The FPP conjecture and computing the unitary dual

David Vogan, MIT

Representation theory days In honor of George Lusztig

MIT, November 9–11 2024

The FPP [conjecture and](#page-19-0) computing the unitary dual

David Vogan, MIT

[Weyl group](#page-10-0)

Outline

- **[Introduction](#page-2-0)**
- **[Computation](#page-5-0)**
- [Math introduction](#page-8-0)
- [Your friend the Weyl group](#page-10-0)
- [George's friend the affine Weyl group](#page-12-0)
- [What do we know now about](#page-14-0) $\bar{G}(\bar{\mathbb{R}})_u$?
- [The fundamental parallelepiped](#page-16-0)
- [The FPP conjecture \(Davis, Mason-Brown](#page-18-0) theorem)
- [Closing remarks](#page-19-0)

Slides at http://www-math.mit.edu/∼dav/paper.html

The FPP [conjecture and](#page-0-0) computing the unitary dual David Vogan, MIT

Intro

This talk is about unitary reps of real groups. But...

- 1. The conference is to celebrate George's work
- 2. George doesn't talk about unitary representations
- 3. George doesn't talk about real groups
- 4. So what was I thinking?

I will tell you here what I omit in the rest of the talk.

Every time I say "we can compute," or "the $atlas$ software can compute," what I mean is this:

The computation is completely inaccessible; but George found a straightforward way to do it.

Main example: character formulas for irr reps.

Beilinson, Bernstein, Kashiwara, and Brylinski related char formulas to symmetric-subgroup-equivariant perverse sheaves on flag varieties; and those George could write down in his sleep.

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Introduction](#page-2-0)

What's this about really?

G(R) real reductive algebraic group.

 $\bar{G}(\mathbb{R})_{\mu}$ = (equiv classes of) irr unitary reps of $G(\mathbb{R})$. I'll assume that studying this set (unitary dual) is the most world's best problem.

How can you approach it?

I'll start by saying what the answer looks like.

 $G(\mathbb{R}) \rightsquigarrow$ {finite set of compact polyhedra U_j }. Each $U_j \rightsquigarrow$ (real vector space V_j , cone-in-a-lattice C_j) $\widehat{G(\mathbb{R})}_u = \coprod_j U_j \times V_j \times C_j$.

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Introduction](#page-2-0)

This just in. . .

 $G(\mathbb{R}) \rightsquigarrow$ {finite set of compact polyhedra U_i }. Each $U_j \rightsquigarrow$ (real vector space V_j , cone-in-a-lattice C_j) $\widehat{G(\mathbb{R})}_u = \coprod_j U_j \times V_j \times C_j.$

The FPP conjecture (stated below) constrains the cpt polyhedra *U^j* and the cone-in-lattice factors *C^j* .

The FPP conjecture was recently proven by Dougal Davis and Lucas Mason-Brown.

The constraints make $\widehat{G(\mathbb{R})}_\nu$ computable (by the \texttt{atlas} software) for any particular value of *G*(R).

Computing unitary dual of a series of *classical* groups is (thanks to Barbasch, Arthur. . .) a combinatorial problem for which one can hope for a complete and explicit answer.

(We don't yet have such an answer \odot .)

The *exceptional* groups are another matter.

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Introduction](#page-2-0)

Really computable?

Here is some information about the computations.

The FPP [conjecture and](#page-0-0) computing the unitary dual David Vogan, MIT

[Computation](#page-5-0) [Weyl group](#page-10-0) [Affine Weyl group](#page-12-0) [FPP conjecture](#page-18-0)

Patterns

*E*⁷ done by Jeffrey Adams in 1000 atlas processes. Created overhead: sum of 1000 process times isn't comparable to single process times.

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Computation](#page-5-0) [Weyl group](#page-10-0) [Affine Weyl group](#page-12-0) [FPP conjecture](#page-18-0)

What we see and why we care

Very roughly: time, memory, and # unitary faces depend mostly on $rank(K)$. Here are some approximations.

 R .01 \times 10^R .02 \times 7^R ... 2 \times 5^R
Reason to make estimates: to guess how difficult it will be to calc FPP unitary faces in split E_8 , and how complicated answer is.

First, expect several million FPP unitary faces.

If calculation is divided among many processors, need 150 gb for most processes: and perhaps 1 tb for a few of them.

To address the predicted weeks or months of CPU time, can consider separately each of 320,000 orbits of *K* on B.

Steve Miller: many orbits take few secs; but some require day or two.

He is pursuing this work on hundreds of machines at Rutgers, and has completed about 280,000 orbits.

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Computation](#page-5-0)

Immer mit dem einfachsten Beispiel. . .

This advice stayed on Michael Artin's board while he wrote *Algebra*. $G(\mathbb{R}) \rightsquigarrow$ {finite set of compact polyhedra U_i }. Each $U_j \rightsquigarrow$ (real vector space V_j , cone-in-a-lattice C_j) $\widehat{G(\mathbb{R})}_u = \coprod_j U_j \times V_j \times C_j.$ $\widehat{SL(2,\mathbb{R})}_u \rightsquigarrow \big\{ (\text{point} \times \mathbb{R}^1 \times \{0\}) \longleftrightarrow \text{spherical unitary princ series} \big\}$ (point $\times \mathbb{R}^1 \times \{0\}$) \longleftrightarrow nonsph unitary princ series (point $\times \mathbb{R}^0 \times \mathbb{N}$) \longleftrightarrow holomorphic discrete series (point $\times \mathbb{R}^0 \times \mathbb{N}$) \longleftrightarrow antihol discrete series $([0,1] \times \mathbb{R}^0 \times \{0\}) \longleftrightarrow \text{complementary series}$

This is two lines, two half lattices, and one interval. Picture for *SL*(2,R) found by Valentine Bargmann in 1947.

For those with OCD or PhD: more words are needed to make this precise. Example: nonsph princ ser at 0 is sum of two irreps: nonsph(pt, $(0, 0) =$ hol ds(pt, $(0, 0) +$ antihol ds(pt, $(0, 0)$).

That answer has this form for any real reductive $G(\mathbb{R})$ comes from Harish-Chandra, Langlands, Knapp, Zuckerman \approx 1985.

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Math intro](#page-8-0)

So what do we need to do?

 $G(\mathbb{R}) \rightsquigarrow$ {finite set of compact polyhedra U_i }. Each $U_j \rightsquigarrow$ (real vector space V_j , cone-in-a-lattice C_j) $\widehat{G(\mathbb{R})}_u = \coprod_j U_j \times V_j \times C_j.$ Describe $\widehat{G(\mathbb{R})}_u \leftrightarrow$ describe cpt polyhedra U_j . Vec space *V^j* , cone-in-lattice *C^j* important but easy. Main question today: what do cpt polyhed *U^j* look like? Answer: U_j is finite union of product of simplices. Goals for today:

- 1. say what kinds of simplices are allowed
- 2. recall work of Barbasch, (Barbasch and his friends) giving beautiful precise list of simplices in many cases
- **3.** say how at las software computes ugly precise list of simplices in all cases

Realistically: I'll mostly talk about (1).

[conjecture and](#page-0-0) computing the unitary dual David Vogan, MIT [Math intro](#page-8-0)

The FPP

Remind me about the Weyl group. . .

G cplx conn red alg group ⊃ *B* Borel ⊃ *H* max torus. $(X^*$ alg chars of *H*) \supset (*R* roots) \supset (Π simple roots). $(X_*$ alg cochars) $\supset (R^{\vee}$ coroots) $\supset (Π^{\vee}$ simple coroots). Based root datum of *G* is $(X^*, \Pi, X_*, \Pi^{\vee})$, $\mathfrak{h}_\mathbb{R}^* = X^* \otimes_\mathbb{Z} \mathbb{R}$. $\mathfrak{h}^*_{\mathbb R}$ is the real vector space where the classical root system lives. Coroot hyperplanes: $E_{\alpha^{\vee}} = \{ \gamma \in \mathfrak{h}^*_{\mathbb{R}} \mid \gamma(\alpha^{\vee}) = 0 \}$ (α^{\vee} in R^{\vee}). Each coroot α^{\vee} defines simple reflection: $\mathfrak{h}^*_{\mathbb{R}} \to \mathfrak{h}^*_{\mathbb{R}},$

$$
s_{\alpha^{\vee}}(\gamma) = \gamma - \gamma(\alpha^{\vee}) \cdot \alpha, \quad s_{\alpha^{\vee}}(\alpha) = -\alpha, \quad s_{\alpha^{\vee}} =
$$
 identity on E_{α} .

Weyl group of *G* is $W =$ group generated by all s_{α} . The open positive Weyl chamber is the open simplicial cone

 $C^+ = \{ \gamma \in \mathfrak{h}_{\mathbb{R}}^* \mid \gamma(\alpha^{\vee}) > 0 \quad (\alpha^{\vee} \in \Pi^{\vee} \text{ simple}) \}.$

A Weyl chamber in $\mathfrak{h}_{\mathbb{R}}^*$ is a subset $w \cdot C^+$ (some $w \in W$).

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Weyl group](#page-10-0)

What do Weyl chambers look like?

╲ ╲ ╲ ╲ ╲ \searrow ╲ ╲ ╲ \angle ╱ Γ ╱ Γ Ϊ ╱ Γ Γ Γ $E_{(0.1)}$ *S*_(1,−1) · *C*⁺ *E*_(1,−1) *C* + $s_{(0,1)} \cdot C^+$ $\mathfrak{h}_{\mathbb{R}}^*$ for $Sp(4,\mathbb{R})$

 \overline{C}^+ is fundamental domain for W action on $\mathfrak{h}_{\mathbb{R}}^*.$ Action of *W* on Weyl chambers is simply transitive dominant faces of \overline{C}^+ of codim $d \longleftrightarrow$ cardinality d subsets of Π^\vee any face of $b_{\mathbb{R}}^*$ is in W (unique dom face)

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Weyl group](#page-10-0)

And the affine Weyl group?

Standard terminology: what's below is the dual affine Weyl group. Based root datum of *G* is $(X^*, \Pi, X_*, \Pi^\vee)$, $\mathfrak{h}_\mathbb{R}^* = X^* \otimes_\mathbb{Z} \mathbb{R}$. Aff coroots are $R^{V,aff} = \{(a^V, m) \mid a^V \in R^V, m \in \mathbb{Z}\}.$ Pos aff coroots are $R^{\vee,aff,+} = \{(\alpha^{\vee}, m) \mid m > 0 \text{ or } \alpha^{\vee} \in R^{\vee,+}, m = 0 \}.$
Write $\alpha^{\vee} =$ lowest coroot (unique if G simple) Write α_0^{\vee} = lowest coroot (unique if *G* simple). Simple aff coroots are $\Pi^{\vee,aff} = \{(\alpha^{\vee}, 0) \mid \alpha^{\vee} \in \Pi^{\vee}\} \cup \{(\alpha_0^{\vee}, 1)\}.$ Aff hyperplanes $E_{\alpha^V,m} = \{ \gamma \in \mathfrak{h}_{\mathbb{R}}^* \mid \gamma(\alpha^V) + m = 0 \}.$ aff coroot \rightsquigarrow simple aff reflection: $b_{\mathbb{R}}^* \rightarrow b_{\mathbb{R}}^*$, $s_{\alpha^{\vee},m}(\gamma) = \gamma - (\gamma(\alpha^{\vee}) + m) \cdot \alpha, \quad s_{\alpha^{\vee},m} = \text{id} \text{ on } E_{\alpha^{\vee},m}.$ Affine Weyl group of *G* is $W^{\text{aff}} =$ group generated by all $s_{\alpha}v_m$.

The open fundamental alcove is the open simplex

$$
\mathcal{A}^+ = \{ \gamma \in \mathfrak{h}_{\mathbb{R}}^* | \gamma(\alpha^{\vee}) + m > 0 \quad ((\alpha^{\vee}, m) \in \Pi^{\vee, \text{aff}} \text{ simple}) \}
$$

= $\{ \gamma \in C^+ | \gamma(\alpha_0^{\vee}) < 1 \}.$

An alcove in $\mathfrak{h}_{\mathbb{R}}^*$ is a subset $w \cdot \mathcal{A}^+$ (some $w \in W^{\text{aff}}$).

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Affine Weyl group](#page-12-0)

What do alcoves look like?

 $\cancel{\times}$ \divideontimes ╲ ╲ \times ╲ ╲ ❅ ❅ ╲ ╲ \times ╲ ╲ $\mathcal{A}(0,0)$ ╲ ╲ ❅ ╲ \searrow ❅ ╲ ╲ ❅ ╲ ╲ ❅ ╲ ╲ ❅ ╲ \searrow \divideontimes ╲ ╲ \times ╲ ╲ ❅ $\begin{picture}(120,110) \put(0,0){\dashbox{0.5}(11.5){ }} \put(15,0){\dashbox{0.5}(11.5){ }} \put(15,0){\dash$ \swarrow Ж Γ ╱ \times ╱ Ϊ Ж $\cancel{\times}$ Γ ╱ \times ╱ Ϊ ╱ ╱ র∕ Γ $\overline{\diagup}$ \divideontimes Ж Ϊ ╱ \times ╱ Γ ¥ Γ Γ $\!\!\sqrt{ }$ Γ $\overline{\diagup}$ $(2, 1) = \rho$ Ж Ϊ ╱ \times Ϊ Γ \divideontimes $\overline{\nearrow}$ \swarrow \mathcal{A}^+ \diagup \searrow ❞ $\mathfrak{h}_{\mathbb{R}}^*$ for $Sp(4,\mathbb{R})$ $\overline{\mathcal{A}}^+$ is fundamental domain for $\mathcal{W}^{\mathrm{aff}}$ action on $\mathfrak{h}^*_{\mathbb{R}}.$

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Weyl group](#page-10-0) [Affine Weyl group](#page-12-0)

Action of *W*aff on alcoves is simply transitive fund faces of $\overline{\mathcal{A}}^{+}$ of codim $d \longleftrightarrow$ order d subsets of $\Pi^{\vee,\mathsf{aff}}$ any face of $\mathfrak{h}_\mathbb{R}^*$ is in W^{aff} (unique fundamental face)

What good are all these faces?

Langlands classif: irrs of real infl character indexed by

- 1. discrete parameter $(x, \lambda) \approx$ lowest *K*-type
- 2. continuous parameter $\gamma =$ infinitesimal character.

Here $x = KGB$ element: orbit of $K(\mathbb{C})$ on Borels in $G(\mathbb{C})$.

Finite # of *^x*: ³ for *SL*(2, *^R*), ²⁰¹ for *Sp*(8,R), ³²⁰²⁰⁶ for split *^E*8.

Given x, set of allowed λ is finite # of cones in lattices

Given (x, λ) , set of allowed γ is affine space $V_{\mathbb{R}}(x, \lambda) \subset \mathfrak{h}_{\mathbb{R}}^*$.

Therefore $V_{\mathbb{R}}(x,\lambda)$ is disjoint union of faces.

Theorem (Speh-V) Fix discrete parameter (*x*, λ).

- 1. If $\gamma_1, \gamma_2 \in$ same face of $V_R(x, \lambda)$, then irr reps $J(x, \lambda, \gamma_1)$ and $J(x, \lambda, \gamma_2)$ are both unitary or both nonunitary.
- 2. Set of unitary γ is a compact polyhedron $U(x, \lambda) \subset V_{\mathbb{R}}(x, \lambda)$, a finite union of faces.

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Unitary dual I](#page-14-0)

What does that say about the unitary dual?

Corollary Set $\widehat{G}(\widehat{\mathbb{R}})_{\text{weak}} =$ unitary reps of real infl char. Then

 $\widehat{G(\mathbb{R})}_{u,\text{real}} = \bigcup_{x \in KGB} \bigcup_{\lambda \text{ allowed}} U(x, \lambda)$ *x*∈*KGB* λ allowed for *x*

Claim in introduction:

 $G(\mathbb{R}) \rightsquigarrow$ {finite set of compact polyhedra U_i }. Each $U_j \rightsquigarrow$ (real vector space V_j , cone-in-a-lattice C_j)

 $\widehat{G(\mathbb{R})}_u = \coprod_j U_j \times V_j \times C_j.$

Polyhedra *^U*(*x*, λ) are the *^U^j* in the introduction.

Extending Cor to all infl chars gives real vector spaces *V^j* .

Given *^x*, ^λ's are finite union of cones in lattices *^C^j* .

To prove Claim, need to show $U(x, \lambda)$ is nearly independent of λ . To describe unitary dual, need to compute all $U(x, \lambda)$.

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Unitary dual I](#page-14-0)

What's the FPP...

 $\mathsf{FPP} \subset \mathfrak{h}_{\mathbb{R}}^*$ for $Sp(4,\mathbb{R})$

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Weyl group](#page-10-0) [Affine Weyl group](#page-12-0) [Unitary dual II](#page-16-0) [FPP conjecture](#page-18-0)

fundamental parallelepiped = { $\gamma \in \mathfrak{h}^*_{\mathbb{R}} \mid 0 \leq \gamma(\alpha^{\vee}) \leq 1 \mid (\alpha \in \Pi)$ }

Union of $\#W/\#Z(G_{sc})$ alcoves.

(Those numbers are 7×10^8 and 2.4×10^{10} .)

... and how does it help the unitary dual?

Real Langlands parameter (x, λ, γ) defines

- 1. Cartan involution $\theta = \theta(x)$ acting on b^*
2. Cartan decomp $b^* = t^* + a^*$ (+1 eigen
- 2. Cartan decomp $\mathfrak{h}_{\mathbb R}^* = \mathfrak{t}_{\mathbb R}^* + \mathfrak{a}_{\mathbb R}^*$ (±1 eigenspaces)
- 3. differential of λ *d* $\lambda \in t_{\mathbb{R}}^*$
4. "A-parameter $\nu = \nu(x)$
- 4. "A-parameter $v = \gamma(x, \lambda, \gamma) = \gamma d\lambda$
- 5. Definition of param $\rightsquigarrow \gamma \in \overline{C^+}$ is dominant.

 $(2, 1) = \rho$ (x, λ) first disc series, Siegel par $\theta = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $d\lambda = (1/2, -1/2)$ $a_{\mathbb{R}}^* = \{(t, t)\}$

green line is allowed infl chars γ .

unitary part is some vertices $(2 + m_0, m_0)/2$, edges { $(1 + t, t)$ | $t ∈ (1 + m₁/2, 1 + (m₁ + 1)/2)$ }, some $m_0 \in \{-1, 0, 1\}$, $m_1 \in \{-1, 0\}$.

Define $U_{FPP}(x, \lambda) = \{y \in FPP \mid J(x, \lambda, y) \text{ is unitary}\}.$

 $U_{FPP}(x, \lambda)$ is the single red point $[1, 0]$: only $m_0 = -1$ is unitary.

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Unitary dual II](#page-16-0)

FPP conj (Davis, Mason-Brown theorem)

Suppose (x, λ, γ) is a real Langlands parameter of infinitesimal character γ .

FPP conjecture is distilled from work of Dan Barbasch.

Define $S(\gamma) = \{ \alpha \in \Pi \mid \gamma(\alpha^{\vee}) \leq 1 \}$, a set of simple roots,

 $q = q(\gamma) = 1 + u$ parabolic with Levi generated by $S(\gamma)$.

- 1. *γ* belongs to the FPP if and only if $q = q$.
- 2. Conjecture If $J(x, \lambda, \nu)$ is unitary, then q is θ -stable.
- 3. If q is θ -stable, then $J(x, \lambda, \gamma)$ is good range cohomologically induced from *^J*(*x^L*, λ*^L*, γ*^L*) on *^L*. Here $\lambda_l = \lambda - \rho(\mathfrak{u}), \gamma_l = \gamma - \rho(\mathfrak{u}), \gamma_l \in FPP(L)$.

$$
U(x,\lambda) = \bigcup_{\theta\text{-stable } q} U_{\text{FPP}}(x_L,\lambda_L) + \rho(u)
$$

e-stable q
Conclusion: unitary dual is known if we compute (finitely many) $U_{FPP}(x, \lambda)$, the FPP infl characters for unitary reps in the series (x, λ) .

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[FPP conjecture](#page-18-0)

Three cheers!

I chose this picture (from Bert Kostant's 80th birthday conference in Vancouver in 2008) for several reasons.

First: George is clearly the tallest person in the picture.

Second: the presence of my student Monica Nevins, who now works entirely on *p*-adic groups. George affects everyone he meets.

Third: our colleague Victor Guillemin is laughing, presumably at a joke from George.

Thank you George, for a memorable half century!

The FPP [conjecture and](#page-0-0) computing the unitary dual

David Vogan, MIT

[Outro](#page-19-0)