Regularity for almost minimizers with free boundary

Tatiana Toro
University of Washington
Harmonic Analysis \& Partial Differential Equations

September 19, 2014

Joint work with G. David

Minimizers with free boundary

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected Lipschitz domain, $q_{ \pm} \in L^{\infty}(\Omega)$ and

$$
K(\Omega)=\left\{u \in L_{l o c}^{1}(\Omega) ; \nabla u \in L^{2}(\Omega)\right\} .
$$

Minimizing problem with free boundary: Given $u_{0} \in K(\Omega)$ minimize

$$
J(u)=\int_{\Omega}|\nabla u(x)|^{2}+q_{+}^{2}(x) \chi_{\{u>0\}}(x)+q_{-}^{2}(x) \chi_{\{u<0\}}(x)
$$

among all $u=u_{0}$ on $\partial \Omega$.

- One phase problem arises when $q_{-} \equiv 0$ and $u_{0} \geq 0$.
- The general problem is know as the two phase problem.

Alt-Caffarelli

- Minimizers for the one phase problem exist.
- If u is a minimizer of the one phase problem, then $u \geq 0, u$ is subharmonic in Ω and

$$
\Delta u=0 \text { in }\{u>0\}
$$

- u is locally Lipschitz in Ω.
- If q_{+}is bounded below away from 0 , that is there exists $c_{0}>0$, such that $q_{+} \geq c_{0}$, then:
- for $x \in\{u>0\}$

$$
\frac{u(x)}{\delta(x)} \sim 1 \text { where } \delta(x)=\operatorname{dist}(x, \partial\{u>0\})
$$

- $\{u>0\} \cap \Omega$ is a set of locally finite perimeter, thus $\partial\{u>0\} \cap \Omega$ is ($\mathrm{n}-1$)-rectifiable.

Alt-Caffarelli-Friedman

- Minimizers for the two phase problem exist.
- If u is a minimizer of the two phase problem, then $u^{ \pm}$are subharmonic and

$$
\Delta u=0 \text { in }\{u>0\} \cup\{u<0\}
$$

- u is locally Lipschitz in Ω.
- If $q_{ \pm}$are bounded below away from 0 , then
- for $x \in\left\{u^{ \pm}>0\right\}$

$$
\frac{u^{ \pm}(x)}{\delta(x)} \sim 1 \text { where } \delta(x)=\operatorname{dist}\left(x, \partial\left\{u^{ \pm}>0\right\}\right)
$$

- $\left\{u^{ \pm}>0\right\} \cap \Omega$ are sets of locally finite perimeter.

Regularity of the free boundary $\Gamma(u)$

- If u is a minimizer for the one phase problem $\Gamma(u)=\partial\{u>0\}$
- If q_{+}is Hölder continuous and $q_{+} \geq c_{0}>0$ then
- if $n=2,3, \Gamma(u)$ is a $C^{1, \beta}(n-1)$-dimensional submanifold.
- if $n \geq 4, \Gamma(u)=\mathcal{R}(u) \cup \mathcal{S}(u)$ where $\mathcal{R}(u)$ is a $C^{1, \beta}(n-1)$-dimensional submanifold and $\mathcal{S}(u)$ is a closed set of Hausdorff dimension less than n -3.
- If u is a minimizer for the two phase problem
$\Gamma(u)=\partial\{u>0\} \cup \partial\{u<0\}$
- If $q_{ \pm}$are Hölder continuous $q_{+}>q_{-} \geq 0$ and $q_{+} \geq c_{0}>0$ then
- if $n=2,3, \Gamma(u)$ is a $C^{1, \beta}(n-1)$-dimensional submanifold.
- if $n \geq 4, \Gamma(u)=\mathcal{R}(u) \cup \mathcal{S}(u)$ where $\mathcal{R}(u)$ is a $C^{1, \beta}(n-1)$-dimensional submanifold and $\mathcal{S}(u)$ is a closed set of Hausdorff dimension less than n-3.

Contributions

- One phase problem:
- $\mathrm{n}=2$, Alt-Caffarelli
- $n \geq 3$, Alt-Caffarelli, Caffarelli-Jerison-Kenig / Weiss
- Two phase problem:
- $\mathrm{n}=2$, Alt-Caffarelli-Friedman
- $n \geq 3$, Alt-Caffarelli-Friedman, Caffarelli-Jerison-Kenig / Weiss
- DeSilva-Jerison: There exists a non-smooth minimizer for J in \mathbb{R}^{7} such that $\Gamma(u)$ is a cone.

Almost minimizers for the one phase problem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected Lipschitz domain, $q_{+} \in L^{\infty}(\Omega)$ and

$$
K_{+}(\Omega)=\left\{u \in L_{l o c}^{1}(\Omega) ; u \geq 0 \text { a.e. in } \Omega \text { and } \nabla u \in L_{l o c}^{2}(\Omega)\right\}
$$

- $u \in K_{+}(\Omega)$ is a (κ, α)-almost minimizers for J^{+}in Ω if for any ball $B(x, r) \subset \Omega$

$$
J_{x, r}^{+}(u) \leq\left(1+\kappa r^{\alpha}\right) J_{x, r}^{+}(v)
$$

for all $v \in K_{+}(\Omega)$ with $u=v$ on $\partial B(x, r)$, where

$$
J_{x, r}^{+}(v)=\int_{B(x, r)}|\nabla v|^{2}+q_{+}^{2} \chi_{\{v>0\}}
$$

Almost minimizers for the two phase problem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected Lipschitz domain, $q_{ \pm} \in L^{\infty}(\Omega)$ and

$$
K(\Omega)=\left\{u \in L_{l o c}^{1}(\Omega) ; \nabla u \in L_{l o c}^{2}(\Omega)\right\}
$$

- $u \in K(\Omega)$ is a (κ, α)-almost minimizers for J in Ω if for any ball $B(x, r) \subset \Omega$

$$
J_{x, r}(u) \leq\left(1+\kappa r^{\alpha}\right) J_{x, r}(v)
$$

for all $v \in K(\Omega)$ with $u=v$ on $\partial B(x, r)$, where

$$
J_{x, r}(v)=\int_{B(x, r)}|\nabla v|^{2}+q_{+}^{2} \chi_{\{v>0\}}+q_{-}^{2} \chi_{\{v>0\}} .
$$

Almost minimizers are continuous

Theorem: Almost minimizers of J are continuous in Ω. Moreover if u is an almost minimizer for J there exists a constant $C>0$ such that if $B\left(x_{0}, 2 r_{0}\right) \subset \Omega$ then for $x, y \in B\left(x_{0}, r_{0}\right)$

$$
|u(x)-u(y)| \leq C|x-y|\left(1+\log \frac{2 r_{0}}{|x-y|}\right)
$$

Remark: Since almost-minimizers do not satisfy an equation, good comparison functions are needed.

Sketch of the proof

To prove regularity of u, an almost minimizer for J, we need to control the quantity

$$
\omega(x, s)=\left(f_{B(x, s)}|\nabla u|^{2}\right)^{1 / 2}
$$

for $s \in(0, r)$ and $B(x, r) \subset \Omega$.
Consider u_{r}^{*} satisfying $\Delta u_{r}^{*}=0$ in $B(x, r)$ and $u_{r}^{*}=u$ on $\partial B(x, r)$. Then since $\left|\nabla u_{r}^{*}\right|^{2}$ is subharmonic

$$
\begin{aligned}
\omega(x, s) & \leq\left(f_{B(x, s)}\left|\nabla u-\nabla u_{r}^{*}\right|^{2}\right)^{1 / 2}+\left(f_{B(x, s)}\left|\nabla u_{r}^{*}\right|^{2}\right)^{1 / 2} \\
& \leq\left(\frac{r}{s}\right)^{n / 2}\left(f_{B(x, r)}\left|\nabla u-\nabla u_{r}^{*}\right|^{2}\right)^{1 / 2}+\left(f_{B(x, r)}\left|\nabla u_{r}^{*}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

The almost minimizing property comes in

Since $\Delta u_{r}^{*}=0$ in $B(x, r)$ and $u_{r}^{*}=u$ on $\partial B(x, r)$ and $q_{ \pm} \in L^{\infty}(\Omega)$

$$
\begin{aligned}
\int_{B(x, r)}\left|\nabla u-\nabla u_{r}^{*}\right|^{2} & =\int_{B(x, r)}|\nabla u|^{2}-\int_{B(x, r)}\left|\nabla u_{r}^{*}\right|^{2} \\
& \leq\left(1+\kappa r^{\alpha}\right) \int_{B(x, r)}\left|\nabla u_{r}^{*}\right|^{2}-\int_{B(x, r)}\left|\nabla u_{r}^{*}\right|^{2}+C r^{n} \\
& \leq \kappa r^{\alpha} \int_{B(x, r)}\left|\nabla u_{r}^{*}\right|^{2}+C r^{n} \\
& \leq \kappa r^{\alpha} \int_{B(x, r)}|\nabla u|^{2}+C r^{n}
\end{aligned}
$$

Iteration scheme

$$
\omega(x, s) \leq\left(1+C\left(\frac{r}{s}\right)^{n / 2} r^{\alpha / 2}\right) \omega(x, r)+C\left(\frac{r}{s}\right)^{n / 2}
$$

Set $r_{j}=2^{-j} r$ for $j \geq 0$, iteration yields

$$
\omega\left(x, r_{j}\right) \leq C \omega(x, r)+C j,
$$

which for $s \in(0, r)$ ensures

$$
\omega(x, s) \leq C\left(\omega(x, r)+\log \frac{r}{s}\right) .
$$

Local regularity on each phase

Theorem: Let u be an almost minimizer for J in Ω. Then u is locally Lipschitz in $\{u>0\}$ and in $\{u<0\}$.

Theorem: Let u be an almost minimizer for J in Ω. Then there exists $\beta \in(0,1)$ such that u is $C^{1, \beta}$ locally in $\{u>0\}$ and $\{u<0\}$.

Proof: Refine the argument above.

Local regularity for minimizers

Theorem [AC], [ACF]: Let u be a minimizer for J in Ω. Then u is locally Lipschitz.

Elements of the proof:

- $u^{ \pm}$are subharmonic in Ω,
- u harmonic on $\left\{u^{ \pm}>0\right\}$,
- the 2-phase case requires a monotonicity formula introduced by Alt-Caffarelli-Friedman [ACF], that is

$$
\Phi(r)=\frac{1}{r^{4}}\left(\int_{B(x, r)} \frac{\left|\nabla u^{+}\right|^{2}}{|x-y|^{n-2}} d y\right)\left(\int_{B(x, r)} \frac{\left|\nabla u^{-}\right|^{2}}{|x-y|^{n-2}} d y\right)
$$

is an increasing function of $r>0$.

Local regularity for almost minimizers

Theorem: Let u be an almost minimizer for J in Ω. Then u is locally Lipschitz.

Elements of the proof:

- analysis of the interplay between

$$
m(x, r)=\frac{1}{r} f_{\partial B(x, r)} u, \frac{1}{r} f_{\partial B(x, r)}|u| \text { and } \omega(x, r)=\left(f_{B(x, s)}|\nabla u|^{2}\right)^{1 / 2}
$$

- the 2-phase case requires an almost [ACF]-monotonicity formula, i.e. we need to control the oscillation of $\Phi(r)$ on small intervals.

Sketch of the proof

For $1 \ll K$ and $0<\gamma \ll 1$ if $B(x, 2 r) \subset \Omega$ consider:

- Case 1:

$$
\left\{\begin{aligned}
\omega(x, r) & \geq K \\
|m(x, r)| & \geq \gamma(1+\omega(x, r))
\end{aligned}\right.
$$

- Case 2:

$$
\left\{\begin{aligned}
\omega(x, r) & \geq K \\
|m(x, r)| & <\gamma(1+\omega(x, r))
\end{aligned}\right.
$$

- Case 3:

$$
\omega(x, r) \leq K
$$

Case 1

If u is an almost minimizer for J in $\Omega, B(x, 2 r) \subset \Omega$ and

$$
\left\{\begin{aligned}
\omega(x, r) & \geq K \\
|m(x, r)| & \geq \gamma(1+\omega(x, r))
\end{aligned}\right.
$$

then there exists $\theta \in(0,1)$ such that $u \in C^{1, \beta}(B(x, \theta r))$ and

$$
\sup _{B(x, \theta r)}|\nabla u| \lesssim \omega(x, r)
$$

Cases 2 \& 3

If u is an almost minimizer for J^{+}in $\Omega, B(x, 2 r) \subset \Omega$ and

$$
\left\{\begin{array}{l}
\omega(x, r) \geq K \\
m(x, r)<\gamma(1+\omega(x, r))
\end{array}\right.
$$

then for $\theta \in(0,1)$ there exists $\beta \in(0,1)$ such that

$$
\omega(x, \theta r) \leq \beta \omega(x, r)
$$

If only cases 2 and 3 occur then

$$
\limsup _{s \rightarrow 0} \omega(x, s) \lesssim K
$$

and if x is a Lebesgue point of ∇u then

$$
|\nabla u(x)| \lesssim K
$$

Remarks

If u is an almost minimizer for J, Case 2 requires understanding the relationship between

$$
|m(x, r)|=\left|\frac{1}{r} f_{\partial B(x, r)} u\right| \text { and } \frac{1}{r} f_{\partial B(x, r)}|u| .
$$

Almost monotonicity formula:

Let u be an almost minimizer for J in Ω. There exists $\delta>0$ so that for $K \Subset \Omega$ there are constants $r_{K}>0$ and $C_{K}>0$ such that for $x \in \Gamma(u) \cap K$ and $0<s<r<r_{K}$

$$
\Phi(s) \leq \Phi(r)+C_{K} r^{\delta}
$$

Understanding the free boundary for almost minimizers: non-degeneracy

Let u be an almost minimizers for J^{+}in Ω with $q_{+} \in L^{\infty}(\Omega) \cap C(\Omega)$. Let

$$
\Gamma(u)=\partial\{u>0\} .
$$

Assume

$$
q_{+} \geq c_{0}>0
$$

then there exists $\eta>0$ so that if $x_{0} \in \Gamma(u)$ and $B\left(x_{0}, 2 r_{0}\right) \subset \Omega$ then for $r \in\left(0, r_{0}\right)$

$$
\frac{1}{r} f_{\partial B\left(x_{0}, r\right)} u^{+} \geq \eta
$$

and

$$
u(x) \geq \frac{\eta}{4} \delta(x) \text { for } x \in B\left(x_{0}, r_{0}\right) \cap\{u>0\}
$$

Structure of $\Gamma(u)$

Let u be an almost minimizers for J^{+}in $\Omega \subset \mathbb{R}^{n}$ with $q_{+} \in L^{\infty}(\Omega) \cap C(\Omega)$ such that $q_{+} \geq c_{0}>0$. Then

- $\{u>0\} \subset \Omega$ is "locally" NTA.
- For $x_{0} \in \Gamma(u)$ with $B\left(x_{0}, 2 r_{0}\right) \subset \Omega$ there exists an Ahlfors regular measure μ_{0} supported on $B\left(x_{0}, r_{0}\right) \cap \Gamma(u)$.
- $\Gamma(u)$ is ($n-1$)-uniformly rectifiable.
- $\{u>0\} \cap \Omega$ is a set of locally finite perimeter.

Related questions

- Under the assumptions that $q_{+} \in L^{\infty}(\Omega) \cap C^{\gamma}(\Omega)$ and $q_{+} \geq c_{0}>0$, we expect that, for u almost minimizer of J^{+}in Ω,

$$
\Gamma(u)=\mathcal{R}(u) \cup \mathcal{S}(u)
$$

where $\mathcal{R}(u)$ is a $C^{1, \beta}(\mathrm{n}-1)$-dimensional submanifold and $\mathcal{S}(u)$ is a closed set of $(n-1)$-Hausdorff measure 0 .

- We expect similar results for almost minimizers of functionals of the type:

$$
J(u)=\int_{\Omega}\left(|\nabla u(x)|_{g}^{2}+q_{+}^{2}(x) \chi_{\{u>0\}}(x)+q_{-}^{2}(x) \chi_{\{u<0\}}(x)\right) d v_{g},
$$

where $|\nabla u|_{g}$ denotes the norm of ∇u computed in the metric g, v_{g} is the corresponding volume and g is assumed to be Hölder continuous.

