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Calderón problem

Medical imaging, Electrical Impedance Tomography:

{
div(γ(x)∇u) = 0 in Ω,

u = f on ∂Ω

where Ω ⊂ Rn bounded domain, γ ∈ L∞(Ω), and γ ≥ c > 0.

Boundary measurements given by the
Dirichlet-to-Neumann (DN) map

Λγ : f 7→ γ∂νu|∂Ω.

Inverse problem: given Λγ, determine γ.



Calderón problem

Model case of inverse boundary problems for elliptic equations
(Schrödinger, Maxwell, elasticity).

Related to:

◮ optical tomography

◮ inverse scattering

◮ travel time tomography and boundary rigidity

◮ hybrid imaging methods

◮ invisibility



Calderón’s approach

If div(γ∇u) = 0 in Ω with u|∂Ω = f , integrate by parts:

∫

∂Ω

(Λγf )f dS =

∫

∂Ω

γ(∂νu)u dS =

∫

Ω

γ|∇u|2 dx

︸ ︷︷ ︸

=:Qγ(f )

.

Thus Λγf determines Qγ(f )
1. Polarization:

Λγ !

∫

Ω

γ∇u1 · ∇u2 ∀ uj ∈ H1(Ω), div(γ∇uj) = 0.

Question: is the set {∇u1 · ∇u2} complete in L1(Ω)?

1=the power needed to maintain boundary voltage f



Calderón’s approach

Lemma (Calderón 1980)
The set {∇u1 · ∇u2 ; ∆uj = 0} is complete in L1(Ω).

Proof.
Let uj = eρj ·x where ρj ∈ C

n and ρj · ρj = 0. Then ∆uj = 0.
Given ξ ∈ Rn, let η ∈ Rn satisfy |η| = |ξ| and η · ξ = 0. Take

ρ1 = η + iξ, ρ2 = −η + iξ.

Then ∇(eρ1·x) · ∇(eρ2·x) = ce(η+iξ)·xe(−η+iξ)·x = ce2ix ·ξ.

Exponentially growing solutions, or complex geometrical optics
solutions, are a central tool in inverse boundary problems.2

2Earlier uses: Hadamard 1923, Faddeev 1966.



Calderón problem

Uniqueness results (γ 7→ Λγ injective):

◮ Calderón (1980): linearized problem

◮ Sylvester-Uhlmann (1987): n ≥ 3, γ ∈ C 2

◮ Nachman (1996): n = 2, γ ∈ W 2,p

◮ Astala-Päivärinta (2006): n = 2, γ ∈ L∞

◮ Haberman-Tataru (2013): n ≥ 3, γ ∈ C 1

We are interested in the partial data problem where
measurements are made only on subsets of the boundary.



Partial data problem

Prescribe voltages on ΓD , measure currents on ΓN :



Partial data problem

Particular case (local data problem): ΓD = ΓN = Γ.

Uniqueness known for arbitrary open Γ ⊂ ∂Ω

◮ if n = 2

◮ for piecewise real-analytic conductivities if n ≥ 3.

Open in general if n ≥ 3. This talk will survey known results.



Partial data problem

Substitution u = γ−1/2v reduces conductivity equation
div(γ∇u) = 0 to Schrödinger equation (−∆+ q)v = 0.

Let ΓD , ΓN ⊂ ∂Ω be open and let q ∈ L∞(Ω). Define3

C ΓD ,ΓN
q = {(u|ΓD , ∂νu|ΓN ) ; (−∆+ q)u = 0 in Ω, u ∈ H∆(Ω),

supp(u|∂Ω) ⊂ ΓD}.

Prescribe Dirichlet data on ΓD , measure
Neumann data on ΓN .

Inverse problem: given C ΓD ,ΓN
q , recover q.

3H∆(Ω) = {u ∈ L2(Ω) ; ∆u ∈ L2(Ω)}



Partial data problem

Four main approaches for uniqueness:

1. Carleman estimates (Kenig-Sjöstrand-Uhlmann 2007)

2. Reflection approach (Isakov 2007)

3. 2D case (Imanuvilov-Uhlmann-Yamamoto 2010)

4. Linearized case (Dos Santos-Kenig-Sjöstrand-Uhlmann 2009)

The first two approaches apply when n ≥ 3. Other results:

◮ piecewise analytic conductivities (Kohn-Vogelius)

◮ other equations (Dos Santos et al, Chung, Chung-S-Tzou)

◮ stability (Heck-Wang, Caro-Dos Santos-Ruiz)

◮ numerics (Garde-Knudsen, Hamilton-Siltanen)



Strategy of proof

Integration by parts: if ΓD , ΓN ⊂ ∂Ω are open, then

C ΓD ,ΓN
q1

= C ΓD ,ΓN
q2

=⇒

∫

Ω

(q1 − q2)u1u2 = 0

for any uj with (−∆+ qj)uj = 0 in Ω and

supp(u1|∂Ω) ⊂ ΓD , supp(u2|∂Ω) ⊂ ΓN . (∗)

To show q1 = q2, enough that products of solutions

{u1u2 ; (−∆+ qj)uj = 0 in Ω, uj satisfy (∗)}

are complete in L1(Ω).



Strategy of proof

Use special complex geometrical optics solutions

u ≈ e±τϕa, (−∆+ q)u = 0, supp(u|∂Ω) ⊂ ΓD,N .

Here τ > 0 is a large parameter. Want to show that

{ lim
τ→∞

u1u2} dense in L1(Ω).

◮ take u1 ≈ eτϕa1, u2 ≈ e−τϕa2 to kill exponential growth
of limτ→∞ u1u2

◮ correct approximate solution u0 = e±τϕa to exact solution
u = e±τϕ(a + r) by solving (−∆+ q)e±τϕ(a + r) = 0

◮ possible if ϕ is a limiting Carleman weight



Strategy of proof

Condition for a limiting Carleman weight ϕ, ∇ϕ 6= 0:

‖v‖L2(Ω) ≤
C

τ
‖e±τϕ∆e∓τϕv‖L2(Ω), v ∈ C∞

c (Ω), τ ≫ 1.

Results from Dos Santos-Kenig-S-Uhlmann (2009):

◮ conformally invariant condition

◮ if n ≥ 3, only six basic forms for ϕ:

x1, log |x |,
x1
|x |2

, arctan
x2
x1
, . . . .

◮ if n = 2, any harmonic function is OK



1. Carleman estimate approach (KSU 2007)

◮ ΓD and ΓN roughly complementary, need to overlap

◮ ΓD can be very small, but then ΓN has to be very large

◮ proof uses weights ϕ(x) = log |x − x0| and Carleman
estimates with boundary terms



2. Reflection approach (Isakov 2007)

◮ local data: ΓD = ΓN = Γ, no measurements needed on Γ0
◮ the inaccessible part of the boundary, Γ0, has strict

restrictions (part of a hyperplane or part of a sphere)

◮ proof uses weights ϕ(x) = x1 and reflection about Γ0



3. 2D case (IUY 2010)

◮ Ω ⊂ R2 and ΓD = ΓN = Γ is any open set in ∂Ω

◮ any harmonic function is a limiting Carleman weight

◮ solutions u = eτΦ(a + r), Φ is a Morse holomorphic
function with prescribed critical point

◮ coefficients recovered via stationary phase



4. Linearized case (DKSU 2009)

◮ Ω ⊂ Rn and ΓD = ΓN = Γ is any open set in ∂Ω

◮ if
∫

Ω
fu1u2 = 0 for all harmonic uj with supp(uj |∂Ω) ⊂ Γ,

then f = 0 near Γ

◮ based on analytic microlocal analysis (FBI transform,
Kashiwara’s watermelon theorem)



New results (Kenig-S 2013)

Recall main approaches:

1. Carleman estimates

2. Reflection approach

3. 2D case

4. Linearized case

We unify approaches 1 and 2 and extend both. In particular,
we relax the requirements on the inaccessible part in 2, and
allow to use complementary (sometimes disjoint) sets as in 1.

The methods work for n ≥ 3, also on certain Riemannian
manifolds, and sometimes reduce the question to integral
geometry problems of independent interest.



New results

The first results are local results: given measurements on
Γ ⊂ ∂Ω, coefficients are determined in a neighborhood of Γ.

Proof reduces to an integral geometry problem (Helgason
support theorem): recover a function locally from its integrals
over lines, great circles, or hyperbolic geodesics in a certain
neighborhood.

Instead of being completely flat or spherical, the inaccessible
part Γ0 can be conformally flat only in one direction, e.g.

◮ cylindrical set (leads to integrals over lines)

◮ conical set (integrals over great circle segments)

◮ surface of revolution (integrals over hyperbolic geodesics).



Cylindrical sets

Theorem (Kenig-S 2013)
Let Ω ⊂ R× Ω0 where Ω0 ⊂ R2 is convex, let Γ = ∂Ω \ Γ0,
and suppose that Γ0 satisfies

Γ0 ⊂ R× (∂Ω0 \ E )

for some open set E ⊂ ∂Ω0. If q1, q2 ∈ C (Ω) and if

C Γ,Γ
q1

= C Γ,Γ
q2

,

then q1 = q2 in Ω ∩ (R× chR2(E )).

Corresponds to ϕ(x) = x1. Similar result obtained
independently by Imanuvilov-Yamamoto (2013).



Conical sets

Theorem (Kenig-S 2013)
Let Ω ⊂ {rω ; r > 0, ω ∈ M0} where M0 ⊂ S2 is convex, let
Γ = ∂Ω \ Γ0, and suppose that Γ0 satisfies

Γ0 ⊂ {rω ; r > 0, ω ∈ ∂M0 \ E}

for some open set E ⊂ ∂M0. If q1, q2 ∈ C (Ω) and if

C Γ,Γ
q1

= C Γ,Γ
q2

,

then q1 = q2 in Ω ∩ (R× chS2(E )).

Corresponds to ϕ(x) = log |x |. Convex hull in S2 taken with
respect to great circle segments.



Remarks

◮ convexity not required: if the inaccessible part is concave,
recover the coefficient everywhere

◮ it is not required that ΓD = ΓN , can use somewhat
complementary sets as in Kenig-Sjöstrand-Uhlmann

◮ sometimes ΓD and ΓN can be disjoint



Beyond the convex hull
Let Ω ⊂ R× Ω0 where Ω0 ⊂ R2 is convex, let Γ = ∂Ω \ Γ0,
and suppose that Γ0 satisfies

Γ0 ⊂ R× (∂Ω0 \ E )

for some open set E ⊂ ∂Ω0. From measurements on Γ,
recover coefficient in Ω ∩ (R× chR2(E )). Can one go beyond
the convex hull?



Beyond the convex hull

A continuous curve γ : [0, L] → Ω0 is a broken ray if it consists
of straight line segments that are reflected according to
geometrical optics (angle of incidence = angle of reflection)
when they hit ∂Ω0.



Beyond the convex hull

Theorem (Kenig-S 2013)
Let Ω ⊂ R× Ω0 where Ω0 ⊂ R2 is a bounded domain, let
Γ = ∂Ω \ Γ0 where Γ0 satisfies for some open E ⊂ ∂Ω0

Γ0 ⊂ R× (∂Ω0 \ E ).

If q1, q2 ∈ C (Ω) and C Γ,Γ
q1

= C Γ,Γ
q2

, then for any nontangential

broken ray γ : [0, L] → Ω0 with endpoints on E , and given any
real number λ, one has

∫ L

0

e−2λt(q1 − q2)̂ (2λ, γ(t)) dt = 0.

Here ( · )̂ is the Fourier transform in the x1 variable, and
q1 − q2 is extended by zero to R3 \ Ω.



Beyond the convex hull

Question
Let Ω0 ⊂ Rn strictly convex and E ⊂ ∂Ω0 open. Is a function
f ∈ C (Ω0) determined by its integrals over broken rays
starting and ending on E?

Partial results: Mukhometov (1980’s), Eskin (2004), Hubenthal

(2013), Ilmavirta (2013-4)



Components of proof

Need Carleman estimate with boundary terms:

−
1

τ

∫

∂Ω

(∂νϕ)e
±2τϕ|∂νv |

2 dS + ‖e±τϕv‖2L2(Ω)

≤
C

τ 2
‖e±τϕ(−∆+ q)v‖2L2(Ω), v ∈ C∞(Ω), v |∂Ω = 0.

Kenig-Sjöstrand-Uhlmann (2007) use convexified weights

ϕε = ϕ+
1

ετ

ϕ2

2
, ε > 0 small.

Carleman estimate leads to solutions of (−∆+ q)u = 0 with

◮ good control on {x ∈ ∂Ω ; ∂νϕ(x) < 0}

◮ no control on ”flat” part {x ∈ ∂Ω ; ∂νϕ(x) = 0}.



Components of proof

Need Carleman estimate with boundary terms:

−
1

τ

∫

∂Ω

(∂νϕ)e
±2τϕ|∂νv |

2 dS + ‖e±τϕv‖2L2(Ω)

≤
C

τ 2
‖e±τϕ(−∆+ q)v‖2L2(Ω), v ∈ C∞(Ω), v |∂Ω = 0.

We use modified weights

ϕε = ϕ+
1

ετ

ϕ2

2
+

1

τ
κ, ε > 0 small, ∂νκ|∂Ω < 0.

Carleman estimate leads to solutions of (−∆+ q)u = 0 with

◮ good control on {x ∈ ∂Ω ; ∂νϕ(x) < 0}

◮ weak control on ”flat” part {x ∈ ∂Ω ; ∂νϕ(x) = 0}.



Components of proof

Some arguments can also be done by reflection, e.g. if Γ0 is
part of a graph

Γ0 ⊂ {(x1, x2, η(x2)) ; x1, x2 ∈ R}

where η is a function R → R. Flattening the boundary by
x3 7→ x3 − η(x2) transforms the Euclidean Laplacian into

∆g ≈

3∑

j ,k=1

g jk∂xj∂xk , (gjk(x)) =

(
1 0
0 g0(x2, x3)

)

.

Reflecting across x3 = 0 generates a Lipschitz singularity in
the metric g0. However, the singularity only appears in the
lower right corner, and methods for the anisotropic Calderón
problem (Kenig-S-Uhlmann 2011) still apply.



Components of proof

Suppose Ω is part of a cylinder R× Ω0 and

Γ0 ⊂ R× (∂Ω0 \ E )

where Ω0 ⊂ R
2 and E ⊂ ∂Ω0. Use complex geometrical optics

solutions as τ → ∞,

u(x1, x
′) ≈ e±τx1vτ (x

′)

where vτ (x
′) is a reflected Gaussian beam quasimode in Ω0,

concentrating near a broken ray γ with endpoints on E :

‖(−∆− τ 2)vτ‖L2(Ω0) = O(τ−K), ‖vτ‖L2(∂Ω0\E) = O(τ−K ),

|vτ |
2 dx ′ ⇀ δγ .

Cf. Dos Santos-Kurylev-Lassas-S (2013).



Summary

Calderón problem with local data for n ≥ 3 still open, but

◮ possible to ignore measurements on sets that are part of
cylindrical sets, conical sets, or surfaces of revolution

◮ local uniqueness results that determine coefficients near
the measurement set

◮ global uniqueness under certain size or concavity
conditions, or if the broken ray transform is invertible

Survey with Kenig: ”Recent progress in the Calderón problem
with partial data” (2014).



Open questions

Question (Local data for n ≥ 3)
If Ω ⊂ Rn, n ≥ 3, if Γ is any open subset of ∂Ω, and if
q1, q2 ∈ L∞(Ω), show that C Γ,Γ

q1
= C Γ,Γ

q2
implies q1 = q2.

Question (Data on disjoint sets for n = 2)
If Ω ⊂ R2, if ΓD and ΓN are disjoint open subsets of ∂Ω, and
if q1, q2 ∈ L∞(Ω), show that C ΓD ,ΓN

q1
= C ΓD ,ΓN

q2
implies q1 = q2.


