j − 1

)(
m− 1

j − 1

)
. (3.5)

(3.5) is also given by Armstrong, Rhoades and Williams, in which the authors
call it “rational Narayana number".

27 / 33



Introduction and background Humps and peaks in (k, a)-paths Peaks in (n,m)-Dyck Paths when gcd(n,m) = 1 k-ary paths with a given number of peaks Humps in Motzkin paths and Standard Young Tableaux

Enumerating (n,m)-Dyck paths with a given number of peaks

Lemma 3.4

The number of free paths from (0, 0) to (n,m) with j peaks is

|F(n,m; j)| =
(
n

j

)(
m

j

)
; (3.3)

and

|FUD(n,m; j)| =
(
n− 1

j − 1

)(
m− 1

j − 1

)
; (3.4)

Theorem 3.5

When gcd(n,m) = 1, the number of (n,m)-Dyck paths with exactly j peaks is:

D(n,m; j) =
1

j

(
n− 1

j − 1

)(
m− 1

j − 1

)
. (3.5)

(3.5) is also given by Armstrong, Rhoades and Williams, in which the authors
call it “rational Narayana number".

27 / 33



Introduction and background Humps and peaks in (k, a)-paths Peaks in (n,m)-Dyck Paths when gcd(n,m) = 1 k-ary paths with a given number of peaks Humps in Motzkin paths and Standard Young Tableaux

Enumerating (n,m)-Dyck paths with a given number of peaks

Lemma 3.4

The number of free paths from (0, 0) to (n,m) with j peaks is

|F(n,m; j)| =
(
n

j

)(
m

j

)
; (3.3)

and

|FUD(n,m; j)| =
(
n− 1

j − 1

)(
m− 1

j − 1

)
; (3.4)

Theorem 3.5

When gcd(n,m) = 1, the number of (n,m)-Dyck paths with exactly j peaks is:

D(n,m; j) =
1

j

(
n− 1

j − 1

)(
m− 1

j − 1

)
. (3.5)

(3.5) is also given by Armstrong, Rhoades and Williams, in which the authors
call it “rational Narayana number".

27 / 33



Introduction and background Humps and peaks in (k, a)-paths Peaks in (n,m)-Dyck Paths when gcd(n,m) = 1 k-ary paths with a given number of peaks Humps in Motzkin paths and Standard Young Tableaux

Lemma 4.1

There is one-to-one correspondences between the following sets: k-ary paths of
order n; (n, kn)-Dyck paths, and (n, kn+ 1) paths.

y = kn+1
n x

P

(0, 1)

(0, 0)

(n, kn+ 1)

y = kx

P ′
(0, 0)

(n, kn)
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k-ary paths of order of n with a given number of peaks

Corollary 4.2
• The number of k-ary paths of order n is:

1

kn+ 1

(
(k + 1)n

n

)
, (4.1)

• The number of k-ary paths of order n with exactly j peaks is:

D(n, k; j) =
1

j

(
n− 1

j − 1

)(
kn

j − 1

)
. (4.2)

Note that when k = 1. Equation (4.1) and (4.2) coincide with the well-known
result that Dyck path of order n is counted by the n-th Catalan number
C(n) = 1

n+1

(
2n
n

)
, and the number of Dyck path of order n with exactly j peaks

is the Narayana number N(n; j) = 1
j

(
n−1
j−1
)(

n
j−1
)
.
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Motzkin paths and Standard Young Tableaux

fλ : the number of SYT of shape λ;

H(k, l;n) = {λ = (λ1, λ2, · · · )|λ ` n, λk+1 ≤ l};

S(k, l;n) =
∑
λ∈H(k,l;n) f

λ : number of SYT in a (k, l)-hook.
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4

1 2 4
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1 3 4
2

1 2
3 4
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1 2
3
4

1 3
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4

1 4
2
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1
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Figure : Standard Young Tableaux in S(2,1;4)
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In Asymptotic values for degrees associated with strips of Young tableau, Adv.
Math., 41, (1981), 115-136, A. Regev proved that S(3, 0;n) equals the n-th
Motzkin number.

In Skew-standard Tableaux with Three Rows, arXiv: 1002. 4060 v3 [math.CO]
12 May 2010, Sen-peng Eu gave a bijection between Motzkin paths of order n
and SYT of order n with at most three rows.

In Probabilities in the (k, l) hook, Israel J. Math. 169 61-88, 2009, A. Regev
computed S(2, 1;n).

In Humps for Dyck and for Motzkin paths, arXiv: 1002. 4504v1 [math. CO] 24
Feb 2010, A. Regev noticed that the total number of humps in all Motzkin
paths of order n is equal to S(2, 1;n)− 1.
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Is there a bijective proof?
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Figure : Standard Young Tableaux in S(2,1;4)

Figure : Super Motzkin paths of order 4 whose first non-horizontal step is an up step
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