Quantizing G-actions on Poisson manifolds

Victor Guillemin

MIT

Victor Guillemin Quantizing G-actions on Poisson manifolds

< ∃ →

One of Bert Kostant's enduring contributions to mathematics: the theory of geometric quantization.

More explicitly: let (X^{2n}, w) be a symplectic manifold, let G be a Lie group and let $G \times X \to X$ be a Hamiltonian action of G on X

Then X is prequantizable if $[w] \in H^2(X, \mathbb{Z})$ in which case there exists a complex line $\mathbb{L} \to X$ and a connection on \mathbb{L} with curvature form w.

The goal of geometric quantization: Associate with this data a Hilbert subspace $\mathcal{Q}(X)$ of the space of L^2 sections of \mathbb{L} and a representation of G on $\mathcal{Q}(X)$ with "nice" properties. For instance, for co-adjoint orbits, X, of G associate a subspace $\mathcal{Q}(X)$ of L^2 sections of \mathbb{L} on which G acts irreducibly.

→ Ξ →

Our goal in today's lecture will be much more modest: To simplify we'll assume G us an m-torus and for X compact we'll take $\mathcal{Q}(X)$ to be the virtual vector space

 $-\operatorname{Ker} \partial_{\mathbb{L}} \oplus \operatorname{Im} \partial_{\mathbb{L}}$

where $\partial_{\mathbb{L}}$ is the L-twisted spin \mathbb{C} Dirac operator.

What about X non-compact? The two main goals of today's lecture

- 1. Describe a method for quantizing non-compact prequantizable Hamiltonian *G*-manifolds based upon the "quantization commutes with reduction" principle.
- 2. Apply this method to an interesting class of examples: b-symplectic manifolds

Remark 1

What I am about to report on is joint work with Jonathan Weitsman and Eva Miranda.

Remark 2 According to David Vogan, Bert was probably not the inventor of [Q, R] = 0, but it was certainly inspired by his ideas.

Let (X, w) be a pre-quantizable symplectic manifold and $G \times X \to X$ a Hamiltonian *G*-action with moment map $\phi : X \to \mathfrak{g}^*$. In lieu of assuming X compact we'll assume that ϕ is proper.

向下 イヨト イヨト

Let $\mathbb{Z}_G \subseteq \mathfrak{g}^*$ be the weight lattice of G and $\alpha \in \mathbb{Z}_G$ a regular value of ϕ . For the moment we'll also assume that G acts freely on $\phi^{-1}(\alpha)$ in which case the reduced spree $X_\alpha = \phi^{-1}(\alpha)/G$ is a prequantizable symplectic manifold and [Q, R] = 0 asserts that $Q(X)_\alpha = Q(X_\alpha)$ where $Q(X)_\alpha$ is the α -weight space of Q(X).

• • • • • • • • • •

What if α is a regular value of ϕ but *G* doesn't act freely on $\phi^{-1}(\alpha)$? Then this assertion is true modulo some complications owing to the fact that X_{α} is, in this case, a symplectic orbifold, not a symplectic manifold.

< ∃ →

What is α is a singular value of ϕ ?

The Meinrenken desingularization trick

Replace α by a nearby α' which is a regular value of ϕ then convert the reduced symplectic form on $X_{\alpha'}$ into a symplectic form on $X_{\alpha'}$ which *would be*, up to symplectomorphism, the reduced symplectic form on X_{α} if α were a regular value of ϕ . Inspired by these comments we'll define the formal quantization of X to be the sum

• E • • E

These objects are easiest to define as Poisson manifolds. Namely, let $X = X^{2n}$ be a compact oriented Poisson manifold and let π be its Poisson bi-vector field. Then π^n is a section of the real line bundle $\Lambda^{2n}(TX) \to X$.

白 マ イヨ マ イ ヨ マ

We will say that π has this property if π^n intersects the zero section of $\Lambda^{2n}(TX)$ transversally in a codimension one submanifold Z.

/□ ▶ < □ ▶ < □

- 1. Lets denote this intersection by Z. Then $\mathcal{U} = X Z$ inherits from π a symplectic structure whose symplectic form we'll denote by w.
- 2. The symplectic leaves of the restriction, $\pi \mid Z$ are 2n 2 dimensional symplectic submanifolds of Z and these manifolds define a foliation of Z by symplectic manifolds.

Let Z_i be a connected component of Z. Then on a tubular neighborhood $Z_i \times (-\epsilon, \epsilon)$ the symplectic form w has the form

$$w = \alpha \wedge \frac{dt}{t} + w_0, \quad -\epsilon < t < \epsilon$$

where α is a closed one-form on Z_i and w_0 a closed two form on Z_i .

(日) (日) (日)

э

Moreover, α and w_0 have the following properties:

- I. For every symplectic leaf, L of $Z_i, \iota_L^* \alpha = 0$, i.e. α defines the symplectic foliation of Z
- II. For every symplectic leaf, L, of Z_i , $\iota_L^* w_0$ is the symplectic form on this symplectic leaf

Prequantizability

We'll say that the Poisson manifold (X, π) is prequantizable if

1. $w \mid \mathcal{U}$ is prequantizable: i.e. there exists a line bundle-connection pair (L, ∇) on \mathcal{U} with

$$w = \operatorname{curv}(\nabla)$$

2. On the tubular neighborhood $\mathcal{U}_i = Z_i \times (-\epsilon, \epsilon)$ the two components. α and w_0 of the symplectic form

$$w \,|\, \mathcal{U}_i = \alpha \wedge \frac{dt}{t} + w_0$$

are pre-quantizable: For α this means that there exists a fibration $\gamma: Z_i \to S^1$ with

$$\alpha = \gamma^* \frac{d\theta}{2\pi}$$

伺 と くき とくき とう

Remark

An implication of this condition is that the symplectic leaves of Z_i , i.e. the level sets of γ , are compact.

4 3 b

We will denote by ${}^{b}C^{\infty}(X)$ the space of functions φ on X having the properties

- 1. $\varphi \mid X Z \in C^{\infty}(X Z)$
- 2. On the tubular neighborhood, $Z_i \times (-\epsilon, \epsilon)$ defined in item 2, $\varphi = c_i \operatorname{Log} |t| + \psi$, with $c_i \in R$ and $\psi \in C^{\infty}(Z_i \times (-\epsilon, \epsilon))$.

Remark

Notice that if t is the defining function for $Z \times \{0\}$ in the neighborhood $Z \times (-\epsilon, \epsilon)$ and t' = ft, $f \in C^{\infty}(Z_i \times (-\epsilon, \epsilon))$, is another defining function, i.e. $f \neq 0$, then

$$c \operatorname{Log} |t'| = c \operatorname{Log} |t| + c \operatorname{Log} |f|$$

with $c \operatorname{Log} |f| \in C^{\infty}(Z_i \times (-\epsilon, \epsilon))$

Hence this definition is an intrinsic definition: i.e. doesn't depend on the choice of defining function.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

э

Now let $G \times X \to X$ be a Poisson action of G on X and let w be the b-symplectic form that we defined in item 3.

Definition

This action is Hamiltonian if for every $v \in \mathfrak{g}$

$$\iota(v_X)w = d\varphi_v, \quad \varphi_v \in {}^bC^\infty(X)$$

(四) (日) (日)

Thus $\varphi_v = u_i(v) \operatorname{Log} |t| + \psi_v$ where ψ_v is in $C^{\infty}(Z_i \times (-\epsilon, \epsilon))$ and u_i is an element of \mathfrak{g}^* .

Definition

 u_i is the modular weight of the hypersurface Z_i .

→ Ξ →

Note that since

$$\iota(v_X)w = \iota(v_X)\alpha \frac{dt}{t} + \iota(v_X)w_0$$

(1)
$$u_i(v) = \iota(v_X)\alpha = \alpha(v_X)$$

イロン イロン イヨン イヨン

2

Thus since the symplectic leaves of Z_i are defined by the condition, $\iota_L^* \alpha = 0$, we conclude that $u_i(v) = 0$ implies that v_X is everywhere tangent to the symplectic leaves of Z.

→ < Ξ → </p>

In particular if K is the subtorus of G having

$$k = \{v \in \mathfrak{g}, \ u_i(v) = 0\}$$

as Lie subalgebra then the action of K on Z_i preserves the symplectic leaves of Z_i .

向下 イヨト イヨト

An important property of modular weights

Theorem

If X is connected and $u_i \neq 0$ for some Z_i then $u_i \neq 0$ for all Z_i 's.

We'll henceforth assume that this is the case.

A 3 b

Another assumption we will make: The map $\gamma:Z_i\to S^1$ defined by the prequantizability hypothesis

$$\alpha = \gamma^* \frac{d\theta}{2\pi}$$

intertwines the action of G on Z with the action of $S^1 = G/K$ on itself.

Therefore if S^1 is a complementary circle to K in G, S^1 acts freely on Z_i and interchanges the leaves of the symplectic foliation of Z_i .

→ ∃ →

In fact one can assume a bit more. Let $v \in \mathfrak{g}$ be the generator of this complementary circle and let $f = \iota(v_X)\alpha$. Then by the Moser trick one can prove

→ Ξ →

Lemma

The b-symplectic forms w and $w' = w - \alpha \wedge df$ are G-symplectomorphic.

Hence replacing w by w' we get as a corollary the following result:

- ∃ →

Theorem If v is the generator of the S^1 action above

$$\iota(v)w = d\log|t|$$

and

$$\iota(v)w_0 = 0$$

In particular if u_i is the modular weight associated with $Z_i, u_i(v) = 1.$

A 3 b

Moreover the condition

$$\iota(v_X)w_0 = 0$$

implies the following: Lets denote by Z_i/S^1 the symplectic reduction by S^1 of $Z_i \times (-\epsilon, \epsilon)$ at some moment level $\lambda = \log |t|, \ |t| \neq 0.$

伺 と く ヨ と く ヨ と

Then the reduced symplectic form on Z_i/S^1 has the defining property

$$\pi^* w_{\rm red} = w_0$$

where π is the projection

$$Z_i \to Z_i/S^1$$

→ Ξ →

Next let k_i be the Lie subalgebra of \mathfrak{g} defined by

$$v \in k_i \Leftrightarrow u_i(v) = 0$$

Since u_i is a weight of \mathfrak{g} , (i.e., the *modular* weight) k_i is the Lie algebra of a subtorus K_i of G.

I ≡ ▶

Moreover, $u_i(v) = 0$ implies $\iota(v_Z)\alpha = 0$ which in turn implies

$$\iota(v_Z)\omega = \iota(v_Z)\omega_0$$

Thus the projection, π , intertwines the actions of K on Z with a reduced symplectic action of K on Z/S^1 .

Theorem 1

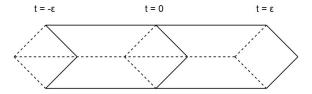
The moment map associated with the action of G on $Z_i \times (-\epsilon, \epsilon)$ is the map

$$\phi(z,t) = -\log|t|u_i + \phi_K \circ \pi(z)$$

where ϕ_K is the moment map associated with the K-action on the symplectic quotient Z_i/S^1 and π is the projection of Z_i onto Z_i/S^1 .

Corollary

The moment image of $Z_i \times (-\epsilon, \epsilon)$ is the polytope in the figure below



The vertical slice at t = 0 being the moment polytope, Δ_K , for the action of K on Z_i/S^1 . Note that as the moment image of $Z_i \times (-\epsilon, \epsilon)$ this vertical slice lies on the hyperplane $\text{Log } |t| = -\infty$ and its edges are the lines

$$p + tu_i, -\infty \le \log |t| < \log \epsilon$$

the p's being the vertices of Δ_K .

A 3 b

In particular the weights figuring in the formal quantization of $Z_i \times (-\epsilon, \epsilon)$ all lie along the lines

 $\beta + \log |t| u, \quad -\infty < \log |t| < \log \epsilon$

where β is a weight of K lying in the moment polytope.

伺 と く ヨ と く ヨ と …

We'll now describe our second main result

Theorem 2 The formal geometric quantization of $\mathcal{U} = X - Z$ is a finite dimensional virtual vector space.

A 3 3

Remark 1 The proof of this will be based on the following well-known fact.

Theorem 3

The index of the \mathbb{L} -twisted spin \mathbb{C} Dirac operator changes by a factor of (-1) if one changes the orientation fo the underlying manifold.

Proof of Theorem 2.

If we delete the moment images of the regions $Z_i \times (-\epsilon, \epsilon)$ from the moment image of \mathcal{U} the remaining image is compact. Hence the contributions to the formal quantization of \mathcal{U} from weights in this region is a finite dimensional vector space. What about contributions coming from the moment image on slide 40 of $Z_i \times (-\epsilon, \epsilon)$?

We'll prove these contributions add up to $\{0\}$. In fact we'll prove a much stronger result.

Let S^1 be the circle group in the factorization

$$G = S^1 \times K$$

We will prove

ゆ く き く き く

For every weight, -n, $e^{-n} < \epsilon$ of the weight lattice, \mathbb{Z} , of S^1 let $X_{i,n}$ be the symplectic reduction of $Z_i \times (-\epsilon, \epsilon)$ with respect to the Hamiltonian action of S^1 . Then

$$\mathcal{Q}(X_{i,n}) = \{0\}$$

Proof.

This reduction consists of two copies of the symplectic manifold, Z_i/S^1 , hence if we quantize them by assigning to them the orientations defined by their symplectic volumes we get two copies of $\mathcal{Q}(Z_i/S^1)$.

But these orientations correspond, upstairs on $Z_i \times (-\epsilon, 0)$ and $Z_i \times (0, \epsilon)$, to the orientations defined by the symplectic volume form associated with the *b*-symplectic form

$$\alpha \wedge \frac{dt}{t} + w_0$$

If instead we fix a global volume form v on X and assign to these two spaces the orientations defined by v then we get the same orientation as before on one of these two copies of Z_i/S^1 and the opposite orientation on the other. Hence by theorem 3 the quantization of this symplectic reduction is zero.

• 同下 • 三下 • 三下