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Motivation 1

A while back, I was able to use a construction of Okounkov
(the “binomial formula” for Koornwinder polynomials (the 5-
parameter version of Macdonald polynomials for type C) in re-
verse to give new proofs of the Macdonald conjectures for such
polynomials, and then generalize this to the elliptic level, giving
biorthogonal families of Cn-invariant rational functions on En

degenerating to both Koornwinder and (GLn-type) Macdonald
polynomials, and satisfying analogues of Macdonald’s conjec-
tures. The original proof for Koornwinder and Macdonald poly-
nomials used double affine Hecke algebras (DAHAs), suggesting
that there should be an elliptic analogue of these algebras. (I
originally was hoping such an extension would let me settle some
additional conjectures about elliptic biorthogonal functions, but
those have since been settled by other means.)
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Motivation 2

Back in summer 2011, Etingof asked me∗ whether I could con-
struct a flat noncommutative deformation of Symn(P2 \ C) for
C a smooth cubic curve. Though P2 was not obvious, it was
clear that a recently developed interpretation of deformations of
P1 × P1 \ C (with C smooth biquadratic) should carry over to
symmetric powers, and further work that fall (on sabbatical at
MIT) extended to arbitrary blowups of Hirzebruch surfaces with
smooth anticanonical curves. (P2 is actually the hardest case!)

Main difficulty: how to prove these are flat? Starting with a
Hirzebruch surface lets us think of everything as sheaves on Pn,
so we just need to show that those are flat. Pavel suggested this
might follow from an interpretation as a spherical algebra of a
DAHA-like object.
∗via Okounkov!
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Further Motivation

A deformation of Symn(X \ C) is very close to a deformation

of Hilbn(X \ C), which in turn is birational to moduli spaces of

sheaves on X with 1-dimensional support disjoint from C. For

each such moduli space, there’s an irreducible hypersurface in

Hilbn(X \ C) such that removing that hypersurface and some

other codimension ≥ 2 stuff then adding back different codi-

mension ≥ 2 stuff gives the moduli space. Geometric Langlands

involves derived equivalences between noncommutative deforma-

tions of such moduli spaces (with highly singular anticanonical

curve). . .
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In particular, removing the given hypersurface essentially makes

Hilbn(X \ C) an abelian fibration, so should have derived autoe-

quivalences, and those should extend to the deformations (act-

ing nontrivially on the deformation parameters). (This works for

n = 1, giving discrete versions of geometric Langlands for GL2

on P1 minus 4 points.)
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Main DAHA result: Given any abelian variety with a suitable

action of a Coxeter group (not necessarily finite or affine!), suit-

able “twisting” data, and any choice of an effective divisor on

each orbit of “coroot” curves (see below), there is an associated

Hecke algebra; in the affine case, a special case degenerates to

the usual double affine Hecke algebra. Under very mild addi-

tional conditions, the spherical algebra associated to any finite

parabolic subgroup is still flat.

Main deformations of symmetric powers result: In the affine

C∨Cn case, if we assign a degree 1 divisor (t) to the Dn roots and

a degree m divisor to the orbit of α0, then the family of spherical

algebras is a two-parameter deformation of the family of m-point

blowups of Hirzebruch surfaces with smooth anticanonical curve.

(Also a conjectural way to extend to a deformation of Hilbn(X).)
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Actions of Coxeter groups on abelian varieties

Given an abelian variety A, a reflection is an automorphism of

order 2 that fixes a hypersurface pointwise. (Could also allow

complex reflections, but I don’t have a Hecke algebra theory.)

A reflection r gives rise to a pair of (elliptic) curves: the “root

curve” im(1 − r) and the “coroot curve” coker(1 + r). (Note

that taking the dual of A swaps these)

An action of a Coxeter group by reflections on A is an action

such that each si acts as a reflection. Note: can extend these

notions to A-torsors X without too much difficulty.
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Prototypical such action comes from an “elliptic root datum”:

an elliptic curve Ei for each simple reflection, homomorphisms

µij : Ei → Ej, and positive integers ri such that (a) riµji = rjµ
∨
ij,

(b) µijµji = [4 cos(π/mij)
2], and (c) any composition around a

loop in the Dynkin diagram is multiplication by a positive integer.

This gives rise to a faithful action of W on
∏
iEi by

si : zi 7→ −zi +
∑
j 6=i

µji(zj).

(Why faithful? Replacing any product of µji by the positive

square root of its degree and rescaling by
√
ri gives the standard

reflection representation! This also answers “why (c)”. . . )
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May also consider action on X =
∏
iEi×B for general abelian B,

or image of such under an isogeny. Each orbit of roots gives iso-

morphic root curves, and fixing one gives a bijection between the

orbit and corresponding “root maps”. Positivity around cycles

lets us distinguish positive and negative root maps.

We’d actually prefer the coroot maps to be well-behaved, so

take the dual. In the affine case, such an action of “coroot

type” can be viewed as a 1-parameter (q) family of actions by

affine reflections (i.e., like reflections but not fixing the identity);

note however that for q torsion, this action is not faithful.
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Master Hecke algebras (finite case)

For W finite, there’s a natural sheaf of algebras on X/W , namely

End(πW∗OX) =: HW (X). (Caution: πW∗OX may not be a vector

bundle!) Over k(X/W ), this may be identified with k(X)[W ], and

thus End(πW∗OX) ⊂ k(X)[W ], as those meromorphic operators

that take (locally) holomorphic functions to (locally) holomor-

phic functions.

This makes sense for arbitrary groups: find that poles only occur

along “reflection hypersurfaces” (hypersurfaces fixed pointwise

by nonidentity elements of G). So algebra is generated by cor-

responding reflection subgroups, and general W reduces to A1.
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Master Hecke algebras (rank 1 case)

Here X = C, a hyperelliptic curve of genus 1, and an opera-

tor c0 + c1s preserves holomorphy iff the coefficients have poles

bounded by Cs (the fixed subscheme) and their sum is holo-

morphic. Equivalently, operator is f0 + f1(s − 1) where f0 is

holomorphic and f1 has poles bounded by Cs. (Of course, these

are just fancy ways of writing End(π∗OC) = End(OP1⊕OP1(−2))!)

Important caveat: This description splits the rank 1 algebra as

a left π∗OC-module, and one can also split it as a right module,

but these splittings are not compatible.
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General Hecke algebras (finite case)

To put in parameters: in rank 1, replace the condition on f1 in

f0+f1(s−1) by saying that div(f1) is bounded by Cs−T for some

effective divisor T . (If T = Cs, this gives the usual holomorphic

group algebra OC[〈s〉].) Note that there is a Cdeg(T ) symmetry:

we can apply s to any subdivisor of T by conjugating by a suitable

product of theta functions.

More generally, if we choose parameters for each simple root

subject to the obvious compatibility condition for roots in the

same orbit, we may consider the corresponding sheaf of algebras

generated in rank 1; again, can obtain OX[W ] by appropriate

choices of Ti.

11



Theorem: The sheaf of algebras H
W ;~T

(X) is locally free (as a

left OX-module) of rank |W | with Hilbert polynomial independent

of X and ~T .

Basic idea: the Bruhat order on W induces a natural filtration on

H
W ;~T

(X), so it’s enough to prove the subquotients are invertible

sheaves. For ~T in general position, this is straightforward, and

semicontinuity extends to arbitrary ~T . One can also see that the

associated graded has a presentation of the form we’d expect

(generators for each simple, plus analogues of quadratic and

braid relations).

(Note: This generalizes algebras constructed by Ginzburg, Kapra-

nov, and Vasserot, mainly by allowing more general systems of

parameters ~T )
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The infinite case

This construction clearly extends to the infinite case, except for

one piffling issue: it doesn’t make sense to talk about a sheaf

of algebras on X/W when W is infinite and the quotient doesn’t

exist!

One approach to fix this: for W finite, we can think about a

sheaf of algebras on X/W in terms of X alone: we have an

algebra on every W -invariant affine open subset of X, subject

to the usual sheaf conditions. So clearly we should just do this,

again subject only to nitpicking from those who note that there

aren’t any W -invariant affine open subsets when W is infinite.
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Luckily, when trying to glue together a sheaf from what hap-
pens on affine open subsets, “affine” is far more important than
“open”. In particular, you can specify a quasicoherent OX-
module using a covering by intersections of open subsets. (This
is a very special case of fpqc descent.) There’s no difficulty in
finding nonempty such intersections, and usually no difficulty in
finding a covering.

So we could define H
W ;~T

(X) via an abstract gluing operation
from its restriction to W -invariant affine “localizations”. (This
also gives us some freedom to twist: we can also include a “twist-
ing datum”: a W -equivariant structure on the trivial gerbe on X

along with compatible explicit expressions of the restrictions to
rank 1 as coboundaries.) The Cdeg(T ) symmetry extends, though
now we must conjugate by an infinite formal product of theta
functions (and this changes the twisting nontrivially).
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This approach is somewhat less workable for spherical algebras

(where the operators involve correspondences rather than auto-

morphisms); one can still deal with this by generalizing “invari-

ant”, but there’s another approach.

Gluing along affine localizations means that we may view H
W ;~T

(X)

as a sheaf on X, but in fact we can say more: since H
W ;~T

(X)

contains OX, it is a bimodule over OX, and thus we may glue up

to obtain a quasicoherent sheaf on X×X. Moreover, the algebra

structure may be phrased in terms of a suitable notion of tensor

products on such “sheaf bimodules”, making H
W ;~T

(X) a “sheaf

algebra”. (This notion was originally introduced by Artin and

Van den Bergh.)
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Theorem. The restriction of H
W ;~T

(X) to any Bruhat interval in

W is a locally free sheaf on X of rank equal to the size of the

Bruhat interval. Moreover, the morphism H
W ;~T

(X) → k(X)[W ]

is injective on fibers.

Theorem. If WI, WJ are finite parabolic subgroups, then

Hom(IndW ;~T
WI
OX , IndW ;~T

WJ
OX)

can be embedded in k(X)[W/WI]
WJ and the map is again injec-

tive on fibers and locally free on Bruhat intervals.

Note that for the second result (proved using, among other

things, a Mackey-type result in which the direct sum is replaced

by a filtration), we would normally use symmetric idempotents to

compute this, but those don’t exist if ~T has too large a degree.
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For the (DAHA!) case when W is affine, the above results are

not quite what we want, as we want to view q (determining the

action of s0) as a parameter. Luckily it is not too hard to do

the appropriate base change, so the theorems carry over.

The spherical algebra w.r.to the finite Weyl group has a natural

interpretation as a sheaf algebra (on X/W ) of difference opera-

tors preserving W -invariant holomorphic functions (and satisfying

vanishing conditions associated to ~T ). (In particular, it’s a do-

main!) One can show that for generic ~T , the DAHA is Morita-

equivalent to not only its spherical algebra, but the spherical

algebras in which some of the parameters have been shifted by

q (and thus to the DAHA in which some of the parameters have

been shifted by q).
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If q is torsion, then W̃ does not act faithfully, and H
W̃ ;~T

(X)

has a large center. If ~T = 0, we can write it as a (twisted!)

holomorphy-preserving algebra on a 2n-dimensional scheme (a

relative affine blow up of a torus bundle over X), and thus easily

write down the center. For general ~T , all I can say is that the

center is isomorphic to a q = 0 spherical algebra living on an

isogenous abelian variety.

Conjecture: the center is Noetherian and H
W̃ ;~T

(X) is finite over

its center. (This would imply H
W̃ ;~T

(X) Noetherian for q torsion,

and probably for general q (via a trick of Artin/Tate/Van den

Bergh).)
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For C∨Cn, the action is s0 : z1 7→ q − z1, sn : zn 7→ −zn with

s1,. . . ,sn−1 acting by permutations. If we choose q/2, we also

have a diagram automorphism ω which we can incorporate into

the algebra.

This gives a new feature: if only si has parameters (think just one

point t), then the DAHA is generated by the parabolic subalge-

bra corresponding to W along with the diagram automorphism,

and we can filter by the number of times we used the diagram

automorphism. (This is a coarser version of the usual Bruhat

filtration). We can then use this filtration to “compactify” the

sheaf algebra to a graded object (which since things are non-

commutative is actually a “sheaf category”).
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Passing to a category means we don’t need the diagram automor-

phism to respect the parameters, so we can include parameters

on α0, and then extend to include bimodules corresponding to

the Morita equivalences shifting those parameters.

If t = 0, the resulting spherical algebra is the symmetric power

of the category for n = 1, and if q = 0, the category for n = 1 is

essentially the category of line bundles on some rational surface

with smooth anticanonical curve. So this is the desired deforma-

tion. Taking global sections and restricting to line bundles pulled

back from P2 gives a flat deformation of Symn(P2) (modulo a

codimension ≥ 2 set of bad parameter values, probably empty).
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For Hilbert schemes: we can include the Morita equivalences that

shift t to get a slightly larger category. I can no longer prove

flatness in general, but for n = 2, flatness holds, and the Euler

characteristics agree with Hilb2(X) when we would expect them

to (i.e., when the line bundle is acyclic over Sym2(P1)).

In general, the line bundles for which I can prove flatness also

have Euler characteristics agreeing with the Hilbert scheme, and

for q = t = 0 one can interpret the sections as giving a rational

map to a Grassmannian and show that the closure of the image

is the same as that of a natural map from the Hilbert scheme to

the same Grassmannian.

So it is natural to conjecture that this indeed gives a flat defor-

mation of Hilbn(X).
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Recall that we expect to get abelian fibrations by contracting

suitable divisors. In the simplest case (corresponding to GL2),

contracting the relevant divisor simply gives the analogous al-

gebra with no t parameter. So I conjecture that if H(n) is the

family of spherical DAHAs of type Cn with 2n + 6 parameters

assigned to α0, then there is an action of a congruence subgroup

of SL2(Z) acting on the base of the family such that fibers in the

same orbit are derived equivalent. (The case n = 1 is known,

and in fact the derived equivalences extend to the compactified

spherical DAHAs.)
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