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Summary.
1. There are many (locally/globally) CAT(0) cube complexes “in nature".

2. Globally CAT(0) cube complexes have an elegant, useful structure.

Problem 1. Find and study globally CAT(0) cube complexes in combinatorics.

Problem 2. Describe combinatorial structure of locally CAT(0) cube complexes.
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FIGURE 4. A positive articulated robot arm example [left] with fixed
endpoint. One generator [center] flips corners and has as its trace
the central four edges. The other generator [right] rotates the end of
the arm, and has trace equal to the two activated edges.

FIGURE 5. The state complex of a 5-link positive arm has one cell of
dimension three, along with several cells of lower dimension.

systems is a discrete type of configuration space for these systems. Such spaces
were considered independently by Abrams [1] and also by Swiatkowski [38].

For example, if the graph is K5 (the complete graph on five vertices), N = 2, and
A = {0, 1, 2}, it is straightforward to show that each vertex has a neighborhood
with six edges incident and six 2-cells patched cyclically about the vertex. There-
fore, S is a closed surface. One can (as in [2]) count that there are 20 vertices, 60
edges, and 30 faces in the state complex. The Euler characteristic of this surface is
therefore −10. This surface can be given an orientation; thus, the state complex has
genus six.

Example 3.4 (digital microfluidics). An even better physical instantiation of the pre-
vious system arises in digital microfluidics [17, 18]. In this setting, small (e.g., 1mm
diameter) droplets of fluid can be quickly and accurately manipulated on a plate
covering a network of current-controlled wires by an electrowetting process that
exploits surface tension effects to propel a droplet. Applying a current drives the
droplet a discrete distance along the wire. In this setting, one desires a “laboratory
on a chip” in which droplets of various chemicals can be positioned, mixed, and
then directed to the appropriate outputs.

Representing system states as marked vertices on a graph is appropriate given the
discrete nature of the motion by electrophoresis on a graph of wires. This adds a

Based on joint work with:
• Megan Owen (Waterloo), Seth Sullivant (NCSU)
• Rika Yatchak (SFSU/NCSU), Tia Baker (SFSU)
• Diego Cifuentes (Andes/MIT), Steven Collazos (SFSU/Minnesota)
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1. CAT(0) CUBE COMPLEXES IN NATURE.

A. Geometric Group Theory.

The Cayley graph of a right-angled Coxeter group. (Davis)
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Study a RACG by its geometric action on the Davis complex.

(Rick Scott. Right-angled mock reflection and mock Artin groups.)
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1. CAT(0) CUBE COMPLEXES IN NATURE.

B. Phylogenetic trees

The space of phylogenetic trees. (Billera, Holmes, Vogtmann):

Build and navigate the space of all possible evolutionary trees.

(Megan Owen. Computing Geodesic Distances in Tree Space.)
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1. CAT(0) CUBE COMPLEXES IN NATURE.

C. Moving (some) robots. (Abrams, Ghrist)

Build and navigate the space of all positions of the robot.
(F.A., Tia Baker, Rika Yatchak. Moving robots efficiently...CAT(0) complexes)



examples definitions characterizations questions

2. DEFINITIONS.

• A metric space X is CAT(0) if it has non-positive curvature
everywhere; i.e., triangles are “thinner" than flat triangles.
Roughly, X is “saddle shaped".RECONFIGURATION 13
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FIGURE 9. Comparison triangles measure curvature bounds.

4.2. The link condition. There is a well-known combinatorial approach to deter-
mining when a cubical complex is nonpositively curved due to Gromov.

Definition 4.3. Let X denote a cell complex and let v denote a vertex of X . The link
of v, !k[v], is defined to be the abstract simplicial complex whose k-dimensional
simplices are the (k + 1)-dimensional cells incident to v with the natural boundary
relationships.

Certain global topological features of a metric cubical complex are completely de-
termined by the local structure of the vertex links: a theorem of Gromov [26] asserts
that a finite dimensional Euclidean cubical complex is NPC if and only if the link
of every vertex is a flag complex without digons. Recall: a digon is a pair of ver-
tices connected by two edges, and a flag complex is a simplicial complex which
is maximal among all simplicial complexes with the same 1-dimensional skeleton.
Gromov’s theorem permits us an elementary proof of the following general result.

Theorem 4.4. The state complex of any locally finite reconfigurable system is NPC.

PROOF: Gromov’s theorem is stated for finite dimensional Euclidean cubical com-
plexes with unit length cubes. It holds, however, for non-unit length cubes when
there are a finite number of isometry classes of cubes (the finite shapes condition) [6].
Locally finite reconfigurable systems possess locally finite and finite dimensional
state complexes, which automatically satisfy the finite shapes condition (locally).

Let u denote a vertex of S. Consider the link !k[u]. The 0-cells of the !k[u] corre-
spond to all edges in S(1) incident to u; that is, actions of generators based at u. A
k-cell of !k[u] is thus a commuting set of k + 1 of these generators based at u.

We argue first that there are no digons in !k[u] for any u ∈ S. Assume that φ1 and φ2

are admissible generators for the state u, and that these two generators correspond
to the vertices of a digon in !k[u]. Each edge of the digon in !k[u] corresponds to
a distinct 2-cell in S having a corner at u and edges at u corresponding to φ1 and
φ2. By Definition 2.7, each such 2-cell is the equivalence class [u; (φ1, φ2)]: the two
2-cells are therefore equivalent and not distinct.

To complete the proof, we must show that the link is a flag complex. The interpre-
tation of the flag condition for a state complex is as follows: if at u ∈ S, one has
a set of k generators φαi , of which each pair of generators commutes, then the full

d ≤ d ′

• A cube complex is obtained by gluing cubes face-to-face.
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systems is a discrete type of configuration space for these systems. Such spaces
were considered independently by Abrams [1] and also by Swiatkowski [38].

For example, if the graph is K5 (the complete graph on five vertices), N = 2, and
A = {0, 1, 2}, it is straightforward to show that each vertex has a neighborhood
with six edges incident and six 2-cells patched cyclically about the vertex. There-
fore, S is a closed surface. One can (as in [2]) count that there are 20 vertices, 60
edges, and 30 faces in the state complex. The Euler characteristic of this surface is
therefore −10. This surface can be given an orientation; thus, the state complex has
genus six.

Example 3.4 (digital microfluidics). An even better physical instantiation of the pre-
vious system arises in digital microfluidics [17, 18]. In this setting, small (e.g., 1mm
diameter) droplets of fluid can be quickly and accurately manipulated on a plate
covering a network of current-controlled wires by an electrowetting process that
exploits surface tension effects to propel a droplet. Applying a current drives the
droplet a discrete distance along the wire. In this setting, one desires a “laboratory
on a chip” in which droplets of various chemicals can be positioned, mixed, and
then directed to the appropriate outputs.

Representing system states as marked vertices on a graph is appropriate given the
discrete nature of the motion by electrophoresis on a graph of wires. This adds a

(Like a simplicial complex, but the building blocks are cubes.)
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3. WHICH CUBE COMPLEXES ARE CAT(0)?

Gromov 1987: Combinatorial / topological characterization.

A.-Owen-Sullivant 2008: Purely combinatorial characterization.
(Also Roller–Sageev.)

Theorem. There is an explicit bijection
(Pointed) CAT(0) cube complexes↔ posets with inconsistent pairs.

Poset with inconsistent pairs:
• a poset P, and
• a set of “inconsistent pairs"
such that

x , y inconsistent, y < z
↓

x , z inconsistent.
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Applications: diameter, enumeration, Hopf algebra structure



examples definitions characterizations questions

4. CAT(0) CUBE COMPLEXES IN COMBINATORICS.

Reconfiguration system: a discrete system that changes
according to local rules (satisfying some simple conditions)

Theorem. (Ghrist – Peterson, 2004)
Any reconfiguration system gives a locally CAT(0) cube complex.
Many give globally CAT(0) cube complexes, which we understand.

Fact.
Combinatorics is full of reconfiguration systems.
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4. CAT(0) CUBE COMPLEXES IN COMBINATORICS.

Fact.
Combinatorics is full of reconfiguration systems.
They all give rise to locally CAT(0) cube complexes.

J. Propp. Lattice structure for orientations of graphs.
S. Corteel, L. Williams. Tableaux combinatorics for the ASEP.
V. Reiner and Y. Roichman. Diameter of graphs of reduced words and galleries.
S. Assaf. Dual equivalence graphs and a combinatorial proof of LLT and Macdonald positivity.
S. Billey, Z. Hamaker, A. Roberts, B. Young. Coxeter-Knuth graphs and a signed Little bijection.
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CAT(0) CUBE COMPLEXES IN COMBINATORICS.

Fact. Combinatorics is full of reconfiguration systems.
They all give rise to locally CAT(0) cube complexes.

Question.
Which ones give rise to globally CAT(0) cube complexes?

Example. G(w) = graph of reduced words of a permutation w .
Vertices: reduced words i1 . . . ik where si1 . . . sik = w
Edges: braid relations

...i(i + i)i ...↔ ...(i + 1)i(i + 1)...

...ij ...↔ ...ji ... (|i − j | > 2)

Question. For which w ∈ Sn
is G(w) the skeleton of a
globally CAT(0) cube complex?

• Coxeter-Knuth graphs?
• dual equivalence graphs?
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LOCALLY CAT(0) CUBE COMPLEXES IN COMBINATORICS.

Problem 2.
What if our cube complex is only locally CAT(0)?
Give a combinatorial model for CAT(0) cube complexes.
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many thanks

The papers (and more detailed slides) are available at:

http://math.sfsu.edu/federico
http://arxiv.org
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