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What can computers do in (pure) mathematics?

Test working hypotheses in a large number of instances;
discover new patterns by experiments previously unimaginable (by hand);

complete the proof of theorems for which there is a reduction to the handling
of a finite number of remaining cases;

make data (that were difficult to obtain) easily/electronically accessible,
thereby facilitating further work with or experiments on them.

CHEVIE project: M. Geck, G. Hiss, F. Luebeck, G. Malle, J. Michel, G. Pfeiffer

mathematik

Bring Lusztig’s theories (characters of finite groups of Lie type, of Weyl groups

and Hecke algebras, Kazhdan—Lusztig cells . ..) to the computer.

Ongoing joint project since 1990s, see
http://www.math.rwth-aachen.de/~CHEVIE/
https://github.com/jmichel?7 (Jean Michel)
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Aim of this talk: Show some applications of CHEVIE, relating to
® conjugacy classes and characters of Weyl groups;

Kazhdan—Lusztig polynomials and cells;

unipotent classes in algebraic groups;

(generalised) Springer correspondence and Green functions.

My own first steps in this direction:

® (~1987) | “grew up” at the department of RWTH Aachen (Germany) where
the computer algebra system GAP was developped.

® (Early 1990s) First GAP programs for working with finite Coxeter groups, for
computing Kazhdan—Lusztig polynomials and cell representations (~ joint
work with K. Lux on modular representations for Hecke algebra of type Fj).

Since about 2003: G. Lusztig is a quite regular user (even power user) of CHEVIE.J
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Example 1:  Conjugacy classes and characters of Hecke algebras J

W finite Coxeter group, S simple reflections, and {: W — Z- length function.
H Iwahori—-Hecke algebra over A = Z|[q, '] with standard basis {T,, | w € W};
TwTw = Tyw if Q(ww’) =L(w) +L(w'),
T2 =qT1+(q—1)Ts forse S.
cl(W) .= set of conjugacy classes of W.
For C ecl(W) let dg:= min{{(w)|w e C} and ’Cmin ={weCllw)= dc}‘.
For w,w’ € W write w — w' if there is a sequence w = wy, wo, ..., Wy, = w'in W
such that ¢(wy) > ... > {(w,) and w1 = s;w;s; for some s; € S.

Theorem (G. and Pfeiffer 1993). Let C < cl(W).
(a) Forany w € C, there exists some w’ € Cpin such that w — w'.

(b) If w,w’ € Cyin, then T, and T,,» are conjugate in H.
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Proof. Easy reduction to W irreducible; then case—by—case, using computer for W
of exceptional type. Classification of cl( W) known by Carter (1972).

Note: to verify (a), one needs to look at every element of W. For (b), one needs
explicit lists of Crin. Example: W = W(Eg); largestclass C € cl(W) with

|C| = 43,545,600, dc =7, |Cminl = 64. O

X. He and S. Nie (Duke Math. J., 2012). = Case/computer-free proof of theorem. )

Our motivation for theorem:  “g-deformation” of character table of W. J

Let K D A = Zlq,q '] sufficiently large field and Hx := K ®4 H (split semisimple).
Tits’ Deformation Theorem: Irr(W) & Irr(Hk), X < Xq-
For C € cl(W) fix wg € Cmin.  Theorem = xq(Tw,) independent of choice of we.

W= 12) (12 12) (12

& 0 (2 G2 HS) [0 T2 T2 | yeiqrogr
X1 Xq,1 i 4 K = R(q'/2) sufficient,
X2 =il 1 Xq,2 1

1
1 -1 1

all values in R[q'/2].

X3 2 0 Xg,3 2 g1 —q
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Example 2:  Involutions and Kazhdan—Lusztig cells )

W finite Coxeter group, S simple reflections, andI ={w e W | w? = 1}.
V vector space (over C) with basis {ay | w € I}. Linear action of W on V:

san —ay if sw = ws and {(sw) < £(w),
M) asws  otherwise.
(Kottwitz 2000, above formulation from Lusztig—Vogan 2011.)

Kottwitz’ Conjecture. Let C € cl(I) and Vo = (aw | w € C)¢c (submodule of V).
Let ' € W be a Kazhdan—Lusztig left cell. Then
|ICNT| =dimHomy(Ve, [Ty), where [I'l;y = W-module carried by T".

Kottwitz, Casselman (“Verifying Kottwitz’ conjecture by computer”, 2000), Marberg
(2013), Bonnafé and G. (2012—2015): known in all cases except for W = W(Eg).

Big (computational) challenge:  Find partition of I into left cells for type Es. J
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For x € Irr(W) let Dy € R|q] be the “generic degree” (Benson—Curtis 1972);
D, = ,J;qax + higher powers of q, where f, € R.o, a, € Z>o.
For w € W, we have q&—W)/2y (T,) € Rlq'/?]. Lusztig’s “leading coefficients”:
Cw,y = constant term of (—1)Wg(a&x—tW)/2y (T,).
Theorem (Lusztig 1986). Let w eI (involution).
® There exists some x € Irr(W) such that ¢y, # 0.

® Every left cell I' contains a unique w € I'such that 3 .1, (w) f =iy 50 (0
furthermore, cw, = multiplicity of x € Irr(W) in character of .

Now W of type Eg; then [I| = 199952 and number of left cells = 101796.

Y. Chen (2000): Let w,w’ € Tand x,x’ € Irr(W) with ¢y, # 0 and ¢,/ # 0.
Then w, w' belong to the same left cell if and only if a, = &, and w, w’ have the
same generalised t-invariant (Vogan).

All this can be computed for the 199952 involutions (G.—Halls, Math. Comp. 2015).
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Example 3:  Bruhat cells and unipotent classes J

Let G be a simple algebraic group over an algebraically closed field k,
B C G a Borel subgroup, T C B a maximal torus and W = Ng(T)/T.

clyni(G) = set of unipotent conjugacy classes of G.

Consider intersections for O € clyni(G) and w e W.

Lemma (Lusztig). Let w, w’ € Cnin for some C e cl(W). Then
ONBwWB#2o & ONBwWB#Wg. J

(Follows from theorem of G.—Pfeiffer.) For O € cl,,i(G) and C € cl(W) write
CHO if ONBWB # @ for some/any w € Cuin.

Theorem (Lusztig 2011, 2012 + Lusztig—Xue 2012).
There is a well-defined, surjective map @: cl(W) — clyni(G) such that
C 4 @(C) and such that if O’ € clyn(G) and C H O/, then ®(C) C O'.
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Thus, O = ®(C) € cly(G) is minimal such that O N BwB # & for w € Cmin J

Examples: @ ({1w}) ={1¢}, ®({Coxeter elements}) = regular unipotent class.

Proof. Case—by—case, using very complicated computations for G of classical
type. For G of exceptional type, work over k = F, and consider finite group of
rational points G(q) where g = large power of p. Then matrix of intersections

( (O NBweB)(q)l )(’)ecluni(G), Cecl(W)
can be expressed as the product of three matrices:

® g-deformation of character table of W (as considered above),

® non-abelian Fourier matrix from Lusztig’s orange book (1984),

® the matrix of values of Green functions for G(qg) (~~ more in next sections).
All available in CHEVIE; can perform explicit computation. O
Final remark: The above result is used, for example, in the proof of

Lusztig (Moscow Math. J. 2012):  Cleanness of cuspidal character sheaves. J
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From now on:  Character theory of finite groups of Lie type J

Example: Let G = SL,(F5), with Frobenius map Fq(aj) = (a,?jd) ford > 1.
Let Gfe :={g € G | F4(9) = g} = SLa(Fsa).

As (d=2) | () (12)(34) (123) (12345) (13524)
G3 (d=1) () (12) (123) X1 1 1 1 1 1
X1 11 1 X2 3 0 1(1+vB) 1(1-v5)
X2 1T -1 1 X3 3 - 0 1(1—v5) 1(1+v5)
X3 2 0 —1 X4 4 0 1 —1 —1
X5 5 1 —i 0 0

Would like uniform (“generic”) description of character table of G/ for all d > 1.

q—2d c G Cs(a) Ca(b) Unpacked table has size (g + 1) x (g + 1);
” 1 1 1 1 3 slightly more complicated table for g odd.
X2 q 0 1 —1 3 similar tables for other G of small dimension,
xs(m | g+1 1 ¢4+ 0 eg. Sp4(Fq), Ga(Fq), *D4(Fg), ...
xa(m) | g—1 1 0 —gmogtm LATEST addition  F,(29),d > 1, G. (2023).
C=exp(2ni/(q—1)), & =exp(2mi/(g+1)) ULTIMATE challenge  Eg(FFq), any g.
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General set-up: G connected reductive over F,, with Frobenius map F: G — G
corresponding to Fq-rational structure (where g = p’ for some f > 1).
Gf:={ge G| F(g) =g} finite group of Lie type.

Fix an F-stable Borel subgroup B C G and F-stable maximal torus Ty C B;
let W = Ng(Tg)/To with induced automorphism o: W — W.

Deligne and Lusztig 1970s:

Let w e W and Tolw] :={t € To | F(t) = w 'tw} (finite subgroup of G)

0 € Irr(Tolwl) ~  RY virtual character of G-.

Lusztig 1984: Knowledge of all R)’s ~» “average value” character table of GF.

Let p € Irr(GF) and C be an F-stable conjugacy class of G. Then CF splits into
finitely many classes in G, with representatives g, ..., g, € CF say.

“ ” PO .. F .
~ “average value AV(p,C) = ZKKr[A, :Aflo(g),
where A; = Cg(9i)/Cg(gi) finite group (with induced action of F).
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Example 4:  Computation of Green functions )

Let Gyni be the variety of unipotent elements of G
~  Green function Qu: G, —Q, u~— RY(u).
® (), has values in Z, and does not depend on 6.
® Character formula: Get all values of RS, from Q,, and inductive procedure.

Theorem (1976—-2024). The Q,, are now known explicitly in all cases.
Shoji (1982/83): G of type F4 for p > 2, and G of classical type for p > 2.

Beynon—Spaltenstein (1984): G of type Eg, E7, Eg and p “good”.

Malle (1990/93): F4 and Eg for p = 2; Porsch (1993): Eg for p = 3.
Shoji (2007): G of classical type and p = 2.

G. (2020) + LUbeck (2024): Last remaining cases E7, Eg for p = 2,3, 5.

Ingredients: Springer correspondence; Lusztig’s “Green functions and character
sheaves” (1990, mild restriction on p,q) + Shoji (1995, restrictions removed).
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Generalised Springer correspondence (Lusztig 1984)
Ne ={(0,E)| O €clyi(G), €& irreducible G-equivariant Q,-local system on O}.
® Partition of Ng into pieces called “unipotent blocks”;

® collection of bijections {Z « Irr(Wr) | Z unipotent block of Mg},
where WV is a certain finite Coxeter group associated with 7.

For Green functions, sufficient to consider Z, = unipotent block with ({1}, Q,) € Zy;
Wr, = W (Weyl group of G) and Z; « Irr( W) “ordinary” Springer correspondence.
Also sufficient to consider G simple adjoint; further assume F: G — G split type.
Then each unipotent class O & cly,i(G) is F-stable and we can find up € OF such
that F acts trivially on A(up) = Ce(Uo)/Cg(Uo).

Lusztig-Shoji Algorithm.  Set Q, := g >, x(W)Qw  for x € Irr(W).

Letx & (0,&) € To. Then {u€ GF | Q(u) #0}C O and

uni

Q,(Up) = 8,qimBuo dim £ where &, € {£1}.
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Once the signs b, = 41 (and the Springer correspondence) are known, all the
values of the Green functions are determined by a purely combinatorial algorithm.

For u € GF  there are (explicitly computable) polynomials Pyx',u € Zlq] such that

uni
Q(u) = ZX’eIrr(W x' Pxox,u(Q)-
Remaining problem:  Determine the signs 6, = £1 for x € Irr(W).

Idea: RY-! character of permutation representation of G on G /BF. Hence

|(GF/BF),| :== number of cosets G /BF fixed by u
= Qi(U) = 2 ey x(1) Q(U)

- Zx’GIrr(W) (erlrr(W)X(1 )PX’X/’”(q)) By

known, computable

Theorem (G. 2020). Let r > 1 and consider Green functions Q for GF';
have signs 6&') € {+1}. Then SX = 8}. So it is enough to consider g = p.
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Example: GF = Eg(Fq) with g = 27

Let O = unipotent class denoted Eg(bg) with up = z77 (Mizuno 1980).

We have A(up) = Cg(up)/Ca(uo) = &3 and |Cglup)F| = 6¢%8.

There are three x € Irr( W) such that x < (O, &), denoted 22401q, 17515, 84043.
(Springer correspondence known by Spaltenstein 1985.)

Want to determine d2040,, = £1, 08475,, = &1, Ogao,, = £1.

OF splits into 3 classes in G, with representatives z77, z7g, Z79. Run the CHEVIE
function ICCTable to get the polynomials P, , € Zlql for u € {z77, 278, Z79}.
Theorem = enough to consider g = 2:

(GF /BF),,,| = 5,479,485 52249,, + 358,400 5175, + 1,233,920 8g40,,
(GF/BF) ;| = 5,479,485 83040, — 1,233,920 5g40,,

Z78

|(GF/BF)Z79| = 5,479,485 5224010 + 179,200 517512 + 1,233,920 684013

Left hand side is a non-negative integer = 62040,, = 1.
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Claim. dga0,;, = —1 and  dq75, = 1.
Idea of proof.  Suppose 06g49,, = 1; then above equation
(GF/BF) | = 5,479,485 52249,, — 1,233,920 5g40,,

yields |(GF/BF),,,| = 5,479,485 — 1,233,920 = 4,245,565.
So, if we can find strictly more cosets fixed by z;g, then contradiction.
Explicitly count cosets fixed by z7g, using matrix realisation of GF (G. 2020) or
Steinberg presentation (Libeck 2024).
Every double coset BF wBF contains precisely g/ cosets of GF /BF. Can write
down explicit expressions for representatives of these cosets. Proceed along
increasing value of £(w) until sufficiently many cosets have been found. O
These computations require:

® Data base of (generalised) Springer correspondence in CHEVIE;

® implementation of Lusztig—Shoji algorithm (J. Michel's ICCTable function);

® programs for working inside G (with matrices, or words in generators x,(t)).
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Example 5:  Recovering geometry from algebra )

Consider again generalised Springer correspondence.
Fix a unipotent block Z, a certain set of pairs (O, &) in Ng.
Using bijection Z « Irr(Wr), define equivalence relation ~ on Irr(Wr):

Letx,x’ € IrWr). x~x' &5 (0,6 < x and (0,8 & X' (same O). |

Lusztig “Unipotent blocks and weighted affine Weyl groups” (2024) conjectures:
Partition of Irr(W;) defined by ~ can be recovered in a purely algebraic way,
using operations with characters of W and inductive procedure.

Example: G of type E7, simply connected and p # 2.

There is a unipotent bock Z; containing 25 pairs (O, £) € Ng, with Wr of type F4.
Easy to program Lusztig’s algebraic version of ~ in CHEVIE.

G.—Hetz (2024): Found an inconsistency with Spaltenstein’s tables (1985) for
generalised Springer correspondence of G. Using CHEVIE could correct table.
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