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Calderén problem

Medical imaging, Electrical Impedance Tomography:

div(y(x)Vu) =0  in Q,
u=f ondQ

where Q C R” bounded domain, v € L*(Q2), and v > ¢ > 0.

Boundary measurements given by the Q
Dirichlet-to-Neumann (DN) map

A'y = fy&,u\ag.

Inverse problem: given A,, determine .



Calderén problem

Model case of inverse boundary problems for elliptic equations
(Schrodinger, Maxwell, elasticity).

Related to:
» optical tomography
> inverse scattering
» travel time tomography and boundary rigidity
» hybrid imaging methods

» invisibility



Calderdn’s approach

If div(yVu) = 0in Q with u|spq = f, integrate by parts:

/m(/\wf)de:

7(8Vu)udS:/v\Vu|2 dx .
00 Q
N

=:Q4(f)

Thus A, f determines Q,(f)*. Polarization:
A, e~ / YWVuy -V, Vu; € H(Q), div(yVy;) = 0.
Q

Question: is the set {Vu; - Vuy} complete in L}(Q)?

l—=the power needed to maintain boundary voltage f.



Calderdn’s approach

Lemma (Caldersn 1980)
The set {Vu; - Vup; Au; = 0} is complete in L}(Q).

Proof.
Let uj = e” where p; € C" and p; - pj = 0. Then Au; = 0.
Given £ € R", let n € R" satisfy |n| = |£| and - £ = 0. Take

p1=mn+I&, p2 = —n+i.
Then V(e”™) - V(er2*) = celmti€)xel=nti6)x — ce2ixt, O

Exponentially growing solutions, or complex geometrical optics
solutions, are a central tool in inverse boundary problems.?

2Earlier uses: Hadamard 1923, Faddeev 1966.



Calderén problem

Uniqueness results (y — A, injective):

» Calderdn (1980): linearized problem
» Sylvester-Uhlmann (1987): n > 3, v € C?

» Nachman (1996): n=2~ve& W2
» Astala-Paivarinta (2006): n=2, v € L®

» Haberman-Tataru (2013): n >3,y € C?

We are interested in the partial data problem where
measurements are made only on subsets of the boundary.



Partial data problem

Prescribe voltages on [p, measure currents on [y:



Partial data problem

Particular case (local data problem): Tp =Ty =T.

Uniqueness known for arbitrary open [ C 02
» ifn=2

» for piecewise real-analytic conductivities if n > 3.

Open in general if n > 3. This talk will survey known results.



Partial data problem

Substitution u = y~1/2v reduces conductivity equation

div(yVu) = 0 to Schréodinger equation (—A + q)v = 0.
Let T'p, [y C 9Q be open and let g € L*=(2). Define3

Clo™ = {(ulrp, Dplry); (A +q)u=01in Q, u€ Ha(Q),
supp(ulag) C o}

Prescribe Dirichlet data on [p, measure
Neumann data on [y.

Inverse problem: given C]>¥, recover g.

3HA(Q) = {u € L2(Q); Au e L2(Q)}



Partial data problem

Four main approaches for uniqueness:
1. Carleman estimates (Kenig-Sjostrand-Uhlmann 2007)
2. Reflection approach (Isakov 2007)
3. 2D case (Imanuvilov-Uhlmann-Yamamoto 2010)
4. Linearized case (Dos Santos-Kenig-Sjéstrand-Uhlmann 2009)

The first two approaches apply when n > 3. Other results:

> piecewise analytic conductivities (Kohn-Vogelius)
» other equations (Dos Santos et al, Chung, Chung-S-Tzou)
» stability (Heck-Wang, Caro-Dos Santos-Ruiz)

» numerics (Garde-Knudsen, Hamilton-Siltanen)



Strategy of proof

Integration by parts: if ['p, [y C 02 are open, then

qulerN e quDer et /Q(ql — q2)U1U2 — O
for any u; with (—A + gj)u; =0 in Q and

supp(uilaq) C Ip,  supp(wzlae) C Ty (*)
To show g1 = g», enough that products of solutions
{thn; (A + q;)u; =01in Q, u; satisfy (x)}

are complete in L*(Q).



Strategy of proof

Use special complex geometrical optics solutions
umea, (=A+q)u=0, supp(ulasn) C Mpw.
Here 7 > 0 is a large parameter. Want to show that

{lim uu,} dense in [}(Q).
T—00

» take u; =~ e€"%ay, Uy =~ e "¥a, to kill exponential growth
of lim,_, o uyu»

» correct approximate solution uy = e*7¥a to exact solution
u=e*"(a+r) by solving (—A + q)er™(a+r)=0
» possible if ¢ is a limiting Carleman weight



Strategy of proof

Condition for a limiting Carleman weight ¢, V¢ # 0:
C
Vi@ < —||eiwAeijv||Lz(Q veCrQ), m>1

Results from Dos Santos-Kenig-S-Uhlmann (2009):

» conformally invariant condition

» if n > 3, only six basic forms for ¢:

X1 X2
x1, logl|x|, —5, arctan—,
X2 X1

» if n =2, any harmonic function is OK



1. Carleman estimate approach (KSU 2007)

i) ( FN

» [p and 'y roughly complementary, need to overlap
» [p can be very small, but then 'y has to be very large

» proof uses weights ¢(x) = log |x — xo| and Carleman
estimates with boundary terms



2. Reflection approach (Isakov 2007)

L'y

» local data: [p =Ty =T, no measurements needed on [y

» the inaccessible part of the boundary, Iy, has strict
restrictions (part of a hyperplane or part of a sphere)

» proof uses weights ¢(x) = x; and reflection about Ig



3. 2D case (IUY 2010)
Q [

v

QCR?and Fp =Ty =T is any open set in O

v

any harmonic function is a limiting Carleman weight

solutions u = e™®(a + r), ® is a Morse holomorphic
function with prescribed critical point

v

v

coefficients recovered via stationary phase



4. Linearized case (DKSU 2009)
() [

» QCR"and 'p =Ty =T is any open set in 02

> if [ furur = 0 for all harmonic u; with supp(ujlaq) C T,
then f =0 near

» based on analytic microlocal analysis (FBI transform,
Kashiwara's watermelon theorem)



New results (Kenig-S 2013)

Recall main approaches:
1. Carleman estimates
2. Reflection approach

3. 2D case

4

. Linearized case

We unify approaches 1 and 2 and extend both. In particular,
we relax the requirements on the inaccessible part in 2, and
allow to use complementary (sometimes disjoint) sets as in 1.

The methods work for n > 3, also on certain Riemannian
manifolds, and sometimes reduce the question to integral
geometry problems of independent interest.



New results

The first results are local results: given measurements on
I C 09, coefficients are determined in a neighborhood of .

Proof reduces to an integral geometry problem (Helgason
support theorem): recover a function locally from its integrals
over lines, great circles, or hyperbolic geodesics in a certain
neighborhood.

Instead of being completely flat or spherical, the inaccessible
part [g can be conformally flat only in one direction, e.g.

» cylindrical set (leads to integrals over lines)
» conical set (integrals over great circle segments)

» surface of revolution (integrals over hyperbolic geodesics).



Cylindrical sets

Theorem (Kenig-S 2013)

Let Q C R x Qo where Qy C R? is convex, let [ = 9Q \ T,
and suppose that [y satisfies

Mo C R x (92 \ E)

for some open set E C 9. If g1, € C(Q) and if
CFF CFF

then g1 = gy in QN (R x chy2(E)).

Corresponds to ¢(x) = x;. Similar result obtained
independently by Imanuvilov-Yamamoto (2013).



Conical sets

Theorem (Kenig-S 2013)

Let Q C {rw; r > 0,w € My} where My C S? is convex, let
= 0Q\ Ny, and suppose that Iy satisfies

Mo C{rw; r>0,we M\ E}
for some open set E C OM,. If g1, g, € C(Q) and if
rr_ ~rr
Cﬂh - Cflz )

then g1 = q» in QN (R x chs2(E)).

Corresponds to ¢(x) = log |x|. Convex hull in 52 taken with
respect to great circle segments.



Remarks

» convexity not required: if the inaccessible part is concave,
recover the coefficient everywhere

» it is not required that [p = Iy, can use somewhat
complementary sets as in Kenig-Sjostrand-Uhlmann

» sometimes [p and 'y can be disjoint

Lo FN



Beyond the convex hull

Let Q C R x Qo where Qy C R? is convex, let [ = 9Q \ Ty,
and suppose that [y satisfies

Mo C R x (9% \ E)

for some open set £ C 9€). From measurements on T,
recover coefficient in QN (R x chg2(E)). Can one go beyond
the convex hull?

Qo

o0\ E



Beyond the convex hull

A continuous curve 7 : [0, L] — Qq is a broken ray if it consists
of straight line segments that are reflected according to
geometrical optics (angle of incidence = angle of reflection)
when they hit 0€.

0%\ E



Beyond the convex hull

Theorem (Kenig-S 2013)

Let Q C R x Qg where Qy C R? is a bounded domain, let
=00\ 'y where Iy satisfies for some open E C 09

Mo C R x (9% \ E).

If g1, q2 € C(Q) and C[" = CL.T, then for any nontangential

broken ray v : [0, L] — Qo W/th endpoints on E, and given any
real number A, one has

/0 e (qy — g2)" (20 7(1)) dt = 0.

Here ()" is the Fourier transform in the x; variable, and
g1 — gz is extended by zero to R3\ Q.



Beyond the convex hull

Question

Let o C R” strictly convex and E C 0€2y open. Is a function

f € C(Qo) determined by its integrals over broken rays
starting and ending on E?

0\ E

Partial results: Mukhometov (1980's), Eskin (2004), Hubenthal
(2013), limavirta (2013-4)



Components of proof

Need Carleman estimate with boundary terms:

1 T T
1 /a D)0 5 + [ vy

T

¢ _
< SleP (A + q)vlizg, v ECT(Q), vl =0.
Kenig-Sjostrand-Uhlmann (2007) use convexified weights

1 2
Ve =@+ —gi, e > 0 small.
eT 2

Carleman estimate leads to solutions of (—A + g)u = 0 with
» good control on {x € 9Q; d,p(x) < 0}
» no control on "flat" part {x € 0Q2; 0,¢(x) = 0}.



Components of proof

Need Carleman estimate with boundary terms:

1 T T
1 / @) O dS + € g

T

C _
S ﬁHeiT@(—A + q>V||i2(Q), vV € COO(Q), V|aQ =0.

We use modified weights

1> 1
805:90+_99_+_K’ g > 0 small, 0,//‘€‘a§2<0-
eT 2 T

Carleman estimate leads to solutions of (—A + g)u = 0 with
» good control on {x € 9Q; d,(x) < 0}
» weak control on "flat” part {x € 0Q; 0,¢(x) = 0}.



Components of proof

Some arguments can also be done by reflection, e.g. if g is
part of a graph

Mo C {(x1, %, n(x2)); x1, % € R}

where 7 is a function R — R. Flattening the boundary by
x3 +— x3 — 1(xz) transforms the Euclidean Laplacian into

3

~ Y g 00y, (gu(x)) = (é go(XS’X?*))‘

j,k=1

Reflecting across x3 = 0 generates a Lipschitz singularity in
the metric go. However, the singularity only appears in the
lower right corner, and methods for the anisotropic Calderdn
problem (Kenig-S-Uhlmann 2011) still apply.



Components of proof

Suppose 2 is part of a cylinder R x Q4 and
Mo CR x (0 \ E)

where Qy C R? and E C 0. Use complex geometrical optics
solutions as 7 — 00,

u(xy, X') ~ e v, (xX)

where v.(x) is a reflected Gaussian beam quasimode in g,
concentrating near a broken ray v with endpoints on E:

I(=2 = 7*)vrll 2@y = O 75), v+ lliz000\e) = O(T™5),

lv, |2 dx’ — 6.

Cf. Dos Santos-Kurylev-Lassas-S (2013).



Summary

Calderén problem with local data for n > 3 still open, but

» possible to ignore measurements on sets that are part of
cylindrical sets, conical sets, or surfaces of revolution

» local uniqueness results that determine coefficients near
the measurement set

» global uniqueness under certain size or concavity
conditions, or if the broken ray transform is invertible

Survey with Kenig: " Recent progress in the Calderén problem
with partial data” (2014).



Open questions

Question (Local data for n > 3)

If Q CR", n>3,if [ is any open subset of 912, and if
q1, g2 € L>(Q), show that C))F = C)" implies g1 = go.

Question (Data on disjoint sets for n = 2)

If Q C R?, if [p and Iy are disjoint open subsets of 99, and
if g1, g2 € L°(RQ), show that CJp'v = C[o"V implies g = .



