

Symmetric Matrix

$$A = \left[a_{ij}\right]_{1 \le i,j < \infty}, a_{ij} = a_{ji} \in \mathbb{R}.$$

$$A_n = \left[a_{ij}\right]_{1 \le i,j < n}$$

If $\lambda_{n,1} \geq \lambda_{n,2} \geq ... \geq \lambda_{n,n}$ is the spectrum of A_n counting multiplicities then we have the interlacing property

$$\lambda_{n+1,1} \ge \lambda_{n,1} \ge \lambda_{n+1,2} \ge \lambda_{n,2} \ge \lambda_{n+1,3} \ge \dots$$

Orthogonal Polynomials

Let $-\infty \leq a < b \leq \infty$ and let μ be a positive Borel measure on (a, b) such that

$$\int_{a}^{b} x^{2k} d\mu(x) < \infty$$

for all $k = 1, 2, \dots$

 $\{f_j\}_{j\geq 0}$ the Gram-Schmidt orthonormalization in $L^2((a, b), \mu)$ of $1, x, x^2, \dots$ Or any family of nonzero multiples of such.

The zeros of f_n are all real and distinct and those of f_n and f_{n+1} strictly interlace. $a = -\infty, b = \infty$ and $d\mu = e^{-x^2} dx$. Hermite Polynomials $H_n, n \ge 1$:

$$x, x^2 - \frac{1}{2}, x^3 - \frac{3}{2}x, x^4 - 3x^2 + \frac{3}{4}, \dots$$

$$A = \begin{bmatrix} 0 & \sqrt{\frac{1}{2}} & 0 & 0 & 0 & \cdots \\ \sqrt{\frac{1}{2}} & 0 & \sqrt{\frac{2}{2}} & 0 & 0 & \cdots \\ 0 & \sqrt{\frac{2}{2}} & 0 & \sqrt{\frac{3}{2}} & 0 & \cdots \\ 0 & 0 & \sqrt{\frac{3}{2}} & 0 & \sqrt{\frac{4}{2}} & \cdots \\ 0 & 0 & 0 & \sqrt{\frac{4}{2}} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \cdots \end{bmatrix}$$
$$H_n(x) = \det[x - A_n]$$

Theorem 1 Suppose that we have $n \ge 1$, $\lambda_{n,1} > \lambda_{n,2} > \dots > \lambda_{n,n}$ strictly interlacing. Then there exists a at most one (up to conjugation by a diagonal matrix with entries ± 1) tridiagonal $\infty \times \infty$ real, symmetric matrix, A, such

that the eigenvalues of A_n are $\{\lambda_{n,i} | i = 1, ..., n\}$. Furthermore, if A is a tridiagonal $\infty \times \infty$ real, symmetric matrix whose truncated spectra have the interlacing property then the functions $1, \det(xI - A_1), \det(xI - A_2), ..., \det(xI - A_k), ...$ form a family of orthogonal polynomials for an appropriate measure.

Theorem 2 Let for each $1 \le n \le m$, $\lambda_{n,1} > \lambda_{n,2} > \dots > \lambda_{n,n}$ be given with

 $\lambda_{n+1,1} > \lambda_{n,1} > \lambda_{n+1,2} > \lambda_{n,2} > ... \lambda_{n,n} > \lambda_{n+1,n+1}$ for $n + 1 \leq m$. Then there exist exactly $2^{\binom{m}{2}}$ real symmetric $m \times m$ matrices whose truncations have this given spectrum and at most one (up to conjugation by a diagonal $m \times m$ matrix with entries ± 1) is tridiagonal.

Theorem 3 Let for each $1 \le n \le m$, $\{\lambda_{n,1}, ..., \lambda_{n,n}\} = \Lambda_n$ be distinct complex numbers and assume that $\Lambda_{n+1} \cap \Lambda_n = \emptyset$ then the set of all $X \in M_m(\mathbb{C})$ such that the spectrum of X_n is Λ_n is an subvariety isomorphic with $(\mathbb{C}^{\times})^{\binom{m}{2}}$.

 \mathfrak{g} a Lie algebra over \mathbb{C} with a nondegenerate, symmetric, bilinear, \mathfrak{g} -invariant form.

Identify \mathfrak{g} with \mathfrak{g}^* and thereby $S(\mathfrak{g})$ with $S(\mathfrak{g}^*) = P(\mathfrak{g})$. $U(\mathfrak{g})$ filtered by the standard filtration $U^j \subset U^{j+1}$ one has

$$GrU(\mathfrak{g})\cong S(\mathfrak{g})$$

as $P(\mathfrak{g})$. If $f, g \in P(\mathfrak{g})$ are homogeneous of degree j, krespectively then there are $u \in U^j, v \in U^k$ such that

$$u + U^{j-1} \to f, v + U^{k-1} \to g$$

Then $[u, v] \in U^{j+k-1}$ and modulo U^{j+k-2} we get an element of P^{j+k-1} . Independent of all of the choices, $\{f, g\}$. The Poisson-Bracket.

$$\{f, gh\} = \{f, g\}h + g\{f, h\}$$

This implies that there is a vector field, X_f . on \mathfrak{g} with polynomial coefficients such that $X_f g = \{f, g\}$.

 $\mathfrak{g}_n = M_n(\mathbb{C})$ imbedded in \mathfrak{g}_{n+1} as the upper left corner.

Take $f_{j,k,n}(X) = \operatorname{tr} X_k^j$, j = 1, 2, ..., k, k = 1, ..., n. These polynomials Poisson commute and are functionally independent.

 GZ_n is the algebra generated by $f_{j,k,n}(X) = \operatorname{tr} X_k^j, j = 1, 2, ..., k, k = 1, ..., n - 1.$

Theorem 4 If $f \in GZ_m$ then X_f generates a global one parameter group of holomorphic transformations. Thus, in particular, product of the groups generated by the $X_{f_{j,k,n}}$ acts on $M_n(\mathbb{C})$ holomorphically yielding holomorphic action of the additive group of $\mathbb{C}^{\binom{n}{2}}$ on $M_n(\mathbb{C})$.

Theorem 5 If $X \in \Omega_m$ then $AX \subset \Omega_m$ and the orbit, AX is the set of all $Y \in M_m(\mathbb{C})$ such that the spectra of the truncations of Y are the same as those of X. Furthermore, the restriction of the action of A to Ω_n yields an algebraic action of $(\mathbb{C}^{\times})^{\binom{m}{2}}$. The last part of this theorem involves work form Mark Colarusso's thesis. He and Sam Evens have a series of papers that give a detailed study of the properties of these flows with applications.

The analogous flow on Hermitian matrices was studied by Guilleman and Sternberg.

Bertram Kostant, The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Group, American Journal of Mathematics, 81(1959),973-1032.

Bertram Kostant , Lie Group Representations on Polynomial Rings, American Journal of Mathematics, 85(1963), 327-404.

Bertram Kostant, Eigenvalues of a Laplacian and Commutative Lie Subalgebras, Topology, 3(1965), 147-159.

 \mathfrak{g} simple Lie algebra over \mathbb{C} of rank l. \mathfrak{b} a Borel subalgebra.

 $\wedge^l \mathfrak{g}$ as a \mathfrak{g} -module in the usual way.

C the Casimir operator corresponding to the Killing form of $\mathfrak{g}.$

The C eigenvalues on $\wedge^l \mathfrak{g}$ are all less than or equal to l

Theorem 6 The largest eigenvalue of C on $\wedge^l \mathfrak{g}$ is l. The \mathfrak{b} the highest weight spaces of the l-eigenspace, V_l , in $\wedge^l \mathfrak{g}$ are the lines $\wedge^l \mathfrak{a}$ with \mathfrak{a} an abelian ideal in \mathfrak{b} of dimension l. Let V_l be this eigenspace.

Ranee Brylinski:

 $G_l(\mathfrak{g})$ the Grassmannian of l dimensional subspaces of \mathfrak{g} .

h a Cartan subalgebra.

G the adjoint group of \mathfrak{g} .

The closure of $G\mathfrak{h}$ contains all abelian ideals in \mathfrak{b} of dimension l.

We proved.

e a regular nilpotent of \mathfrak{g} .

Theorem 7 If x is a regular element of \mathfrak{g} contained in \mathfrak{b} then \mathfrak{g}^e is contained in the closure of $B\mathfrak{g}^x$.

Theorem 8 The closure of $B\mathfrak{g}^e$ contains all abelian ideals of \mathfrak{b} of dimension l.

Considering the action of G on $G_l(\mathfrak{g})$ then each orbit GV contains a closed orbit GW in its closure. The stabilizer of W is a parabolic subgroup of G. Hence it contains a Borel subgroup. One checks that if dim W = l and BW = W then $W \subset [\mathfrak{b}, \mathfrak{b}]$. Thus it is an ideal in \mathfrak{b} .

Theorem 9 *l*-dimensional ideals in b are abelian.

Critical to the proofs are Kostant's cyclic elements that appear in two of the three papers listed. Let $f_1, ..., f_l$ be a minimum set of homogeneous generators for $P(\mathfrak{g})^G$ ordered by degree. An element, $x \in \mathfrak{g}$ is called cyclic if

$$f_i(x) = 0, i < l, f_l(x) \neq 0.$$

Note that if c is a Coxeter element of $W(\mathfrak{h})$ then the order of c is the Coxeter number

$$h = d_l = \deg f_l > d_j = \deg f_j, j < l.$$

Let ζ be a promitive h-th root of 1.Then if $z \in \mathfrak{h}, z \neq 0$ is such that $cz = \zeta z$ then

$$f_i(z) = f_i(cz) = \zeta^{d_i} f_i(z).$$

Thus z is a cyclic element.

The singular set X the set of $x \in \mathfrak{g}$, dim $\mathfrak{g}^x > l$.

The zero set of the $l \times l$ minors of

$$Jac(f_1, ..., f_l).$$

$$\mathcal{I}(X) = \{ f \in P(\mathfrak{g}) | f(X) = 0 \}.$$

Do the $l \times l$ minors of $Jac(f_1, ..., f_l)$ generate $\mathcal{I}(X)$?

(..., ...) the Killing form.

If $f \in P(\mathfrak{g})$ then define $\nabla f(x)$ for $x \in \mathfrak{g}$ by $(\nabla f(x), y) = df_x(y), y \in \mathfrak{g}.$

$$\{\nabla f_1(x), ..., \nabla_l f(x)\}$$

is a basis of \mathfrak{g}^x if x is regular. Noting that if $f \in P(\mathfrak{g})^G$ then

$$g\nabla f(x) = \nabla f(gx).$$

If x is regular semisimple then

$$C\left(\nabla f_1(x)\wedge\cdots\wedge\nabla_l f(x)\right)=l\nabla f_1(x)\wedge\cdots\wedge\nabla_l f(x).$$

Thus the result is true for all x. If M is the span of the $l \times l$ minors of $Jac(f_1, ..., f_l)$ then Cf = lf for $f \in M$.

Theorem 10 M is equivalent with V_l as a G-module.

If $\mathfrak{h} \subset \mathfrak{g}$ is a Cartan subalgebra then let

$$\pi_{\mathfrak{h}} = \prod_{\alpha > \mathbf{0}} \alpha$$

for some choice of positive roots relative to \mathfrak{h} .

$$\mathcal{I} = \{ f \in P(V) | \pi_{\mathfrak{h}} | f_{|\mathfrak{h}} \}.$$

Then $M \subset \mathcal{I}$.

$$Ric - \frac{1}{2}Rg + \Lambda g = \frac{8\pi G}{c^4}T$$

 Λ the cosmological constant.

g a Lorentzian (- - - +) metric on a 4 manifold M.

Associated to g is the Hodge *-operator mapping $\wedge^k T(M)^* \rightarrow \wedge^{4-k} T(M)^*$.

Maxwell's equations $\omega \in \wedge^2 T(M)^*$:

$$d\omega = d \ast \omega = \mathbf{0}.$$

These equations are conformally invariant.

Examples:

$$M = \mathbb{R}^4, g = dx_1^2 + dx_2^2 + dx_3^2 - dx_4^2$$

 $H = 2 \times 2$ Hermitian matrices

$$X = \begin{bmatrix} x_{4} + x_{3} & x_{1} + ix_{2} \\ x_{1} - ix_{2} & x_{4} - x_{3} \end{bmatrix}$$

with the metric (X, X) = det(X).

 $M = U(2) \cong S^1 \times S^3$. $T_I(M) = iH$ and the left invariant metric $\langle X, X \rangle = -\det(X)$.

$$F: H \to M,$$

$$F(X) = \frac{I + iX}{I - iX},$$
$$(F^* \langle ..., ... \rangle)_X = 4(1 + 2\sum_{i=1}^4 x_i^2 + (X, X)^2)(..., ...)_X.$$

Two incarrnations of U(2,2):

lf

$$J_{1} = \begin{bmatrix} 0 & iI \\ -iI & 0 \end{bmatrix}, J_{2} = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}.$$
$$G_{i} = \{g \in GL(4, \mathbb{C}) | gJ_{i}g^{*} = J_{i} \}.$$
$$L = \frac{1}{\sqrt{2}} \begin{bmatrix} I & iI \\ I & -iI \end{bmatrix}$$
$$\sigma(g) = LgL^{*} = LgL^{-1}, \sigma : G_{1} \to G_{2}.$$
$$\sigma(g) = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$gZ = (AZ + B)(CZ + D)^{-1}$$

for $ZZ^* < I$.

This realizes U(2) as the Shilov boundary of $ZZ^* < I$ and U(2,2) as a group of conformal transformations of M.

$Maxw \subset \Omega^2(M)_{\mathbb{C}}$

the space of all smooth solutions to Maxwell's equations with the C^{∞} topology. Then this representation of U(2,2) is an admissible, Smooth, Fréchet module of moderate growth. It breaks up into four irreducible submodules. $Maxw_{0,2}^{\pm}$, $Maxw_{2,0}^{\pm}$.

Note

$$H^2(U(2),\mathbb{C})=0,$$

 $H^3(U(2),\mathbb{C})=\mathbb{C}, H_3(U(2),\mathbb{Z})=\mathbb{Z}SU(2).$

This implies that if $\eta \in \Omega^3(\mathbb{C})$ and $d\eta = 0$ then of $g \in U(2,2)$ then

$$\int_{SU(2)} \eta = \int_{gSU(2)} \eta = \int_{SU(2)} g^* \eta.$$

If $\alpha, \beta \in Maxw$ then $\alpha = d\mu$. Set

$$\langle \alpha, \beta \rangle = \int_{SU(2)} \mu \wedge \overline{\beta}$$

The formula is independent of the choices and

$$\left\langle Maxw_{p,q}^{\varepsilon}, Maxw_{rs}^{\nu} \right\rangle = \mathbf{0}$$

unless $\varepsilon = \nu$ and (p,q) = (r,s). Furthermore,

$$\varepsilon \langle ..., ... \rangle_{|Maxw_{p,q}^{\varepsilon}|} > 0.$$

If V is the underlying (\mathfrak{g}, K) -module of one of the components of Maxw then

$$H^2(\mathfrak{g}, K, V) = \mathbb{C}.$$

It also has a realization in the continuation of the holomorphic discrete series or the antiholomophic discrete series. SU(2,2) is also the quaternionic real form of $SL(4,\mathbb{C})$ and so these representations can be realized as first cohomology of holomorphic or antiholomorphic line bundles on the open orbit in \mathbb{P}^3 that has no non-constant functions. This corresponds to the twister transform.