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• 1st order symmetric di↵erential operator.

• Local version of

p
��+m2

: H2
= (��+m2

)I4.

• Dirac (1928)

Definition.– H : C1
c (R3

)
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4
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Remarks.–

Free Dirac operator in R3



To find D ⇢ L2
(R3

)

4
such that H +V defined on D is self-adjoint.

• Quantum Physics requires self-adjointness.

• �

|x| critical (scaling) for H, |�| < 1 (Dolbeault, Esteban,

Sere, ’00; Hardy Inequality, Uncertainty Principle).

• H+��|x|=1 (and other critical V ’s on S2) (Dittrich, Exner &
Seba ’89; Spherical Harmonics. Albeverio, Gesztesy, Hoegh-
Krohn & Holden ’88 -’05).

• Previous results on ��+ ��⌃ for Lipschitz surfaces ⌃. Sub-

critical/Critical.

First Question.–

Motivation.–

Coupling with a singular potential

⌦ ⇢ R3
bounded regular domain,

⌃ = @⌦, � surface measure on ⌃,

V potential L2
(�)4-valued.



To find D ⇢ L2
(R3

)

4
such that H +V defined on D is self-adjoint.

Therefore ' = � ⇤ (G+ g) and

(H + V )(') = G, V (') = �g,

where � is the fundamental solution of H = �i↵ ·r+m�,

�(x) =
e�m|x|

4⇡|x|

✓
m� + (1 +m|x|) i↵ · x

|x|2

◆
for x 2 R3 \ {0}.

First Question.–

Our Approach.–

Take ' 2 D,

V potential L2
(�)4-valued =) V (') = �g for some g 2 L2

(�)4.

(H+V )(') 2 L2
(R3

)

4
=) (H+V )(') = G for some G 2 L2

(R3
)

4.

H(') = G+ g in the sense of distributions.

Initial Approach



• Under more assumptions on ⇤, H + V is self-adjoint. Posili-

cano ’08-’09.

• Other di↵erential operators and measures are considered.

• Other relations between (� ⇤G)|⌃ and g are considered.

Property.– If G 2 L2(R3)4, then � ⇤G 2 W 1,2(R3)4 and
(� ⇤G)|⌃ 2 L2(�)4.

Theorem (Self-adjointness).– Given ⇤ : L2
(�)4 ! L2

(�)4

bounded, self-adjoint and with closed range, define

D =

�
� ⇤ (G+ g) : (� ⇤G)|⌃ = ⇤(g)

 
⇢ L2

(R3
)

4.

If V
�
� ⇤ (G + g)

�
= �g, then H + V defined on D is essentially

self-adjoint.

Remarks.–

Self-adjointness of H + V



Then,

• Ca
± = ⌥ i

2 (↵ ·N) + Ca
� (Plemelj-Sokhotski jump formulae),

•
�
Ca

�(↵ ·N)
�2

= � 1
4 .

Resolvent of H

Resolvent.– Given a 2 (�m,m), let �a

be the fundamental solu-

tion of H � a = �i↵ ·r+m� � a,

�a

(x) =
e�

p
m

2�a

2|x|

4⇡|x|

✓
a+m� +

⇣
1 +

p
m2 � a2|x|

⌘
i↵ · x

|x|2

◆
.

Our Setting.– ⌦+ ⇢ R3
bounded regular domain, ⌦� = R3 \⌦+,

⌃ = @⌦±, � surface measure on ⌃, N normal vector on ⌃ w.r.t.

⌦+.

Properties.– If g 2 L2
(�)4, then (H � a)(�a ⇤ g) = 0 in ⌃

c

. For

x 2 ⌃, set

Ca

±g(x) = lim

⌦±3y

nt!x

(�a ⇤ g)(y), Ca

�

g(x) = p.v. (�a ⇤ g)(x).



Point spectrum and confinement for H + V

Our Setting.– Set D =

�
' = � ⇤ (G + g) : (� ⇤ G)|⌃ = ⇤(g)

 

and H + V : D ⇢ L2
(R3

)

4 ! L2
(R3

)

4
defined by V (') = �g and

(H + V )(') = G for ' 2 D.

Our Theorem (Point Spectrum).– Given a 2 (�m,m),
Ker (H + V � a) 6= ; i↵ Ker (⇤+ C� � Ca

�) 6= ;.



Point spectrum and confinement for H + V

Definition.– V generates confinement w.r.t. H and ⌃ i↵

supp

�
e�it(H+V )

(f)
�
⇢ ⌦± for all f 2 L2

(⌦±)
4
and all t 2 R.

This is equivalent to require that �⌦±' 2 D for all ' 2 D.

Theorem (Confinement).– Assume that H + V is self-adjoint

on D.

Then, V generates confinement w.r.t. H and ⌃ if

{C�(↵ ·N),⇤(↵ ·N)} = �(⇤(↵ ·N))

2.



• H + V� defined on D is self-adjoint for all � 6= ±2.

• Ker (H + V� � a) 6= ; i↵ Ker (1/�+ Ca
�) 6= ;.

• H+V� and H+V�4/� have the same eigenvalues in (�m,m).

• If |�| 62 [1/kCa
�k, 4kCa

�k], then Ker (H + V� � a) = ;.

• If |�| 62 [1/C, 4C], where C = supa2(�m,m) kCa
�k < 1, then

H + V� has no eigenvalues in (�m,m).

Some applications.

Electrostatic shell potentials

Theorem.– Let � 2 R \ {0} and a 2 (�m,m).

Take ⇤ = �(1/�+C�), D =

�
' = � ⇤ (G+ g) : (� ⇤G)|⌃ = ⇤(g)

 
,

and V�(') =
�
2 ('+ + '�) ('± n.t. boundary values of ' on ⌃).

Theorem.– Let H + V� be as above. If ⌦� is connected, then

H + V� has no eigenvalues in R \ [�m,m].



• H + Ves defined on D is self-adjoint.

• Ves generates confinement w.r.t H and ⌃ i↵ �2
e � �2

s = �4.

Some applications.

Electrostatic plus Lorentz scalar shell potentials

Theorem.– Let �e,�s 2 R be such that �2
e � �2

s 6= 0, 4. Take

⇤ =

�s� � �e

�2
e � �2

s

� C�,

D =

�
' = � ⇤ (G+ g) : (� ⇤G)|⌃ = ⇤(g)

 
, and

Ves(') =
1
2 (�e + �s�)('+ + '�) ('± n.t. boundary values of ').



Remarks.–

• That Ves generates confinement means that the particles

modelized by the evolution @t + i(H + Ves) never cross ⌃

over time, i.e., ⌃ becomes impenetrable.

• The impenetrability condition �

2
e � �

2
s = �4 was known for

⌃ = {x 2 R3
: |x| = R}, R > 0 (Dittrich-Exner-Seba).

Some applications.

Electrostatic plus Lorentz scalar shell potentials



We focus on H + V� for ⌃ = S2
= {x 2 R3

: |x| = 1}

Definition.– Let e� = (�1,�2,�3) be the family of Pauli matrices.

Given a 2 (�m,m), define

k

a

(x) =

e

�
p
m

2�a

2|x|

4⇡|x| I2 and

w

a

(x) =

e

�
p
m

2�a

2|x|

4⇡|x|3
⇣
1 +

p
m

2 � a

2|x|
⌘
i e� · x.

For f 2 L

2
(�)

2
and x 2 S

2
, set

K

a
f(x) = (k

a ⇤ f)(x) and W

a
(f) = p.v.(w

a ⇤ f)(x).

Uncertainty Principle on the sphere S2



Remarks.–

• Ka
and W a

are bounded operators in L2
(�)2.

• Ka
is a positive operator.

Uncertainty Principle on the sphere S2



Theorem.– Let � > 0 and a 2 (�m,m). The operator

1/�+ (m+ a)Ka

is invertible in L2
(�)2.

Furthermore, for any f 2 L2
(�)2 and any � > 0,

Z

S2

|f |2 d�  1

2M�

Z

S2

(1/�+ (m+ a)Ka
)

�1
(W a

(f)) ·W a
(f) d�

+

�

2M

Z

S2

(1/�+ (m+ a)Ka
) ((e� ·N)f) · (e� ·N)f d�,

(1)

where M is a constant depending only on m and a.

Moreover, M � 1
2 e

�
p
m2�a2

p
2� e�2

p
m2�a2

.

For suitable �’s, the inequality (1) is sharp and the equality can be

attained.

Uncertainty Principle on the sphere S2



Definition (2-dimensional Riesz transform).– Given a finite

Borel measure ⌫ in R3
, h 2 L

2
(⌫) and x 2 R3

, one defines the

2-dimensional Riesz transform of h as

R

⌫

(h)(x) = lim

✏&0

Z

|x�y|>✏

x� y

|x� y|3 h(y) d⌫(y),

whenever the limit makes sense.

Uncertainty Principle on the sphere S2
.

Consequences



Corollary.– 2⇡khkL2(�)  kR�(h)kL2(�)3 for all real-valued h 2
L2(�), and the inequality is sharp.
Hofmann, Marmolejo-Olea, Mitrea, Pérez-Esteva, & Michael Tay-
lor ’09

Uncertainty Principle on the sphere S2
.

Consequences

• For suitable elections of �, a, and �, the minimizers of (??)
give rise to eigenfunctions of H + V� with eigenvalue a.

• The set of �’s for whichH+V� has a non-trivial eigenfunction

contains an interval.
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