The Calderón problem with partial data

Mikko Salo
University of Jyväskylä

Harmonic analysis \& PDE
Conference in honor of Carlos Kenig
Chicago, September 20, 2014

Finnish Centre of Excellence in Inverse Problems Research

Calderón problem

Medical imaging, Electrical Impedance Tomography:

$$
\left\{\begin{aligned}
\operatorname{div}(\gamma(x) \nabla u)=0 & \text { in } \Omega, \\
u=f & \text { on } \partial \Omega
\end{aligned}\right.
$$

where $\Omega \subset \mathbb{R}^{n}$ bounded domain, $\gamma \in L^{\infty}(\Omega)$, and $\gamma \geq c>0$.

Boundary measurements given by the Dirichlet-to-Neumann (DN) map

$$
\Lambda_{\gamma}:\left.f \mapsto \gamma \partial_{\nu} u\right|_{\partial \Omega}
$$

Inverse problem: given Λ_{γ}, determine γ.

Calderón problem

Model case of inverse boundary problems for elliptic equations (Schrödinger, Maxwell, elasticity).

Related to:

- optical tomography
- inverse scattering
- travel time tomography and boundary rigidity
- hybrid imaging methods
- invisibility

Calderón's approach

If $\operatorname{div}(\gamma \nabla u)=0$ in Ω with $\left.u\right|_{\partial \Omega}=f$, integrate by parts:

$$
\int_{\partial \Omega}\left(\wedge_{\gamma} f\right) f d S=\int_{\partial \Omega} \gamma\left(\partial_{\nu} u\right) u d S=\underbrace{\int_{\Omega} \gamma|\nabla u|^{2} d x}_{=: Q_{\gamma}(f)} .
$$

Thus $\Lambda_{\gamma} f$ determines $Q_{\gamma}(f)^{1}$. Polarization:

$$
\Lambda_{\gamma} \nsim \int_{\Omega} \gamma \nabla u_{1} \cdot \nabla u_{2} \quad \forall u_{j} \in H^{1}(\Omega), \operatorname{div}\left(\gamma \nabla u_{j}\right)=0 .
$$

Question: is the set $\left\{\nabla u_{1} \cdot \nabla u_{2}\right\}$ complete in $L^{1}(\Omega)$?

[^0]
Calderón's approach

Lemma (Calderón 1980)
The set $\left\{\nabla u_{1} \cdot \nabla u_{2} ; \Delta u_{j}=0\right\}$ is complete in $L^{1}(\Omega)$.
Proof.
Let $u_{j}=e^{\rho_{j} \times x}$ where $\rho_{j} \in \mathbb{C}^{n}$ and $\rho_{j} \cdot \rho_{j}=0$. Then $\Delta u_{j}=0$.
Given $\xi \in \mathbb{R}^{n}$, let $\eta \in \mathbb{R}^{n}$ satisfy $|\eta|=|\xi|$ and $\eta \cdot \xi=0$. Take

$$
\rho_{1}=\eta+i \xi, \quad \rho_{2}=-\eta+i \xi .
$$

Then $\nabla\left(e^{\rho_{1} \cdot x}\right) \cdot \nabla\left(e^{\rho_{2} \cdot x}\right)=c e^{(\eta+i \xi) \cdot x} e^{(-\eta+i \xi) \cdot x}=c e^{2 i x \cdot \xi}$.
Exponentially growing solutions, or complex geometrical optics solutions, are a central tool in inverse boundary problems. ${ }^{2}$

[^1]
Calderón problem

Uniqueness results $\left(\gamma \mapsto \Lambda_{\gamma}\right.$ injective):

- Calderón (1980): linearized problem
- Sylvester-Uhlmann (1987): $n \geq 3, \gamma \in C^{2}$
- Nachman (1996): $\quad n=2, \gamma \in W^{2, p}$
- Astala-Päivärinta (2006): $n=2, \gamma \in L^{\infty}$
- Haberman-Tataru (2013): $n \geq 3, \gamma \in C^{1}$

We are interested in the partial data problem where measurements are made only on subsets of the boundary.

Partial data problem

Prescribe voltages on Γ_{D}, measure currents on Γ_{N} :

Partial data problem

Particular case (local data problem): $\Gamma_{D}=\Gamma_{N}=\Gamma$.
Uniqueness known for arbitrary open $\Gamma \subset \partial \Omega$

- if $n=2$
- for piecewise real-analytic conductivities if $n \geq 3$.

Open in general if $n \geq 3$. This talk will survey known results.

Partial data problem

Substitution $u=\gamma^{-1 / 2} v$ reduces conductivity equation $\operatorname{div}(\gamma \nabla u)=0$ to Schrödinger equation $(-\Delta+q) v=0$.

Let $\Gamma_{D}, \Gamma_{N} \subset \partial \Omega$ be open and let $q \in L^{\infty}(\Omega)$. Define ${ }^{3}$

$$
\begin{aligned}
C_{q}^{\Gamma_{D}, \Gamma_{N}=\left\{\left(\left.u\right|_{\Gamma_{D}},\left.\partial_{\nu} u\right|_{\Gamma_{N}}\right) ;\right.} \begin{aligned}
& (-\Delta+q) u=0 \text { in } \Omega, u \in H_{\Delta}(\Omega) \\
& \left.\operatorname{supp}\left(\left.u\right|_{\partial \Omega}\right) \subset \Gamma_{D}\right\} .
\end{aligned} .
\end{aligned}
$$

Prescribe Dirichlet data on Γ_{D}, measure Neumann data on Γ_{N}.

Inverse problem: given $C_{q}^{\Gamma_{D}, \Gamma_{N}}$, recover q.

$$
{ }^{3} H_{\Delta}(\Omega)=\left\{u \in L^{2}(\Omega) ; \Delta u \in L^{2}(\Omega)\right\}
$$

Partial data problem

Four main approaches for uniqueness:

1. Carleman estimates (Kenig-Sjöstrand-UhImann 2007)
2. Reflection approach (Isakov 2007)
3. 2D case (Imanuvilov-Uhlmann-Yamamoto 2010)
4. Linearized case (Dos Santos-Kenig-Sjöstrand-Uhlmann 2009)

The first two approaches apply when $n \geq 3$. Other results:

- piecewise analytic conductivities (Kohn-Vogelius)
- other equations (Dos Santos et al, Chung, Chung-S-Tzou)
- stability (Heck-Wang, Caro-Dos Santos-Ruiz)
- numerics (Garde-Knudsen, Hamilton-Siltanen)

Strategy of proof

Integration by parts: if $\Gamma_{D}, \Gamma_{N} \subset \partial \Omega$ are open, then

$$
C_{q_{1}}^{\Gamma_{D}, \Gamma_{N}}=C_{q_{2}}^{\Gamma_{D}, \Gamma_{N}} \Longrightarrow \int_{\Omega}\left(q_{1}-q_{2}\right) u_{1} u_{2}=0
$$

for any u_{j} with $\left(-\Delta+q_{j}\right) u_{j}=0$ in Ω and

$$
\operatorname{supp}\left(\left.u_{1}\right|_{\partial \Omega}\right) \subset \Gamma_{D}, \quad \operatorname{supp}\left(\left.u_{2}\right|_{\partial \Omega}\right) \subset \Gamma_{N} . \quad(*)
$$

To show $q_{1}=q_{2}$, enough that products of solutions

$$
\left\{u_{1} u_{2} ;\left(-\Delta+q_{j}\right) u_{j}=0 \text { in } \Omega, \quad u_{j} \text { satisfy }(*)\right\}
$$

are complete in $L^{1}(\Omega)$.

Strategy of proof

Use special complex geometrical optics solutions

$$
u \approx e^{ \pm \tau \varphi} a, \quad(-\Delta+q) u=0, \quad \operatorname{supp}\left(\left.u\right|_{\partial \Omega}\right) \subset \Gamma_{D, N}
$$

Here $\tau>0$ is a large parameter. Want to show that

$$
\left\{\lim _{\tau \rightarrow \infty} u_{1} u_{2}\right\} \text { dense in } L^{1}(\Omega)
$$

- take $u_{1} \approx e^{\tau \varphi} a_{1}, u_{2} \approx e^{-\tau \varphi} a_{2}$ to kill exponential growth of $\lim _{\tau \rightarrow \infty} u_{1} u_{2}$
- correct approximate solution $u_{0}=e^{ \pm \tau \varphi}$ a to exact solution $u=e^{ \pm \tau \varphi}(a+r)$ by solving $(-\Delta+q) e^{ \pm \tau \varphi}(a+r)=0$
- possible if φ is a limiting Carleman weight

Strategy of proof

Condition for a limiting Carleman weight $\varphi, \nabla \varphi \neq 0$:

$$
\|v\|_{L^{2}(\Omega)} \leq \frac{C}{\tau}\left\|e^{ \pm \tau \varphi} \Delta e^{\mp \tau \varphi} v\right\|_{L^{2}(\Omega)}, \quad v \in C_{c}^{\infty}(\Omega), \tau \gg 1
$$

Results from Dos Santos-Kenig-S-Uhlmann (2009):

- conformally invariant condition
- if $n \geq 3$, only six basic forms for φ :

$$
x_{1}, \quad \log |x|, \quad \frac{x_{1}}{|x|^{2}}, \quad \arctan \frac{x_{2}}{x_{1}}
$$

- if $n=2$, any harmonic function is OK

1. Carleman estimate approach (KSU 2007)

- Γ_{D} and Γ_{N} roughly complementary, need to overlap
- Γ_{D} can be very small, but then Γ_{N} has to be very large
- proof uses weights $\varphi(x)=\log \left|x-x_{0}\right|$ and Carleman estimates with boundary terms

2. Reflection approach (Isakov 2007)

$$
\Gamma_{D}=\Gamma_{N}=\Gamma
$$

- local data: $\Gamma_{D}=\Gamma_{N}=\Gamma$, no measurements needed on Γ_{0}
- the inaccessible part of the boundary, Γ_{0}, has strict restrictions (part of a hyperplane or part of a sphere)
- proof uses weights $\varphi(x)=x_{1}$ and reflection about Γ_{0}

3. 2D case (IUY 2010)

- $\Omega \subset \mathbb{R}^{2}$ and $\Gamma_{D}=\Gamma_{N}=\Gamma$ is any open set in $\partial \Omega$
- any harmonic function is a limiting Carleman weight
- solutions $u=e^{\tau \Phi}(a+r), \Phi$ is a Morse holomorphic function with prescribed critical point
- coefficients recovered via stationary phase

4. Linearized case (DKSU 2009)

- $\Omega \subset \mathbb{R}^{n}$ and $\Gamma_{D}=\Gamma_{N}=\Gamma$ is any open set in $\partial \Omega$
- if $\int_{\Omega} f u_{1} u_{2}=0$ for all harmonic u_{j} with $\operatorname{supp}\left(\left.u_{j}\right|_{\partial \Omega}\right) \subset \Gamma$, then $f=0$ near 「
- based on analytic microlocal analysis (FBI transform, Kashiwara's watermelon theorem)

New results (Kenig-S 2013)

Recall main approaches:

1. Carleman estimates
2. Reflection approach
3. 2D case
4. Linearized case

We unify approaches 1 and 2 and extend both. In particular, we relax the requirements on the inaccessible part in 2 , and allow to use complementary (sometimes disjoint) sets as in 1.

The methods work for $n \geq 3$, also on certain Riemannian manifolds, and sometimes reduce the question to integral geometry problems of independent interest.

New results

The first results are local results: given measurements on $\Gamma \subset \partial \Omega$, coefficients are determined in a neighborhood of Γ.

Proof reduces to an integral geometry problem (Helgason support theorem): recover a function locally from its integrals over lines, great circles, or hyperbolic geodesics in a certain neighborhood.

Instead of being completely flat or spherical, the inaccessible part Γ_{0} can be conformally flat only in one direction, e.g.

- cylindrical set (leads to integrals over lines)
- conical set (integrals over great circle segments)
- surface of revolution (integrals over hyperbolic geodesics).

Cylindrical sets

Theorem (Kenig-S 2013)
Let $\Omega \subset \mathbb{R} \times \Omega_{0}$ where $\Omega_{0} \subset \mathbb{R}^{2}$ is convex, let $\Gamma=\partial \Omega \backslash \Gamma_{0}$, and suppose that Γ_{0} satisfies

$$
\Gamma_{0} \subset \mathbb{R} \times\left(\partial \Omega_{0} \backslash E\right)
$$

for some open set $E \subset \partial \Omega_{0}$. If $q_{1}, q_{2} \in C(\bar{\Omega})$ and if

$$
C_{q_{1}}^{\Gamma, \Gamma}=C_{q_{2}}^{\Gamma, \Gamma},
$$

then $q_{1}=q_{2}$ in $\bar{\Omega} \cap\left(\mathbb{R} \times \operatorname{ch}_{\mathbb{R}^{2}}(E)\right)$.
Corresponds to $\varphi(x)=x_{1}$. Similar result obtained independently by Imanuvilov-Yamamoto (2013).

Conical sets

Theorem (Kenig-S 2013)
Let $\Omega \subset\left\{r \omega ; r>0, \omega \in M_{0}\right\}$ where $M_{0} \subset S^{2}$ is convex, let $\Gamma=\partial \Omega \backslash \Gamma_{0}$, and suppose that Γ_{0} satisfies

$$
\Gamma_{0} \subset\left\{r \omega ; r>0, \omega \in \partial M_{0} \backslash E\right\}
$$

for some open set $E \subset \partial M_{0}$. If $q_{1}, q_{2} \in C(\bar{\Omega})$ and if

$$
C_{q_{1}}^{\Gamma, \Gamma}=C_{q_{2}}^{\Gamma, \Gamma}
$$

then $q_{1}=q_{2}$ in $\bar{\Omega} \cap\left(\mathbb{R} \times \operatorname{ch}_{S^{2}}(E)\right)$.
Corresponds to $\varphi(x)=\log |x|$. Convex hull in S^{2} taken with respect to great circle segments.

Remarks

- convexity not required: if the inaccessible part is concave, recover the coefficient everywhere
- it is not required that $\Gamma_{D}=\Gamma_{N}$, can use somewhat complementary sets as in Kenig-Sjöstrand-Uhlmann
- sometimes Γ_{D} and Γ_{N} can be disjoint

Beyond the convex hull

Let $\Omega \subset \mathbb{R} \times \Omega_{0}$ where $\Omega_{0} \subset \mathbb{R}^{2}$ is convex, let $\Gamma=\partial \Omega \backslash \Gamma_{0}$, and suppose that Γ_{0} satisfies

$$
\Gamma_{0} \subset \mathbb{R} \times\left(\partial \Omega_{0} \backslash E\right)
$$

for some open set $E \subset \partial \Omega_{0}$. From measurements on Γ, recover coefficient in $\bar{\Omega} \cap\left(\mathbb{R} \times \mathrm{ch}_{\mathbb{R}^{2}}(E)\right)$. Can one go beyond the convex hull?

Beyond the convex hull

A continuous curve $\gamma:[0, L] \rightarrow \bar{\Omega}_{0}$ is a broken ray if it consists of straight line segments that are reflected according to geometrical optics (angle of incidence $=$ angle of reflection) when they hit $\partial \Omega_{0}$.

Beyond the convex hull

Theorem (Kenig-S 2013)
Let $\Omega \subset \mathbb{R} \times \Omega_{0}$ where $\Omega_{0} \subset \mathbb{R}^{2}$ is a bounded domain, let $\Gamma=\partial \Omega \backslash \Gamma_{0}$ where Γ_{0} satisfies for some open $E \subset \partial \Omega_{0}$

$$
\Gamma_{0} \subset \mathbb{R} \times\left(\partial \Omega_{0} \backslash E\right)
$$

If $q_{1}, q_{2} \in C(\bar{\Omega})$ and $C_{q_{1}}^{\Gamma, \Gamma}=C_{q_{2}}^{\Gamma, \Gamma}$, then for any nontangential broken ray $\gamma:[0, L] \rightarrow \bar{\Omega}_{0}$ with endpoints on E, and given any real number λ, one has

$$
\int_{0}^{L} e^{-2 \lambda t}\left(q_{1}-q_{2}\right)^{\wedge}(2 \lambda, \gamma(t)) d t=0 .
$$

Here $(\cdot)^{\wedge}$ is the Fourier transform in the x_{1} variable, and $q_{1}-q_{2}$ is extended by zero to $\mathbb{R}^{3} \backslash \bar{\Omega}$.

Beyond the convex hull

Question

Let $\Omega_{0} \subset \mathbb{R}^{n}$ strictly convex and $E \subset \partial \Omega_{0}$ open. Is a function $f \in C\left(\bar{\Omega}_{0}\right)$ determined by its integrals over broken rays starting and ending on E ?

Partial results: Mukhometov (1980's), Eskin (2004), Hubenthal (2013), Ilmavirta (2013-4)

Components of proof

Need Carleman estimate with boundary terms:

$$
\begin{aligned}
& -\frac{1}{\tau} \int_{\partial \Omega}\left(\partial_{\nu} \varphi\right) e^{ \pm 2 \tau \varphi}\left|\partial_{\nu} v\right|^{2} d S+\left\|e^{ \pm \tau \varphi} v\right\|_{L^{2}(\Omega)}^{2} \\
& \quad \leq \frac{C}{\tau^{2}}\left\|e^{ \pm \tau \varphi}(-\Delta+q) v\right\|_{L^{2}(\Omega)}^{2}, \quad v \in C^{\infty}(\bar{\Omega}),\left.\quad v\right|_{\partial \Omega}=0
\end{aligned}
$$

Kenig-Sjöstrand-Uhlmann (2007) use convexified weights

$$
\varphi_{\varepsilon}=\varphi+\frac{1}{\varepsilon \tau} \frac{\varphi^{2}}{2}, \quad \varepsilon>0 \text { small. }
$$

Carleman estimate leads to solutions of $(-\Delta+q) u=0$ with

- good control on $\left\{x \in \partial \Omega ; \partial_{\nu} \varphi(x)<0\right\}$
- no control on "flat" part $\left\{x \in \partial \Omega ; \partial_{\nu} \varphi(x)=0\right\}$.

Components of proof

Need Carleman estimate with boundary terms:

$$
\begin{aligned}
& -\frac{1}{\tau} \int_{\partial \Omega}\left(\partial_{\nu} \varphi\right) e^{ \pm 2 \tau \varphi}\left|\partial_{\nu} v\right|^{2} d S+\left\|e^{ \pm \tau \varphi} v\right\|_{L^{2}(\Omega)}^{2} \\
& \quad \leq \frac{C}{\tau^{2}}\left\|e^{ \pm \tau \varphi}(-\Delta+q) v\right\|_{L^{2}(\Omega)}^{2}, \quad v \in C^{\infty}(\bar{\Omega}),\left.\quad v\right|_{\partial \Omega}=0
\end{aligned}
$$

We use modified weights

$$
\varphi_{\varepsilon}=\varphi+\frac{1}{\varepsilon \tau} \frac{\varphi^{2}}{2}+\frac{1}{\tau} \kappa, \quad \varepsilon>0 \text { small },\left.\quad \partial_{\nu} \kappa\right|_{\partial \Omega}<0
$$

Carleman estimate leads to solutions of $(-\Delta+q) u=0$ with

- good control on $\left\{x \in \partial \Omega ; \partial_{\nu} \varphi(x)<0\right\}$
- weak control on "flat" part $\left\{x \in \partial \Omega ; \partial_{\nu} \varphi(x)=0\right\}$.

Components of proof

Some arguments can also be done by reflection, e.g. if Γ_{0} is part of a graph

$$
\Gamma_{0} \subset\left\{\left(x_{1}, x_{2}, \eta\left(x_{2}\right)\right) ; x_{1}, x_{2} \in \mathbb{R}\right\}
$$

where η is a function $\mathbb{R} \rightarrow \mathbb{R}$. Flattening the boundary by $x_{3} \mapsto x_{3}-\eta\left(x_{2}\right)$ transforms the Euclidean Laplacian into

$$
\Delta_{g} \approx \sum_{j, k=1}^{3} g^{j k} \partial_{x_{j}} \partial_{x_{k}}, \quad\left(g_{j k}(x)\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & g_{0}\left(x_{2}, x_{3}\right)
\end{array}\right) .
$$

Reflecting across $x_{3}=0$ generates a Lipschitz singularity in the metric g_{0}. However, the singularity only appears in the lower right corner, and methods for the anisotropic Calderón problem (Kenig-S-Uhlmann 2011) still apply.

Components of proof

Suppose Ω is part of a cylinder $\mathbb{R} \times \Omega_{0}$ and

$$
\Gamma_{0} \subset \mathbb{R} \times\left(\partial \Omega_{0} \backslash E\right)
$$

where $\Omega_{0} \subset \mathbb{R}^{2}$ and $E \subset \partial \Omega_{0}$. Use complex geometrical optics solutions as $\tau \rightarrow \infty$,

$$
u\left(x_{1}, x^{\prime}\right) \approx e^{ \pm \tau \chi_{1}} v_{\tau}\left(x^{\prime}\right)
$$

where $v_{\tau}\left(x^{\prime}\right)$ is a reflected Gaussian beam quasimode in Ω_{0}, concentrating near a broken ray γ with endpoints on E :

$$
\begin{gathered}
\left\|\left(-\Delta-\tau^{2}\right) v_{\tau}\right\|_{L^{2}\left(\Omega_{0}\right)}=O\left(\tau^{-K}\right), \quad\left\|v_{\tau}\right\|_{L^{2}\left(\partial \Omega_{0} \backslash E\right)}=O\left(\tau^{-K}\right), \\
\left|v_{\tau}\right|^{2} d x^{\prime} \rightharpoonup \delta_{\gamma} .
\end{gathered}
$$

Cf. Dos Santos-Kurylev-Lassas-S (2013).

Summary

Calderón problem with local data for $n \geq 3$ still open, but

- possible to ignore measurements on sets that are part of cylindrical sets, conical sets, or surfaces of revolution
- local uniqueness results that determine coefficients near the measurement set
- global uniqueness under certain size or concavity conditions, or if the broken ray transform is invertible

Survey with Kenig: "Recent progress in the Calderón problem with partial data" (2014).

Open questions

Question (Local data for $n \geq 3$)
If $\Omega \subset \mathbb{R}^{n}, n \geq 3$, if Γ is any open subset of $\partial \Omega$, and if $q_{1}, q_{2} \in L^{\infty}(\Omega)$, show that $C_{q_{1}}^{\Gamma, \Gamma}=C_{q_{2}}^{\Gamma, \Gamma}$ implies $q_{1}=q_{2}$.

Question (Data on disjoint sets for $n=2$)
If $\Omega \subset \mathbb{R}^{2}$, if Γ_{D} and Γ_{N} are disjoint open subsets of $\partial \Omega$, and if $q_{1}, q_{2} \in L^{\infty}(\Omega)$, show that $C_{q_{1}}^{\Gamma_{D}, \Gamma_{N}}=C_{q_{2}}^{\Gamma_{D}, \Gamma_{N}}$ implies $q_{1}=q_{2}$.

[^0]: ${ }^{1}=$ the power needed to maintain boundary voltage f^{2}

[^1]: ${ }^{2}$ Earlier uses: Hadamard 1923, Faddeev 1966.

