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Background and definitions

Q ⊂ Rn is a cube with side length l(Q) set
T (Q) = {(x , t) ∈ Rn+1

+ : x ∈ I , 0 < t < l(Q)}, a cube sitting
above its boundary face Q:
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Carleson measures

Definition

The measure dµ is a Carleson measure in the upper half space
Rn+1

+ if there exists a constant C such for all cubes Q ⊂ Rn,
µ(T (Q)) < C |Q|, where |Q| denotes the Lebesgue measure of the
cube Q.

L. Carleson, An interpolation problem for bounded analytic
functions, Amer. J. Math. 80 (1958), 921-930.
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Carleson measures and potential theory

If ∆u(x , t) = 0 in Rn+1
+ , u(x , 0) = f (x) with f ∈ BMO, then

t|∇u(x , t)|2dxdt

is a Carleson measure.

That is, there exists a constant C such that for all cubes Q,∫
T (Q)

t|∇u(x , t)|2dxdt ≤ C |Q|

C. Fefferman, Characterizations of bounded mean
oscillation,Bulletin of the American Mathematical Society, 77,
(1971), no. 4, 587–588.
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Square functions

Let Γ(x , 0) = {(y , t) : |x − y | < ct} denote the cone at (x , 0) and
define
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Square functions

Define

S(u)(x) =

{∫
Γ(x)

t1−n|∇u(y , t)|2dydt

}1/2

If ∆u(x , t) = 0 in Rn+1
+ , u(x , 0) = f (x) with f ∈ L2, then

∫
Rn

S2(u)(x)dx =

∫
Rn

t∇u(y , t)|2dydt = c

∫
Rn

f 2(x)dx
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Square functions

And if f ∈ BMO, then a localized version holds for the truncated
square function:

Sr (u)(x) =

{∫
Γr (x)

t1−n|∇u(y , t)|2dydt

}1/2
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The Dirichlet Problem

The Dirichlet problem with data in Lp, p > 1:

∆u = 0 ∈ Rn+1
+

u(x , 0) = f (x) ∈ Lp(Rn)

in the sense of nontangential convergence.

‖u∗‖p ≤ C‖f ‖p
where u∗ = sup{|u(y , t) : (y , t) ∈ Γ(x , 0)}.

And for all p,
‖u∗‖p ≈ ‖S(u)‖p
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Background and definitions

L := − divA(x , t)∇,, where (x , t) ∈ Rn+1, or more generally above
a Liptschitz graph.

A is a (possibly non-symmetric) (n + 1)× (n + 1) matrix

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 :=
n+1∑
i ,j=1

Aij(x)ξjξi , ‖A‖L∞(Rn) ≤ λ−1, (1)

If Lu = 0, u(x , 0) = f (x), then

u(X ) =

∫
Rn

f (x)dωX (x)
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Properties of solutions

De Giorgi - Nash - Moser estimates:

Harnack principle, interior Holder continuity, comparison
principle

The measures dω(x ,t) are mutually absolutely continuous.

Can define u pointwise, and u∗ is comparable to a weighted
maximal operator

Solvabilty of Dp is equivalent to regularity of the weights ω:
i.e., ‖u∗‖p ≤ C‖f ‖p if and only dω = kdx and k ∈ RHp′(dx).

Dp is solvable for some p if and only if the weights dωX

belong to A∞
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Definitions of A∞

Definition

A measure ω defined on Rn belongs to the weight class A∞(dx) if
any of the following equivalent conditions hold:

(i) For every ε ∈ (0, 1) there exists δ ∈ (0, 1) such that for any
cube Q ⊂ Rn and E ⊂ Q with

ω(E )

ω(Q)
< δ then

|E |
|Q|

< ε. (2)

(ii) For every ε ∈ (0, 1) there exists δ ∈ (0, 1) such that for any
cube Q ⊂ Rn and E ⊂ Q with

|E |
|Q|

< δ then
ω(E )

ω(Q)
< ε. (3)

(iii) there exists a p > 1 such that ω belongs to Ap(dx) or to RHp.
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L := − divA(x , t)∇, (x , t) ∈ Rn+1

What conditions on A guarantee that the elliptic measure and
Lebesgue (or surface) measure are mutually absolutely continuous,
thus ensuring well-posedness and unique solvability of a Dirichlet
problem for L?

What criteria for A∞, expressed in terms of properties of the
solution, can be verified for large classes of operators in the
absence of L2 estimates?

Sharp, optimal answers to these questions are often found by
means of, or in terms of, Carleson measures.
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Background

Kenig-Koch-P.-Toro: (2000) : developed several
characterizations of mutual absolute continuity, applicable in
the non-symmetric setting

In symmetric setting: theory of elliptic boundary value
problems developed: (1) characterizations of classes of
non-smooth operators, (2) perturbations, of elliptic operators

L2 identity of Rellich type (Jerison-Kenig); Carleson measures
in perturbation theory

In the absence of an L2 theory, new machinery needed to
prove mutual absolute continuity, and A∞: ε-approximation of
bounded solutions
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Definition of ε-approximation of bounded solutions

Definition

Let u ∈ L∞(Rn+1
+ ), with ‖u‖∞ ≤ 1. Given ε > 0, we say that u is

ε-approximable if for every cube Q0 ⊂ Rn, there is a
ϕ = ϕQ0 ∈W 1,1(TQ0) such that

‖u − ϕ‖L∞(TQ0
) < ε , (4)

and

sup
Q⊂Q0

1

|Q|

∫∫
T (Q)

|∇ϕ(x , t)| dxdt ≤ Cε , (5)

where Cε depends also upon dimension and ellipticity, but not on
Q0.
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Connection between A∞ and ε-approximability

Theorem: ε-approximability implies that the elliptic measure
belongs to A∞. (KKPT, 2000)

How to verify ε-approximability? KKPT introduced another
characterization, namely:

A∞ is equivalent to the existence of a p such that
‖u∗‖p ≈ ‖S(u)‖p (on all Lipschitz subdomains).

Applications to several classes of non-symmetric elliptic
operators, classes for which the conclusion A∞ is sharp.
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Why ε-approximability

J. Garnett, Bounded Analytic Functions, chapter 6:
ε-approximability implies a “quantitative Fatou theorem”.

The (doubling) measure ω on Rn is a space of homogeneous
type, and by M. Christ’s construction has a dyadic grid.

If ω(E )/ω(Q) is small, using the dyadic grid, can construct a
bounded f such that the solution u (to Lu = 0 with data f )
oscillates by least ε a large number (kε) of times over E .

Specifically, for the approximant ϕ and for all x ∈ E ,∫
Γr (x)

t−n|∇ϕ|dydt > k2
ε

Integrate over E , to obtain |E |/|Q| < Ck−2, verifying A∞.
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Another Carleson condition characterization of A∞

Towards a characterization of A∞ without introducing an
approximant......

Theorem

Let L := − divA(x)∇, be an elliptic divergence form operator, not
necessarily symmetric, with bounded measurable coefficients,
defined in Rn+1

+ . Then ω ∈ A∞ if and only if, for every solution u
to Lu = 0 with boundary data f ∈ BMO, one has the Carleson
measure estimate:

sup
Q

1

|Q|

∫∫
T (Q)

t|∇u(x , t)|2 dxdt ≤ C ||f ||2BMO , (6)

Dindos-Kenig-P., 2011
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Main idea in proof

Suppose |E |/|Q| is small.

A key estimate (Kenig-P., 1993): For any bounded f , with
f = 1 on E and f = 0 outside 2Q:

ω(E )/ω(Q) <
1

|4Q|

∫∫
T (4Q)

t|∇u(x , t)|2 dxdt

Use the Jones-Journé construction to find a function f
satisfying f = 1 on E and f = 0 outside 2Q but with ‖f ‖BMO

small.

Specifically,
f = max{δlog(MχE ) + 1, 0}
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An optimal Carleson measure characterization of A∞

Theorem

Let L := − divA(x)∇, be an elliptic divergence form operator, not
necessarily symmetric, with bounded measurable coefficients,
defined in Rn+1

+ . Then ω ∈ A∞ if and only if, for every solution u
to Lu = 0 with boundary data f ≤ 1, one has the Carleson
measure estimate:

sup
Q

1

|Q|

∫∫
T (Q)

t|∇u(x , t)|2 dxdt ≤ C . (7)

Kenig-Kirchheim-P.-Toro, 2014
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Ideas in the proof

Definition

Let ε0 > 0 be given and small. If E ⊂ Ω0, a good ε0-cover for E of
length k is a collection of nested open sets {Ωi}ki=1 with
E ⊆ Ωk ⊆ Ωk−1 ⊆ · · · ⊆ Ω1 ⊆ Ω0 such that for l = 1, . . . , k ,

(i) Ωl ⊆
⋃∞

i=1 S
(l)
i ,

⋃∞
i=1 S

(l)
i \Ωl ⊂ ∂Q0, where each S

(l)
i is a

dyadic cube in Ren,

(ii)
⋃∞

i=1 S
(l)
i ⊂

⋃∞
i=1 S

(l−1)
i and

(iii) for all 1 ≤ l ≤ k , ω(Ωl
⋂

S
(l−1)
i ) ≤ ε0ω(S

(l−1)
i ).
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Ideas in the proof

Each Ωm is a union of dyadic intervals Sm
l , and each Sm

l has a
(bounded) number of immediate dyadic subintervals.

For each Sm
l choose one of its dyadic children, S̃m

l .

If m is even, define fm to take the value 1 on
⋃

l(S
m
l \ S̃m

l )
and 0 elsewhere.

If m is odd, fm = −1 where fm = 1 and is 0 elsewhere. Set
f =

∑k
m=0 fm.

The solution u to Lu = 0 with boundary data f will oscillate
by a fixed amount in a large number of dyadic blocks.
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Ideas in the proof

Theorem

For some C , c > 0, and every x ∈ E, there are sequences
{xm, tm}km=0 with ctm−1 < tm < Ctm−1 for which
|u(xm, tm)− u(xm−1, tm−1)| > ε.

Corollary

For every x ∈ E, ∫
Γr (x)

t1−n|∇u(y , t)|2dydt > ck

Integrate this inequality over E with respect to Lebesgue measure
gives the result that E has small Lebesgue measure.
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Extension to parabolic operators

L = Dt − divA(x , t)∇, where A = Ai ,j(x , x0, t), divergence in
spatial variable.

L is defined in an “allowed” parabolic domain Ω ⊂ Rn × R in
the sense of Lewis-Murray.

Hofmann-Lewis, 1991: study of Dirichlet problem and
absolute continuity of parabolic measure.

Dindos - P.- Petermichl: proved the parabolic analog of
KKrPT, namely A∞ of parabolic measure wrt surface measure
if and only if bounded solutions satisfy a parabolic Carleson
measure estimate.
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Applications: establish absolute continuity of classes of
elliptic/parabolic operators

Elliptic divergence form operators (with drift) where
coefficients satisfy a Carleson measure property.

t|∇Ai ,j |2dxdt is a Carleson measure then the elliptic measure
is A∞ wrt surface measure (Kenig - P.)

t|∇Ai ,j |2dxdt is a vanishing -Carleson measure then the
elliptic measure is RHp for all 1 < p <∞ wrt surface measure
(Dindos-P.-Petermichl)

Parabolic analogues follow from the Carleson measure
characterization of bounded solutions (Dindos-Huang 2013,
Dindos-P.-Petermichl 2014)
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