L-homomorphisms and lowest K-types

Jeffrey Adams and Alexandre Afgoustidis
Vogan conference, MIT
September 23, 2022
Overview

G: connected, complex reductive group

$G(\mathbb{R})$: real points

$W_\mathbb{R}$: Weil group of \mathbb{R}

$$W_\mathbb{R} = \langle \mathbb{C}^\times, j \rangle, \ (jzj^{-1} = \bar{z}, j^2 = -1)$$

L^G: L-group of G

$\phi : W_\mathbb{R} \rightarrow L^G$: admissible homomorphism

$\Pi(\phi) = \{\pi_1, \ldots, \pi_n\}$: L-packet of ϕ

Define: $W_{\mathbb{R}, c} = \langle S^1, j \rangle$ be the (unique) maximal compact subgroup of $W_\mathbb{R}$.

Question: [J.K. Yu, \~2000]: What does $\phi|_{W_{\mathbb{R}, c}}$ tell you about the K-types of the representations in the L-packet $\Pi(\phi)$?

Answer: [Adams, \~2000]: That’s an excellent question! I don’t know.

This talk: a better answer.

The same question makes sense over a p-adic field.
Given: G and $\delta \in \text{Out}(G), \delta^2 = 1.$

$\delta \leftrightarrow$ an inner class of real forms

Fix once and for all $T \subset B$ (Cartan and Borel subgroups)

Fokko du Cloux: T is fixed, fixed fixed

$X^* = X^*(T), X_* = X_*(T)$ (character, co-character lattices)

G^\vee: connected, reductive complex group, dual to G

Comes with $(T^\vee, B^\vee), X^*(T^\vee) = X_*(T), \text{ etc.}$

$\delta \mapsto \delta^\vee = -\delta^t$

Fix a pinning $(B, T, \{X_\alpha\}),$ then

$\delta G : G \rtimes \langle \delta \rangle$

also:

$\delta^\vee G^\vee : \langle G^\vee, \delta^\vee \rangle$
Definition: a strong involution for G: $x \in G\delta, x^2 \in Z(G)$

$x \rightarrow \theta_x = \text{int}(x): \theta_x(g) = xgx^{-1}$.

$K_x = G^{\theta_x}$

$x \rightarrow \theta_x$: \{strong involutions\}/\sim \rightarrow \{real forms\}/\sim

Definition: a representation of a strong involution x is a pair (x, π) - π an admissible (g, K_x)-module

Equivalence: $(x, \pi) \simeq (x', \pi')$ if there exists $g \in G, gxg^{-1} = x', \pi^g \simeq \pi'$
Theorem: \(x \in X: \)

There is a canonical bijection

\[
X[x] \leftrightarrow K_x \backslash G / B
\]
Langlands Parameters in Atlas

Definition An Atlas Parameter is:

\[p = (x, \lambda, \nu) : \]

1) \(x \in KGB(G, \delta) \)

2) \(\lambda \in (X^* + \rho)/(1 - \theta_x)X^* \)

3) \(\nu \in X_C^* \)

Definition: \(\gamma(p) = \frac{1 + \theta_x}{2} \lambda + \frac{1 - \theta_x}{2} \nu \)

Various conditions:

Always roots are for \(T \) (fixed) in \(G \); “real, imaginary, . . . ” are with respect to \(\theta_x \)

1) Standard: \(\alpha \) imaginary \(\Rightarrow \langle \lambda, \alpha^\vee \rangle \geq 0 \)

2) Non-zero: \(\alpha \) simple, imaginary, compact \(\Rightarrow \langle \lambda, \alpha^\vee \rangle \neq 0 \)

3) Final: \(\nu \) weakly dominant, \(\alpha \) real-simple, \(\langle \nu, \alpha^\vee \rangle = 0 \Rightarrow \langle \lambda, \alpha^\vee \rangle \) is odd

4) Normal: \(\langle \gamma, \alpha^\vee \rangle = 0 \), \(\alpha \) simple \(\theta_x \)-complex \(\Rightarrow \theta_x(\alpha) \) is positive
Equivalence:

0) \((x, \lambda, \nu) \simeq (x, \lambda, \frac{1-\theta}{2} \nu)\)

1) \((x, \lambda, \nu) \sim (s_\alpha x, s_\alpha \lambda, s_\alpha \nu)\) (\(\alpha\) simple, \(\theta_x\)-complex)

2) \((x, \lambda, \nu) \sim (x, w(\lambda + \rho_r) - \rho_r, w\nu)\) (\(w \in W_r\))

Attached to \(p = (x, \lambda, \nu)\) is a standard \((g, K_x)\)-module \(I(p)\), which has a unique irreducible quotient \(J(p)\).

Theorem: The map \(p \rightarrow J(p)\) is a bijection:

\[
\{\text{parameters}\}/\sim \leftrightarrow \{\text{irreducible representations of strong involutions}\}/\sim
\]
We say an infinitesimal character γ is *real* if $\gamma \in X^* \otimes \mathbb{R}$.

$p = (x, \lambda, \nu)$

1) The infinitesimal character of $J(p)$ is

$$\gamma(p) := \frac{1 + \theta_x}{2} \lambda + \frac{1 - \theta_x}{2} \nu$$

2) The central character of $J(x, \lambda, \nu)$ is: (R is the root lattice):

$$(\overline{\lambda}, \nu) \in (X^* + \rho)/[(1 - \theta_x)X^* + R], (X^*_\mathbb{C})^{-\theta_x}$$

3) $J(p)$ has real infinitesimal character $\iff \nu \in X^*_\mathbb{R}$

4) $J(p)$ is tempered $\iff \nu \in X^*_i\mathbb{R}$
Definition:

1) A representation π is tempiric (temp-i-ric) if it is tempered, irreducible, with real infinitesimal character.

2) A (standard, final, non-zero) parameter $p = (x, \lambda, \nu)$ is tempiric if $J(p)$ is tempiric.

In other words

(x, λ, ν) is tempiric if and only if (it is standard, final, non-zero, and) $\nu = 0$.

[Note: suggestions of better terminology are welcome]
Langlands Parameters in Atlas: restriction to K

Theorem (Vogan):

$G(\mathbb{R})$: real form, $K(\mathbb{R})$ maximal compact subgroup, with complexification K.

1) If π is tempiric it has a unique lowest K-type $LKT(\pi)$

2) The map $\pi \mapsto LKT(\pi)$ is a bijection:

$$\{\text{tempiric representations}\} \leftrightarrow \hat{K}$$

Note: This miraculously takes care of the problem parametrizing the representations of the possibly disconnected group K

This is the starting point to understanding the K-structure of representations, in particular their lowest K-types
Example: \(PGL(2, \mathbb{R}) \)

\[G(\mathbb{R}) = PGL(2, \mathbb{R}), \ K = O(2) \]

Tempiric \(\pi \) and their LKTs:

1) \(\pi = \text{Ind}^G_B(1) \): spherical principal series \(\mapsto \) trivial representation of \(K \)

2) \(\pi = \text{Ind}^G_B(\text{sgn}) \): non-spherical principal series \(\mapsto \) sgn representation of \(K \)

3) \(\pi(\lambda) \) discrete series, \(\lambda = k + \rho \) (\(k = 0, 2, 4 \ldots \)) \(\mapsto \) two-dimensional irreducible of \(SO(2) \) weights \(\pm(k + 1) \)
Basic Fact: $I(x, \lambda, \nu)$ and $I(x, \lambda, \nu')$ have same restriction to K

and $J(x, \lambda, \nu)$ and $J(x, \lambda, \nu')$ have same lowest K-type

Suppose (x, λ, ν) is a (non-zero, standard) final parameter

$(x, \lambda, \nu) \rightarrow (x, \lambda, 0)$

$I(x, \lambda, \nu)$ and $I(x, \lambda, 0)$ have the same K-types...

However: $(x, \lambda, 0)$ may NOT be final (and/or normal)
Example: $SL(2, \mathbb{R})$

$G = SL(2, \mathbb{R})$

$x :$ open orbit on G/B

$p = (x, [0], [\nu])$: $Ind_B^G(\text{sgn} \otimes \nu)$

K-types: $2\mathbb{Z} + 1$

Final condition:

$(\nu \geq 0): \langle \nu, \alpha^\vee \rangle = 0 \Rightarrow \langle \lambda, \alpha^\vee \rangle$ is odd

condition is empty if $\nu \neq 0$

If $\nu = 0$: $\langle \lambda, \alpha^\vee \rangle$ is odd (which is false since $\lambda = [0]$)

Well known limit of discrete series picture:

$Ind_B^G(\text{sgn}, 0)$ is the direct sum of two limits of discrete series, with lowest K-types ± 1
There is a well defined algorithm to replace a standard, non-zero, but non-final parameter p with a set of final parameters $\{p_1, \ldots, p_n\}$.

Inductive:

1) if p fails to be final because of a real-simple root α: replace p with the Cayley transform of p (1 or 2 terms)

2) if p fails to be normal because of a complex simple roots α: replace p with $s_\alpha \times p$ (a single parameter)

Atlas algorithm for computing lowest K-types:

$p = (x, \lambda, \nu) \mapsto (x, \lambda, 0) \mapsto \text{Finalize}(x, \lambda, 0) = \{(x_1, \lambda_1, 0), \ldots, (x_n, \lambda_n, 0)\}$

Then $J(x, \lambda, \nu)$ has n LKTs: the lowest K-types of the tempiric representations $J(x_i, \lambda_i, 0)$
EXAMPLE: $SL(2, \mathbb{R})$

atlas> set G=SL(2,R)

atlas> set p=parameter(KGB(G,2),[0],[1])

atlas> p
Value: final parameter(x=2,lambda=[2]/1,nu=[1]/1)

atlas> set q=parameter(KGB(G,2),[0],[0])

atlas> q
Value: non-final parameter(x=2,lambda=[2]/1,nu=[0]/1)

atlas> finalize(q)
Value:
 1*parameter(x=1,lambda=[0]/1,nu=[0]/1) [0]
 1*parameter(x=0,lambda=[0]/1,nu=[0]/1) [0]

atlas> print_branch_irr_long (p,KGB(G,1),10)

<table>
<thead>
<tr>
<th>m</th>
<th>x</th>
<th>lambda</th>
<th>hw</th>
<th>dim</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>[0]/1</td>
<td>[1]</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>[0]/1</td>
<td>[-1]</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>[2]/1</td>
<td>[3]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>[2]/1</td>
<td>[-3]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>[4]/1</td>
<td>[5]</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>[4]/1</td>
<td>[-5]</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
atlas> set G=Spin(4,4)
atlas> set p=all_parameters_gamma (G,G.rho)[2]
atlas> p
Value: final parameter(x=108,lambda=[1,2,1,1]/1,nu=[1,1,1,1]/1)
atlas> G.trivial
Value: final parameter(x=108,lambda=[1,1,1,1]/1,nu=[1,1,1,1]/1)
atlas> finalize(p*0)

1*parameter(x=7,lambda=[0,0,0,0]/1,nu=[0,0,0,0]/1) [0]
1*parameter(x=6,lambda=[0,0,0,0]/1,nu=[0,0,0,0]/1) [0]
1*parameter(x=5,lambda=[0,0,0,0]/1,nu=[0,0,0,0]/1) [0]
1*parameter(x=0,lambda=[0,0,0,0]/1,nu=[0,0,0,0]/1) [0]

atlas> for mu in LKTs(p) do prints(highest_weight(mu,KGB(G,0)), " "
(((),KGB element #0,[1, 1, -1, -1])) 3
(((),KGB element #0,[-1, 1, 1, -1])) 3
(((),KGB element #0,[-1, 1, -1, 1])) 3
(((),KGB element #0,[1, -1, 1, 1])) 3
What about Langlands parameters?

\[W_\mathbb{R} = \langle \mathbb{C}^\times, j \rangle \]

Definition: \(\Phi_0(G) = \{ \phi : W_\mathbb{R} \to \mathcal{L} G \} \)

\[\Pi_0 \ni \phi \mapsto \Pi(\phi) = \{ \pi_1, \ldots, \pi_n \} \]

Complete Langlands parameters:

Roughly speaking the representations in \(\Pi(\phi) \) are parametrized by characters of

\[S_\phi = \text{Cent}_G \phi \big/ \text{Cent}_G (\phi)^0 \]

\(\tilde{S}_\phi \): a certain cover of \(S_\phi \).
Definition:
$
X(\tilde{S}_\phi): \text{set of characters of } \tilde{S}_\phi
$

Definition:
$
\Phi_0(G, \delta) = \{ \phi : W_\mathbb{R} \to^L G \} \\
\Phi(G, \delta) = \{ (\phi, \chi) \mid \phi \in \Phi_0, \chi \in X(\tilde{S}_\phi) \}
$
Theorem: (Adams/Barbasch/Vogan 1992):

There is a canonical bijection between:

\[\Phi(G, \delta)/G^\vee \leftrightarrow \{(x, \pi)\}/\sim \]

\(\pi \) an irreducible representation of the strong involution \(x \)

Note: \((\phi, \chi = 1) \mapsto \) a generic representation of the quasisplit group.

Note: The classical result for a fixed real form \(G(\mathbb{R}) \) is:

Fix \(x_0, K = K_{x_0} \leftrightarrow G(\mathbb{R}). \)

\[\{(x, \pi) \mid x \sim x_0\}/\sim \leftrightarrow \{\text{irreducible admissible representations of } G(\mathbb{R})\} \]

Note: Replace \(\tilde{S}_\phi \) with \(S_\phi \), restrict to subset of \textit{pure} strong real forms (the quasisplit form is always pure).
Tempiric Parameters

Basic fact: ϕ is tempiric $\iff \phi|_{\mathbb{R}^+} = 1$

Example: $G = PGL(2, \mathbb{R})$, $^lG = SL(2, \mathbb{C})$.

Spherical principal series:

$$\phi(z) = \text{diag}(|z|^\nu, |z|^{-\nu})$$

Tempered: $\nu \in i\mathbb{R}$

Real infinitesimal character: $\nu \in \mathbb{R}$

Both: $\nu = 0$.

$$1 \rightarrow W_{\mathbb{R},c} \rightarrow W_{\mathbb{R}} \rightarrow \mathbb{R}^+ \rightarrow 1$$

(canonical split)

$W_{\mathbb{R},c}$ is the unique maximal compact subgroup of $W_{\mathbb{R}}$
Recall:
\[\Phi(G, \delta) = \{(\phi, \chi)\} \text{ where } \phi : W_{\mathbb{R}} \to L^G, \chi \text{ is a character of } S_\phi \text{ (not } \tilde{S}_\phi). \]

Definition:
\[\Phi_c(G, \delta) = \{(\phi_c, \chi)\} \text{ where } \phi_c : W_{\mathbb{R},c} \to L^G, \chi \text{ is a character of } S_{\phi_c} \]
\[(\phi_c, \chi) \mapsto \mu(\phi_c, \chi): \text{ lowest } K\text{-type of } \pi(\phi_c, \chi) \]

Definition: \[\hat{K}_{all} = \{(x, \mu) \mid x \in X, \mu \in \hat{K}_x\}/G \]

Corollary of the preceding Theorem:
The map \((\phi_c, \chi) \mapsto \mu(\phi_c, \chi) \) gives a bijection:
\[\Phi_c/G^\vee \longleftrightarrow \hat{K}_{all} \]

RHS: \(x \) is a (pure) strong involution, \(\mu \) is an irreducible finite dimensional representation of \(K_x \).
There is an obvious map (restriction): \(\Phi_0(G) \to \Phi_{c,0}(G) \):

\[
\phi \mapsto \phi_c = \phi|_{W_{R,c}}
\]

So, given \(\phi \):

\[
\phi \mapsto \{ \pi(\phi, \chi) \mid \chi \in X(S\phi) \}
\]

\[
\phi \to \phi_c \mapsto \{ \mu(\phi_c, \tau) \mid \tau \in X(S_{\phi_c}) \}
\]

What is the relationship?
Proposition: The map $\mathcal{S}(\phi) \rightarrow \mathcal{S}(\phi_c)$ is injective.

(Shelstad proves a closely related statement)
Given $\phi : \mathcal{W}_\mathbb{R} \to L^G$

$\phi \to \phi_c = \phi|_{\mathcal{W}_{\mathbb{R},c}}$

$S_\phi \hookrightarrow S_{\phi_c}$

induces $\Gamma : X(S_{\phi_c}) \to X(S_\phi)$

Theorem: (Adams/Afgoustidis):

Suppose $\phi : \mathcal{W}_\mathbb{R} \to L^G$ is tempered, and $\chi \in X(S_\phi)$.

$(\phi, \chi) \mapsto \pi = \pi(\phi, \chi)$ irreducible, tempered

Then the lowest K-types for $\pi(\phi, \chi)$ are parametrized by the fiber of Γ:

$LKTs(\pi(\phi, \chi) = \{\mu(\phi_c, \tau) \mid \Gamma(\tau) = \chi\}$
The proof is by induction: we follow the steps in the finalize algorithm applied to ϕ_c. We prove injectivity $S_\phi \rightarrow S_c$ and the main Theorem at the same time.

The key step is a single Cayley transform.
Key technical point: ϕ goes to an involution of T^\vee.

$\phi(j)$ is such an involution. This is not then one we need.

When γ is singular there is a choice:

Definition: $\phi \mapsto \tau^\vee$, an involution of T^\vee:

take the *most split* choice (corresponding to the most compact choice on the group side)
With this choice, let \(\tau \) be the dual involution of \(T \).

Suppose \(\phi' \) is obtained from \(\phi \) by a single real Cayley transform \(c_\alpha \).

Suppose \(\tau \) is a (twisted) involution of \(T^\vee \) \((\tau \in W_\delta^\vee, \tau^2 = 1) \)

\(S_{\tau^\vee} \): the component group of \((T^\vee)^{\tau^\vee} \)

[Note: \(S_\phi = S_{\tau^\vee} \setminus \{ m_\beta | \langle \gamma, \alpha^\vee \rangle = 0 \} \)]

Then \(X(S_{\tau^\vee}) \) acts simply transitively on \(X_\tau \) (to be precise \(X_\tau(z_{\rho^\vee}) \)).

Easy fact: given \(\phi, \tau^\vee \) as above:

\[
X(S_\phi) \hookrightarrow X(S_{\tau^\vee}) \leftrightarrow X_\tau
\]

\[
X(S_\phi') \twoheadrightarrow X(S_\phi)
\]

\[
X_\tau'(z_{\rho^\vee}, \alpha) \xrightarrow{c_\alpha} X_\tau(z_{\rho^\vee})
\]

\[
X_\tau(z) = \{ x \in X, x^2 = z, p(x) = \tau \in W_\delta \}\]
Example: \(\text{SL}(2, \mathbb{R}) \)

\[
G = \text{SL}(2, \mathbb{R})
\]

\[
G^\vee = \text{PGL}(2) = \text{SO}(3)
\]

\[
\phi(z) = \text{diag}(|z|^\nu, |z|^{-\nu}, 1)
\]

\[
\phi(j) = \text{diag}(-1, -1, 1)
\]

\(\nu \neq 0\): \(\text{Cent}(\phi) = \mathbb{C}^\times, S_\phi = 1\)

\(\phi_c(\nu = 0)\): \(\text{Cent}(\phi_c) = O(2), S_{\phi_c} = \mathbb{Z}/2\mathbb{Z}\).

\(\nu \neq 0\) : \(\tau^\vee = 1\) (no choice)

\(\nu = 0\): \(\phi\) is conjugate to

\[
\phi'(z) = 1, \phi'_c(j) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}
\]

So \(\tau^\vee = s_\alpha\).
Example: \(SL(2, \mathbb{R})\)

\[
\begin{align*}
\mathbb{Z}/2\mathbb{Z} & \rightarrow 1 \\
\downarrow & \downarrow \\
\{x_0, x_1\} & \rightarrow x_2
\end{align*}
\]

\[
\begin{align*}
\mathbb{Z}/2\mathbb{Z} & \rightarrow 1 \\
\downarrow & \downarrow \\
\{x_0, x_1\} & \rightarrow x_2
\end{align*}
\]
Knapp-Stein: $R_{\sigma,\nu}$: defined in terms of the Plancherel measure, intertwining operators; reducibility of tempered representations

Vogan: algebraic definition: reduction to the quasisplit case, R_{δ}

Shelstad/Langlands: The group R_{ϕ} defined on the dual side:

$$1 \to S_{\phi_M} \to S_{\phi} \to R_{\phi} \to 1$$

$R_{\phi} \simeq R(\sigma, \nu)$
This diagram commutes (not obvious):

\[
\begin{array}{cccccc}
1 & \rightarrow & S_{\phi_M} & \rightarrow & S_{\phi} & \rightarrow & R(\sigma, \nu) & \rightarrow & 1 \\
\downarrow \cong & & \downarrow \cong & & \downarrow \cong & & \downarrow \cong & & \\
1 & \rightarrow & S_{\phi_{cM}} & \rightarrow & S_{\phi_c} & \rightarrow & R(\sigma, 1) & \rightarrow & 1
\end{array}
\]

\[S_{\phi_c}/S_{\phi} \simeq R(\sigma, 1)/R(\sigma, \nu)\]
\(\phi : W_\mathbb{R} \to \text{L}_G \), tempered

\(\phi \mapsto \phi_c \)

\(\Gamma : X(S_{\phi_c}) \to X(S_\phi) \)

\((\phi, \chi) \in \Pi(G, \delta) \mapsto \pi(\phi, \chi) \)

Then:

\[
\text{LKTs}(\pi(\phi, \chi)) = \{ \mu(\phi_c, \tau) \mid \Gamma(\tau) = \chi \}
\]

Question/Hope: is this the “right” formulation: does it generalize to the \(p \)-adic case?
Thank you (again) David - for everything!