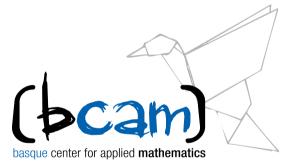
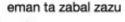
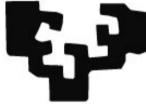
Dirac Equations with Singular Potentials Shell interactions for Dirac operators: point spectrum and confinement

Luis VEGA, BCAM-UPV/EHU







CHICAGO, September 21st, 2014

Free Dirac operator in \mathbb{R}^3

<u>**Definition.**</u>- $H : \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3})^{4} \to \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3})^{4}$ free Dirac operator in \mathbb{R}^{3} ,

$$H = -i\alpha \cdot \nabla + m\beta = \begin{pmatrix} m & 0 & -i\partial_3 & -\partial_2 - i\partial_1 \\ 0 & m & \partial_2 - i\partial_1 & i\partial_3 \\ -i\partial_3 & -\partial_2 - i\partial_1 & -m & 0 \\ \partial_2 - i\partial_1 & i\partial_3 & 0 & -m \end{pmatrix}$$

- 1st order symmetric differential operator.
- Local version of $\sqrt{-\Delta + m^2}$: $H^2 = (-\Delta + m^2)I_4$.
- Dirac (1928)

Coupling with a singular potential

First Question.-

 $\Omega \subset \mathbb{R}^3$ bounded regular domain, $\Sigma = \partial \Omega, \quad \sigma \text{ surface measure on } \Sigma,$ $V \text{ potential } L^2(\sigma)^4 \text{-valued.}$ To find $D \subset L^2(\mathbb{R}^3)^4$ such that H + V defined on D is self-adjoint.

Motivation.-

- Quantum Physics requires self-adjointness.
- $\frac{\lambda}{|x|}$ critical (scaling) for H, $|\lambda| < 1$ (Dolbeault, Esteban, Sere, '00; Hardy Inequality, Uncertainty Principle).
- $H + \lambda \delta_{|x|=1}$ (and other critical V's on S^2) (Dittrich, Exner & Seba '89; Spherical Harmonics. Albeverio, Gesztesy, Hoegh-Krohn & Holden '88 -'05).
- Previous results on $-\Delta + \lambda \delta_{\Sigma}$ for Lipschitz surfaces Σ . Subcritical/Critical.

Initial Approach

First Question.-

To find $D \subset L^2(\mathbb{R}^3)^4$ such that H + V defined on D is self-adjoint.

Our Approach.-

Take $\varphi \in D$, V potential $L^2(\sigma)^4$ -valued $\implies V(\varphi) = -g$ for some $g \in L^2(\sigma)^4$. $(H+V)(\varphi) \in L^2(\mathbb{R}^3)^4 \implies (H+V)(\varphi) = G$ for some $G \in L^2(\mathbb{R}^3)^4$.

 $H(\varphi) = G + g$ in the sense of distributions.

Therefore $\varphi = \phi * (G + g)$ and

$$(H+V)(\varphi) = G, \qquad V(\varphi) = -g,$$

where ϕ is the fundamental solution of $H = -i\alpha \cdot \nabla + m\beta$,

$$\phi(x) = \frac{e^{-m|x|}}{4\pi|x|} \left(m\beta + (1+m|x|)\,i\alpha \cdot \frac{x}{|x|^2} \right) \quad \text{for } x \in \mathbb{R}^3 \setminus \{0\}.$$

Self-adjointness of H + V

 $\frac{\mathbf{Property.}-\text{ If }G\in L^2(\mathbb{R}^3)^4,\text{ then }\phi\ast G\in W^{1,2}(\mathbb{R}^3)^4\text{ and }}{(\phi\ast G)|_{\Sigma}\in L^2(\sigma)^4.}$

Theorem (Self-adjointness). – Given $\Lambda : L^2(\sigma)^4 \to L^2(\sigma)^4$ bounded, self-adjoint and with closed range, define

$$D = \left\{ \phi * (G+g) : (\phi * G)|_{\Sigma} = \Lambda(g) \right\} \subset L^2(\mathbb{R}^3)^4.$$

If $V(\phi * (G + g)) = -g$, then H + V defined on D is essentially self-adjoint.

- Under more assumptions on Λ , H + V is self-adjoint. Posilicano '08-'09.
- Other differential operators and measures are considered.
- Other relations between $(\phi * G)|_{\Sigma}$ and g are considered.

Resolvent of H

<u>Resolvent</u>.- Given $a \in (-m, m)$, let ϕ^a be the fundamental solution of $H - a = -i\alpha \cdot \nabla + m\beta - a$,

$$\phi^{a}(x) = \frac{e^{-\sqrt{m^{2} - a^{2}}|x|}}{4\pi|x|} \left(a + m\beta + \left(1 + \sqrt{m^{2} - a^{2}}|x|\right) i\alpha \cdot \frac{x}{|x|^{2}}\right).$$

Our Setting. $-\Omega_+ \subset \mathbb{R}^3$ bounded regular domain, $\Omega_- = \mathbb{R}^3 \setminus \overline{\Omega_+}$, $\Sigma = \partial \Omega_{\pm}, \sigma$ surface measure on Σ , N normal vector on Σ w.r.t. Ω_+ .

Properties.– If $g \in L^2(\sigma)^4$, then $(H-a)(\phi^a * g) = 0$ in Σ^c . For $x \in \Sigma$, set

$$C^a_{\pm}g(x) = \lim_{\Omega_{\pm} \ni y \xrightarrow{nt} x} (\phi^a * g)(y), \quad C^a_{\sigma}g(x) = p.v. \ (\phi^a * g)(x).$$

Then,

• $C^a_{\pm} = \mp \frac{i}{2} (\alpha \cdot N) + C^a_{\sigma}$ (Plemelj-Sokhotski jump formulae),

•
$$\left(C^a_\sigma(\alpha \cdot N)\right)^2 = -\frac{1}{4}.$$

Point spectrum and confinement for H + V

Our Setting.- Set $D = \{\varphi = \phi * (G + g) : (\phi * G)|_{\Sigma} = \Lambda(g)\}$ and $H + V : D \subset L^2(\mathbb{R}^3)^4 \to L^2(\mathbb{R}^3)^4$ defined by $V(\varphi) = -g$ and $(H + V)(\varphi) = G$ for $\varphi \in D$.

 $\frac{\text{Our Theorem (Point Spectrum)}}{\text{Ker}(H+V-a) \neq \emptyset \text{ iff Ker}(\Lambda + C_{\sigma} - C_{\sigma}^{a}) \neq \emptyset}. \quad \in \quad (-m, m),$

Point spectrum and confinement for H + V

Definition.– V generates confinement w.r.t. H and Σ iff supp $\left(e^{-it(H+V)}(f)\right) \subset \Omega_{\pm}$ for all $f \in L^2(\Omega_{\pm})^4$ and all $t \in \mathbb{R}$. This is equivalent to require that $\chi_{\Omega_{\pm}}\varphi \in D$ for all $\varphi \in D$.

Theorem (Confinement).– Assume that H + V is self-adjoint on D. Then, V generates confinement w.r.t. H and Σ if $\{C_{\sigma}(\alpha \cdot N), \Lambda(\alpha \cdot N)\} = -(\Lambda(\alpha \cdot N))^2.$

Some applications. Electrostatic shell potentials

<u>Theorem</u>.- Let $\lambda \in \mathbb{R} \setminus \{0\}$ and $a \in (-m, m)$. Take $\Lambda = -(1/\lambda + C_{\sigma}), D = \{\varphi = \phi * (G + g) : (\phi * G)|_{\Sigma} = \Lambda(g)\},$ and $V_{\lambda}(\varphi) = \frac{\lambda}{2} (\varphi_{+} + \varphi_{-}) \quad (\varphi_{\pm} \text{ n.t. boundary values of } \varphi \text{ on } \Sigma).$

- $H + V_{\lambda}$ defined on D is self-adjoint for all $\lambda \neq \pm 2$.
- Ker $(H + V_{\lambda} a) \neq \emptyset$ iff Ker $(1/\lambda + C_{\sigma}^{a}) \neq \emptyset$.
- $H + V_{\lambda}$ and $H + V_{-4/\lambda}$ have the same eigenvalues in (-m, m).
- If $|\lambda| \notin [1/\|C^a_{\sigma}\|, 4\|C^a_{\sigma}\|]$, then Ker $(H + V_{\lambda} a) = \emptyset$.
- If $|\lambda| \notin [1/C, 4C]$, where $C = \sup_{a \in (-m,m)} ||C_{\sigma}^{a}|| < \infty$, then $H + V_{\lambda}$ has no eigenvalues in (-m, m).

<u>**Theorem.**</u> – Let $H + V_{\lambda}$ be as above. If Ω_{-} is connected, then $H + V_{\lambda}$ has no eigenvalues in $\mathbb{R} \setminus [-m, m]$.

Some applications.

Electrostatic plus Lorentz scalar shell potentials

Theorem.- Let
$$\lambda_e, \lambda_s \in \mathbb{R}$$
 be such that $\lambda_e^2 - \lambda_s^2 \neq 0, 4$. Take

$$\Lambda = \frac{\lambda_s \beta - \lambda_e}{\lambda_e^2 - \lambda_s^2} - C_{\sigma},$$

$$D = \{\varphi = \phi * (G + g) : (\phi * G)|_{\Sigma} = \Lambda(g)\}, \text{ and}$$

$$V_{es}(\varphi) = \frac{1}{2}(\lambda_e + \lambda_s \beta)(\varphi_+ + \varphi_-) \quad (\varphi_{\pm} \text{ n.t. boundary values of } \varphi).$$

- $H + V_{es}$ defined on D is self-adjoint.
- V_{es} generates confinement w.r.t H and Σ iff $\lambda_e^2 \lambda_s^2 = -4$.

Some applications.

Electrostatic plus Lorentz scalar shell potentials

- That V_{es} generates confinement means that the particles modelized by the evolution $\partial_t + i(H + V_{es})$ never cross Σ over time, i.e., Σ becomes impenetrable.
- The impenetrability condition $\lambda_e^2 \lambda_s^2 = -4$ was known for $\Sigma = \{x \in \mathbb{R}^3 : |x| = R\}, R > 0$ (Dittrich-Exner-Seba).

Uncertainty Principle on the sphere S^2

We focus on $H + V_{\lambda}$ for $\Sigma = S^2 = \{x \in \mathbb{R}^3 : |x| = 1\}$

<u>Definition</u>.– Let $\tilde{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ be the family of Pauli matrices. Given $a \in (-m, m)$, define

$$k^{a}(x) = \frac{e^{-\sqrt{m^{2} - a^{2}}|x|}}{4\pi |x|} I_{2} \text{ and}$$
$$w^{a}(x) = \frac{e^{-\sqrt{m^{2} - a^{2}}|x|}}{4\pi |x|^{3}} \left(1 + \sqrt{m^{2} - a^{2}}|x|\right) i \widetilde{\sigma} \cdot x.$$

For $f \in L^2(\sigma)^2$ and $x \in S^2$, set

 $K^{a}f(x) = (k^{a} * f)(x)$ and $W^{a}(f) = p.v.(w^{a} * f)(x).$

Uncertainty Principle on the sphere S^2

- K^a and W^a are bounded operators in $L^2(\sigma)^2$.
- K^a is a positive operator.

Uncertainty Principle on the sphere S^2

<u>Theorem</u>.– Let $\lambda > 0$ and $a \in (-m, m)$. The operator

 $1/\lambda + (m+a)K^a$

is invertible in $L^2(\sigma)^2$. Furthermore, for any $f \in L^2(\sigma)^2$ and any $\delta > 0$,

$$\begin{split} \int_{S^2} |f|^2 \, d\sigma &\leq \frac{1}{2M\delta} \int_{S^2} \left(1/\lambda + (m+a)K^a \right)^{-1} \left(W^a(f) \right) \cdot \overline{W^a(f)} \, d\sigma \\ &+ \frac{\delta}{2M} \int_{S^2} \left(1/\lambda + (m+a)K^a \right) \left(\left(\widetilde{\sigma} \cdot N \right) f \right) \cdot \overline{\left(\widetilde{\sigma} \cdot N \right) f} \, d\sigma, \end{split}$$

$$(1)$$

where M is a constant depending only on m and a. Moreover, $M \ge \frac{1}{2} e^{-\sqrt{m^2 - a^2}} \sqrt{2 - e^{-2\sqrt{m^2 - a^2}}}.$

For suitable δ 's, the inequality (1) is sharp and the equality can be attained.

Uncertainty Principle on the sphere S^2 . Consequences

Definition (2-dimensional Riesz transform). – Given a finite Borel measure ν in \mathbb{R}^3 , $h \in L^2(\nu)$ and $x \in \mathbb{R}^3$, one defines the 2-dimensional Riesz transform of h as

$$R_{\nu}(h)(x) = \lim_{\epsilon \searrow 0} \int_{|x-y| > \epsilon} \frac{x-y}{|x-y|^3} h(y) \, d\nu(y),$$

whenever the limit makes sense.

Uncertainty Principle on the sphere S^2 . Consequences

<u>Corollary</u>.- $2\pi \|h\|_{L^2(\sigma)} \leq \|R_{\sigma}(h)\|_{L^2(\sigma)^3}$ for all real-valued $h \in L^2(\sigma)$, and the inequality is sharp. Hofmann, Marmolejo-Olea, Mitrea, Pérez-Esteva, & Michael Taylor '09

- For suitable elections of λ , a, and δ , the minimizers of (??) give rise to eigenfunctions of $H + V_{\lambda}$ with eigenvalue a.
- The set of λ 's for which $H + V_{\lambda}$ has a non-trivial eigenfunction contains an interval.

THANK YOU FOR YOUR ATTENTION