Stable envelopes for A_n , \widehat{A}_n -quiver varieties

Andrey Smirnov

University of North Carolina

August 28, 2019

Andrey Smirnov Elliptic, K-theoretic, Cohomological

- Elliptic stable envelopes are introduced by M.Aganagic and A.Okounkov in "Elliptic stable envelope" arXiv: 1804.08779.
- It is a generalization of earlier constructions by D. Maulik and A. Okounkov "Quantum groups and quantum cohomology" arXiv:1211.1287 to the level of elliptic cohomology.
- Stabele envelopes in K-theory and Cohomology are limits of elliptic stable envelope.

æ

æ

イロト イヨト イヨト イヨト

Image: A mathematical states and a mathem

æ

Overview

Known cases of elliptic stable envelope

 $\mathbb{C}^N(u_1)\otimes\cdots\otimes\mathbb{C}^N(u_n)$

[P. Etingof, A. Varchenko, H. Konno,....] "Elliptic weight functions", in integral representations of solutions of qKZ-equations

- Elliptic Cohomology
- Elliptic stable envelope
- Existence for quiver varieties
- Abelianization formula for \widehat{A}_n -type quivers
- Example: application to Hilbⁿ(ℂ²).
 "Elliptic Macdonald polynomial")

Let us fix an elliptic curve

$$E = \mathbb{C}^{ imes}/q^{\mathbb{Z}}$$
 with $0 < |q| < 1.$

For an algebraic torus T let (we assume X has no odd cohomology)

$$\operatorname{Ell}_{\mathsf{T}}: \{\mathsf{T} - \operatorname{spaces} X\} \longrightarrow \{\operatorname{schemes}\}$$

be the corresponding elliptic cohomology functor such that $\operatorname{Ell}_{\mathbb{C}^{\times}}(pt) = E$. the covarince in T implies that

$$\mathscr{E}_{\mathsf{T}} := \operatorname{Ell}_{\mathsf{T}}(\operatorname{pt}) = \mathsf{T}/q^{\operatorname{cochar}(\mathsf{T})} \cong E^{\dim(\mathsf{T})}.$$

Local description of $Ell_T(X)$

The canonical projection

$$X \to pt$$
, \Longrightarrow $\pi : \operatorname{Ell}_{\mathsf{T}}(X) \to \mathscr{E}_{\mathsf{T}}$

Let $t \in \mathscr{E}_{\mathsf{T}}$ and U_t be a small analytic neighborhood of t, which is isomorphic via exponential map to a small analytic neighborhood in $\operatorname{Lie}(\mathsf{T}) = \mathbb{C}^{\dim \mathsf{T}}$. Locally, the map π looks as follows:

for

$$\mathsf{T}_t := \bigcap_{\substack{\chi \in \operatorname{char}(\mathsf{T}), \\ \chi(t) = 0}} \ker \chi \subset \mathsf{T},$$

Example $\operatorname{Ell}_{\mathsf{T}}(\mathbb{P}^1)$

Take
$$T = (\mathbb{C}^{\times})^2$$
 act on \mathbb{P}^1 by $[x : y] \rightarrow [xa_1 : ya_2]$.
$$H_T(\mathbb{P}^1) = \mathbb{C}[c, a_1, a_2]/(c - a_1)(c - a_2)$$

æ

▲御▶ ▲臣▶ ▲臣▶

Elliptic cohomology for finite X^{T}

In general the elliptic cohomology is a union of $|X^{\mathsf{T}}|$ copies

$$\operatorname{Ell}_{\mathsf{T}}(X) = \left(\prod_{\rho \in X^{\mathsf{T}}} \mathsf{O}_{\rho} \right) / \Delta$$

with intersection data Δ and

$$O_p = \mathscr{E}_{\mathsf{T}} = \underbrace{\mathsf{E} \times \mathsf{E} \times \cdots \times \mathsf{E}}_{\mathsf{dim}\,\mathsf{T}}$$

The coordinates in \mathcal{E}_{T} are called equivariant parameters.

Extension of $Ell_T(X)$ by Kähler parameters

We "extend" elliptic cohomology:

$$\mathsf{E}_{\mathsf{T}}(X) = \operatorname{Ell}_{\mathsf{T}}(X) \times \mathscr{E}_{\operatorname{Pic}_{\mathsf{T}}(X)},$$

by abelian variety:

$$\mathscr{E}_{\operatorname{Pic}_{\mathsf{T}}(X)} = \operatorname{Pic}_{\mathsf{T}}(X) \otimes E$$

This scheme has the same description:

$$\mathsf{E}_{\mathsf{T}}(X) = \left(\coprod_{p \in X^{\mathsf{T}}} \widehat{\mathsf{O}}_p \right) / \Delta$$

with

$$\widehat{O}_{p} = \mathscr{B}_{\mathsf{T},X} = \underbrace{E \times \cdots \times E}_{\dim \mathsf{T}} \times \underbrace{E \times \cdots \times E}_{\dim \operatorname{Pic}_{\mathsf{T}}(X)}$$

The coordinates in $\mathscr{E}_{\operatorname{Pic}_{\mathsf{T}}(X)}$ are called *Kähler parameters*.

The elliptic stable envelope is a map of $\mathscr{O}_{\mathscr{B}_{X,T}}$ -modules:

$$\Theta(T^{1/2}X^{\mathsf{A}}) \otimes \mathscr{U}' \otimes \Theta(\hbar)^{-\operatorname{codim}(X^{\mathsf{A}})/2} \longrightarrow \Theta(T^{1/2}X) \otimes \mathscr{U}$$

ine bundle on $\operatorname{Ell}_{\mathsf{T}}(X^{\mathsf{A}}) \otimes \mathscr{E}_{\operatorname{Pic}_{\mathsf{T}}(X)}$ line bundle on $\mathsf{E}_{\mathsf{T}}(X) = \operatorname{Ell}_{\mathsf{T}}(X) \otimes \mathscr{E}_{\operatorname{Pic}_{\mathsf{T}}(X)}$

In the case of fine X^{T} the stable envelope of $p \in X^{\mathsf{T}}$ is a section of a line bundle on $E_{\mathsf{T}}(X)$:

$$Stab_{\sigma}(p) \text{ is a section of } \underbrace{\mathscr{L} = \Theta(T^{1/2}X) \otimes \mathscr{U} \otimes (\mathscr{U}')^{-1} \otimes \Theta(\hbar)^{dim/2}}_{\text{a line bundle over } E_{\mathsf{T}}(X)}$$

Elliptic stable envelopes of fixed points

 $Stab_{\sigma}(p) \text{ is a section of}$ $\mathcal{L}_{p} = \Theta(T^{1/2}X) \otimes \mathcal{U} \otimes (\mathcal{U}')^{-1} \otimes \Theta(\hbar)^{dim/2}$ a line bundle over $E_{\mathsf{T}}(X)$ Thus, $Stab_{\sigma}(p)$ is a collection of sections $Stab_{\sigma}(p) = \{s_{\sigma}(p), \quad q \in X^{\mathsf{T}}\}$

of line bundles over abelian varieties \widehat{O}_q which agree on the intersection Δ .

Such sections can be described in terms of theta-functions associated with elliptic curve E:

$$\vartheta(x) = \prod_{i=1}^{\infty} (1 - q^i/x)(x^{1/2} - x^{-1/2}) \prod_{i=1}^{\infty} (1 - q^i x)$$

<u>A cocharacter</u> σ of $A = ker(\hbar) \subset T$ provides decomposition of tangent spaces

$$T_p X = N_p^+ \oplus N_p^-$$

characters of N_p^+ , N_p^- are positive and negative on σ respectively. Attracting subset set

$$\operatorname{Attr}_{\sigma}(p) = \{ x : \lim_{z \to 0} \sigma(z) \cdot x = p \} \subset X$$

The section $Stab_{\sigma}(p)$ is uniquely defined by conditions:

• $Stab_{\sigma}(p)$ is supported on $Attr_{\sigma}^{f}(p)$.

•
$$Stab_{\sigma}(p)|_{\widehat{O}_{p}} = \Theta(N_{p}^{-}) = \prod_{w \in char(N_{p}^{-})} \vartheta(w).$$

A quiver variety:

$$X = T^* V /\!\!/\!/ G = \mu_{\mathbb{C},G}^{-1}(0) \cap \mu_{\mathbb{R}}^{-1}(\eta) /\!\!/ U$$

for maximal compact subgroup $U \subset G$. The abelianization of X is a hypertoric variety:

$$AX = T^*V/\!\!/\!\!/ T = \mu_{\mathbb{C},T}^{-1}(0) \cap \mu_{\mathbb{R}}^{-1}(\eta)/\!\!/ S$$

where T is a maximal torus of G and $S = T \cap U$.

Fact: the elliptic stable envelope for hypertoric varieties are simple to describe explicitly.

Stable envelopes for hypertoric varieties

Hypertoric variety:

$$X = T^* V / / T, \quad T = (\mathbb{C}^{\times})^n$$

 X^{G} is finite set. A fixed point $\mathsf{t} \in X^{\mathsf{G}}$ is given by decomposition

$$V = V_0 \oplus V_1$$
, dim $V_0 = \dim T$

so that $t = T^* V_0 /// T$. Tautological bundles $\mathcal{V} = \mathcal{V}_0 \oplus \mathcal{V}_1$ over X.

Theorem (Aganagic, Okounkov)

The elliptic stable envelopes of fixed points for hypertoric varieties equal:

$$Stab_{\sigma}(t) = \prod_{i=1}^{\dim V} \vartheta(x_i) \prod_{i=1}^{\dim V_0} \phi(x_i \alpha_i, z_i), \quad \phi(x, z) = \frac{\vartheta(xz)}{\vartheta(x)\vartheta(z)}$$

where α_i denote the G-weights on V₀ and z_i Kähler parameters.

Abelianization of quiver varieties

The abelianization fits into the diagram:

$$FL \xrightarrow{J_+} \mu_{\mathbb{C}}^{-1}(b^{\perp}) / S \xrightarrow{J_-} AX$$
$$\bigvee_{\pi} \chi = \mu_{\mathbb{C}}^{-1}(0) \cap \mu_{\mathbb{R}}^{-1}(\eta) / U$$

with $FL = \mu_{\mathbb{R}}^{-1}(0)/S$ so the fibers of π are flag varieties $G/B \cong U/S$. There is similar diagram for abelianization of $\lambda \in X^{\mathsf{T}}$:

$$FL' \xrightarrow{J'_{+}} \tilde{\mu}_{\mathbb{C}}^{-1}(b^{\perp}) / S \xrightarrow{J'_{-}} A\{\lambda\}$$
$$\downarrow_{\pi'} \{\lambda\} = \tilde{\mu}_{\mathbb{C}}^{-1}(0) \cap \tilde{\mu}_{\mathbb{R}}^{-1}(\eta) / U$$

Abelianization of elliptic stable envelope

The map $Stab_{\sigma}$ defined as a composition:

satisfies the defining properties of elliptic stable envelope. Thus, ${\rm Stab}_\sigma$ exists for quiver varieties.

To compute $\operatorname{Stab}_{\sigma}$ one needs:

(\star) find a section *Reprs* of $\mathscr{L}(A{\lambda})$ such that

$$\pi'_{*} \circ \mathsf{J}'^{*}_{+} \circ (\mathsf{J}'_{-*})^{-1}(\mathsf{Reprs}) = 1.$$

(\star, \star) Compute $\operatorname{Stab}'_{\sigma}(s)$.

Fixed points on A_n -quivers

Dimension vectors:

$$\boldsymbol{v} = (v_1, \ldots, v_n), \ \boldsymbol{w} = (w_1, \ldots, w_n)$$

Then the fixed points are product of zero-dimensional quiver varieties with one-dimensional framings:

$$X(\mathbf{v},\mathbf{w})^{\mathsf{T}} = \prod_{\mathbf{v}_1+\dots+\mathbf{v}_m=\mathbf{v}} X(\mathbf{v}_1,\delta_i) \times \dots \times X(\mathbf{v}_m,\delta_i)$$

Zero-dimensional quiver varieties $X(\mathbf{v}_m, \delta_i)$ are labeled by Young diagrams λ .

Example: Zero-dimensional A_9 -quiver varieties with v = (1, 1, 2, 2, 2, 2, 1, 1, 1) and $w = \delta_4$:

Abelianization of zero-dimensional quiver varieties

Example of zero-dimensional quiver variety:

$$\{\lambda\} = T^* \Big(V_0 \bigoplus_i Hom(V_i, V_{i+1}) \Big) / / / \prod_i GL(V_i)$$
$$Hom(V, V) \cong \mathbb{C}^2$$

Abelianization of $\{\lambda\}$ is a hypertoric variety:

$$A\{\lambda\} = T^* \Big(V_0 \bigoplus_i \operatorname{Hom}(V_i, V_{i+1}) \Big) / / / \prod_i (\mathbb{C}^{\times})^{\mathsf{v}_i}$$

In general it is nontrivial:

$$\dim A\{\lambda\} = 2(\#arrows - \#boxes) \ge 0$$

Torus fixed points on $A\{\lambda\}$

For a hypertoric variety

$$A\{\lambda\} = T^* V / / S$$

A fixed point $p \in A\{\lambda\}^T$ corresponds to a splitting:

$$V = V_0 \oplus V_1, \quad \dim V_0 = \dim S,$$

so that

$$p = T^* V_0 / / S$$

There exist a set of fixed points in hypertoric variety $A\{\lambda\}^T$ labeled by trees:

Abelianization of stable envelope

Solution of problem (\star) :

Theorem (arXiv: 1804.08779)

Let $A\{\lambda\}$ be a hypertoric variety corresponding to abelianization of $\{\lambda\}$. Then there exists a subset of fixed points $\Upsilon_{\lambda} \subset A\{\lambda\}^{\mathsf{T}}$ corresponding to trees in the Young diagram λ and a cocharacter $\rho \in \operatorname{cochar}(\mathsf{T})$ so that

$${\it Reprs}:=lpha\sum_{{\it tree}\,\in\,\Upsilon_\lambda}{\it Stab}_
ho({\it tree})$$

satisfies the property

$$\pi_{*}^{'}\circ\mathsf{J}_{+}^{'*}\circ(\mathsf{J}_{-*}^{'})^{-1}(\textit{Reprs})=1$$

Solution of problem (\star, \star) is by triangle Lemma:

$$Stab_{\sigma}(\textit{Reprs}) = Stab_{\sigma}\Big(\sum_{\mathsf{tree} \in \Upsilon_{\lambda}} Stab_{
ho}(\mathsf{tree})\Big) = \sum_{\mathsf{tree} \in \Upsilon_{\lambda}} Stab_{
ho+\sigma}(\mathsf{tree})$$

Stable envelopes for hypertoric varieties

Hypertoric variety:

$$X = T^* V / / S, \quad S = (\mathbb{C}^{\times})^n$$

 X^{G} is finite set. A fixed point $t \in X^{\mathsf{G}}$ is given by decomposition

$$V = V_0 \oplus V_1$$
, dim $V_0 = \dim S$

so that $t = T^* V_0 /// S$. Tautological bundles $\mathcal{V} = \mathcal{V}_0 \oplus \mathcal{V}_1$ over X.

Theorem (Aganagic, Okounkov)

The elliptic stable envelopes of fixed points for hypertoric varieties equal:

$$Stab_{\rho}(t) = \prod_{i=1}^{\dim V} \vartheta(x_i) \prod_{i=1}^{\dim V_0} \phi(x_i \alpha_i, z_i), \quad \phi(x, z) = \frac{\vartheta(xz)}{\vartheta(x)\vartheta(z)}$$

where α_i denote the G-weights on V₀ and z_i Kähler parameters.

Combinatorics of trees

Trees in Young diagrams and subtrees:

Theorem (arXiv: 1804.08779)

The elliptic stable envelope of a **tree** $\in A\{\lambda\}^T$ in the hypertoric variety $A\{\lambda\}$ equals

$$Stab_{
ho}(tree) = S_{tree}W_{tree}$$

with

$$S_{tree} = \prod_{\substack{c_j = c_i + 1 \\ l_i > l_j}} \vartheta(x_i/x_j\hbar) \prod_{\substack{c_j = c_i + 1 \\ l_i < l_j}} \vartheta(x_j/x_i) \prod_{c_i = 0} \vartheta(x_i)$$

and

$$W_{tree} = \phi(x_r, \prod_{i=1}^n z_i) \prod_{e \in tree} \phi\left(\frac{x_{h(e)}\varphi_{t(e)}^{\lambda}}{x_{t(e)}\varphi_{h(e)}^{\lambda}}, \prod_{i \in [h(e), tree]} z_i\right)$$

where x_i are the Grothendieck roots of tautological bundles.

< ∃ → 3

t =

Summary: formula for stable envelope

For quiver variety of A_n or \widehat{A}_n -type:

The fixed points are Young diagrams which fit into 4×6 -box:

Summary: formula for stable envelope

For quiver variety of A_n or \widehat{A}_n -type:

The fixed points are Young diagrams which fit into 4×6 -box:

The stable envelope of a fixed point then takes the form:

$$Stab_{\sigma}(p) = Sym\left(rac{\prod\limits_{ ext{Young diagrams }\lambda} \left(\sum\limits_{ ext{trees in }\lambda} Stab_{\sigma}(ext{tree})
ight)}{\prod\limits_{i < j} artheta(x_i/x_j)artheta(x_i\hbar/x_j)}
ight)$$

The symmetrization over Grothendieck roots and denominators comes from $\pi_* \circ J^*_+ \circ (J_{-*})^{-1}$ in the abelianization diagram.

Application: Hilbert scheme of points in \mathbb{C}^2

The Hilbert scheme of *n* points in \mathbb{C}^2 parametrizes ideals in $\mathbb{C}[x, y]$ of codimension *n*:

 $\operatorname{Hilb}^{n}(\mathbb{C}^{2}) = \{I \subset \mathbb{C}[x, y] : \dim_{\mathbb{C}} \mathbb{C}[x, y]/I = n\}$

A torus $\mathsf{T} = (\mathbb{C}^{\times})^2$ acts on $\mathrm{Hilb}^n(\mathbb{C}^2)$ by scaling generators:

 $(x,y) \longrightarrow (xt_1,yt_2)$

The fixed points $\operatorname{Hilb}^{n}(\mathbb{C}^{2})^{\mathsf{T}}$ corresponds to monomial ideals.

Example: A monomial ideal

$$I = \langle y^3, x^4, x^2 y^2 \rangle, \quad \dim \mathbb{C}[x, y]/I = n = 10$$

For Hilbⁿ(\mathbb{C}^2) we have:

$$\operatorname{Ell}_{\mathsf{T}}(pt) = \mathscr{E}_{\mathsf{T}} = \mathsf{E}_{t_1} \times \mathsf{E}_{t_2}, \quad \mathscr{E}_{\operatorname{Pic}} = \mathsf{E}_z$$

Thus

$$Stab_{\sigma}(\lambda)$$
 is a section of \mathscr{L} on $\mathsf{E}_{\mathsf{T}}(\mathrm{Hilb}^n(\mathbb{C}^2)) = \left(\coprod_{|\lambda|=n} \widehat{\mathsf{O}}_{\lambda}\right) / \Delta$

with abelian varieties $\widehat{O}_{\lambda} = E_{t_1} \times E_{t_2} \times E_z$. These sections are explicitly described by the matrix of restrictions:

$$egin{aligned} T_{\lambda,\mu} = \left. Stab_{\sigma}(\lambda)
ight|_{\widehat{0}_{\mu}} = egin{pmatrix} T_{1,1}(t_1,t_2) & T_{1,2}(t_1,t_2,z) & T_{1,3}(t_1,t_2,z) & ... \ 0 & T_{2,2}(t_1,t_2) & T_{2,3}(t_1,t_2,z) & ... \ 0 & 0 & T_{2,3}(t_1,t_2) & ... \ 0 & 0 & 0 & ... \end{pmatrix} \end{aligned}$$

with $T_{\lambda,\mu}$ - section of line bundles over \widehat{O}_{μ} .

In case
$$n = 2$$
 the fixed set:

$$\operatorname{Hilb}^{2}(\mathbb{C}^{2})^{\mathsf{T}} = \{ -,]$$

The restriction matrix takes the form

$$T_{\lambda,\mu} = \begin{bmatrix} \vartheta(t_2)\vartheta(t_2^2) & \frac{\vartheta(t_2)^2\vartheta(t_1t_2)}{\vartheta(t_1)\vartheta(z)}\vartheta\left(\frac{t_2z}{t_1}\right) + \frac{\vartheta(t_2)\vartheta(t_1t_2)\vartheta(z^2t_2)\vartheta(t_2t_1z)}{\vartheta(t_1)\vartheta(z^2t_1t_2)\vartheta(z)}\vartheta\left(\frac{t_1}{t_2}\right) \\ 0 & -\vartheta(t_2)\vartheta\left(\frac{t_1}{t_2}\right) \end{bmatrix}$$

In general $T_{\lambda,\mu}$ is the elliptic "version" of transition matrix from Schur to Macdonald polynomials.

Fock representation of Heisenberg algebra

H.Nakajima defined a geometric action of Heisenberg algebra

Heis =
$$\mathbb{C}\langle \alpha_1, \alpha_2, \dots, \rangle / [\alpha_m, \alpha_n] = n\delta_{n+m}$$

on the equivariant cohomologies of Hilbert schemes

$$\bigoplus_{n=0}^{\infty} H^{\bullet}_{\mathsf{T}}(\mathrm{Hilb}^{n}(\mathbb{C}^{2})) \cong \mathsf{Fock} \cong \mathbb{C}[p_{1}, p_{2}, \ldots] \otimes \mathbb{C}[t_{1}, t_{2}]$$

Classes of fixed points $[\lambda] \longrightarrow$ Jack Polynomials $J_{\lambda} \in \mathsf{Fock}$ Stable envelope $Stab_{\sigma}(\lambda) \longrightarrow$ Schur Polynomials $S_{\lambda} \in \mathsf{Fock}$

$$\mathcal{S}_\lambda = \sum_\mu \ \mathcal{T}_{\lambda,\mu} J_\mu \qquad \mathcal{T}_{\lambda,\mu} = \left(egin{array}{ccccc} *&*&*&...\ 0&*&*&...\ 0&0&*&...\ ...\ ...\ ...\ ...\ ...\ \end{array}
ight), \ \ st\in \mathbb{C}[t_1,t_2]$$

K-theoretic and cohomological limit

K-theoretic and cohomological limit

$$\mathscr{O}_{\mathrm{Ell}_{\mathsf{T}}(X)} \stackrel{q \to 0}{\longrightarrow} K_{\mathsf{T}}(X) \longrightarrow H^{\bullet}_{\mathsf{T}}(X)$$

The elliptic stable envelope degenerates to K-th and Coh versions

$$\operatorname{Stab}_{\sigma}(\lambda) \longrightarrow \operatorname{Stab}_{\sigma}^{Kth}(\lambda) \longrightarrow \operatorname{Stab}_{\sigma}^{Coh}(\lambda)$$

Let $z = q^s$ for $s \in \mathbb{R}$ and send $q \to 0$:

$$\lim_{q \to 0} \vartheta(x) = x^{1/2} - x^{-1/2}, \quad \lim_{q \to 0} \frac{\vartheta(xz^n)}{\vartheta(z^n)} = x^{1/2 + \lfloor sn \rfloor}$$

locally constant function of "slope" *s***.** Elliptic stable envelope has many *K*-theoretic limits depending on slope *s*:

$$Walls = \{ \frac{a}{b} \in \mathbb{Q}, |b| \le n \} \subset \mathbb{R}$$

New symmetric polynomials

Andrey Smirnov Elliptic, K-theoretic, Cohomological

3d mirror symmetry

The Hilbert scheme is "self dual":

$$Hilb^{n}(\mathbb{C}^{2})^{\vee} \cong Hilb^{n}(\mathbb{C}^{2})$$

this implies new hidden symmetry for restriction matrix

$$egin{aligned} T_{\lambda,\mu} = \left. Stab_{\sigma}(\lambda)
ight|_{\widehat{\mathbf{O}}_{\mu}} = egin{pmatrix} T_{1,1}(t_1,t_2) & T_{1,2}(t_1,t_2,z) & T_{1,3}(t_1,t_2,z) & ... \ 0 & T_{2,2}(t_1,t_2) & T_{2,3}(t_1,t_2,z) & ... \ 0 & 0 & T_{2,3}(t_1,t_2) & ... \ 0 & 0 & 0 & ... \end{pmatrix} \end{aligned}$$

Change of variables

$$a=rac{t_1}{t_2},\quad\hbar=t_1t_2$$

Then 3*d* mirror symmetry implies that the stable envelope is symmetric invariant $a \leftrightarrow z$:

$$T(a,z,\hbar,q)=T(z,a,1/\hbar,q)^{-1}$$

Checked on computer using explicit formula for stable envelope.

Happy Birthdays!

Andrey Smirnov Elliptic, K-theoretic, Cohomological

æ

(*) * 문 * * 문 *