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Background and definitions

Q C R" is a cube with side length /(Q) set
T(Q) = {(x,t) eRT :x € 1,0 < t < I(Q)}, a cube sitting
above its boundary face Q:
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Carleson measures

Definition

The measure dy is a Carleson measure in the upper half space
Rf“l if there exists a constant C such for all cubes Q@ C R”,
w(T(Q)) < C|Q|, where |Q| denotes the Lebesgue measure of the

cube Q.
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Carleson measures

Definition

The measure dy is a Carleson measure in the upper half space
Rf“l if there exists a constant C such for all cubes Q@ C R”,
w(T(Q)) < C|Q|, where |Q| denotes the Lebesgue measure of the
cube Q.

L. Carleson, An interpolation problem for bounded analytic
functions, Amer. J. Math. 80 (1958), 921-930.
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Carleson measures and potential theory

If Au(x,t) = 0in RT, u(x,0) = f(x) with f € BMO, then
t|Vu(x, t)|*dxdt
is a Carleson measure.

That is, there exists a constant C such that for all cubes @,
/ [ Vu(x, £)2dxdt < C|Q|
T(Q)

C. Fefferman, Characterizations of bounded mean
oscillation, Bulletin of the American Mathematical Society, 77,
(1971), no. 4, 587-588.
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Square functions

Let I'(x,0) = {(y, t) : [x — y| < ct} denote the cone at (x,0) and
define

NCNY

/5
¢

('1403

Jill Pipher Carleson Measures and Boundary Value Problems



Square functions

Define

1/2
S(u)(x) = {/r( )tl_"|Vu(y, t)|2dydt}
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Square functions

Define
1/2
S(u)(x) = {/ |V u(y, t)|2dydt}
M)
If Au(x,t) =0in RT™, u(x,0) = f(x) with f € L2, then

S2(u)(x)dx = / tVu(y, t)|?dydt = c [ £3(x)dx

R n Rn
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Square functions

And if f € BMO, then a localized version holds for the truncated
square function:

1/2
Si(u)(x) = {/r( )tlf"]Vu(y, t)]zdydt}
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The Dirichlet Problem

The Dirichlet problem with data in LP, p > 1:

1
Au=0eR"

u(x,0) = f(x) € LP(R")

in the sense of nontangential convergence.

[u*[lp < ClIf]lp
where v* = sup{|u(y, t) : (y,t) € [(x,0)}.

And for all p,
[ llp = (IS (u)llp
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Background and definitions

L := —div A(x, t)V,, where (x,t) € R™"1 or more generally above
a Liptschitz graph.
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Background and definitions

L := —divA(x, t)V,, where (x,t) € R""1 or more generally above
a Liptschitz graph.
A'is a (possibly non-symmetric) (n+ 1) x (n+ 1) matrix
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Background and definitions

L := —divA(x, t)V,, where (x,t) € R""1 or more generally above
a Liptschitz graph.
A'is a (possibly non-symmetric) (n+ 1) x (n+ 1) matrix

n+1

AR < (AME €)= D Aj()&&, Al <A (1)

ij=1
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Background and definitions

L := —divA(x, t)V,, where (x,t) € R""1 or more generally above
a Liptschitz graph.
A'is a (possibly non-symmetric) (n+ 1) x (n+ 1) matrix

n+1
NP < (A€ = 3 A&t IIAlm@n <A (1)

ij=1

If Lu=0, u(x,0) = f(x), then
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Properties of solutions

@ De Giorgi - Nash - Moser estimates:
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@ Harnack principle, interior Holder continuity, comparison
principle
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Properties of solutions

@ De Giorgi - Nash - Moser estimates:

@ Harnack principle, interior Holder continuity, comparison
principle

o The measures dw(*t) are mutually absolutely continuous.
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Properties of solutions

De Giorgi - Nash - Moser estimates:

Harnack principle, interior Holder continuity, comparison
principle

The measures dw*:t) are mutually absolutely continuous.

Can define u pointwise, and u* is comparable to a weighted
maximal operator
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Properties of solutions

@ De Giorgi - Nash - Moser estimates:

@ Harnack principle, interior Holder continuity, comparison
principle

o The measures dw(*t) are mutually absolutely continuous.

@ Can define u pointwise, and u* is comparable to a weighted
maximal operator

@ Solvabilty of D, is equivalent to regularity of the weights w:
i.e., [[u*|lp < C||f||p if and only dw = kdx and k € RH,(dx).
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Properties of solutions

@ De Giorgi - Nash - Moser estimates:

@ Harnack principle, interior Holder continuity, comparison
principle

o The measures dw(*t) are mutually absolutely continuous.

@ Can define u pointwise, and u* is comparable to a weighted
maximal operator

@ Solvabilty of D, is equivalent to regularity of the weights w:
i.e., [[u*|lp < C||f||p if and only dw = kdx and k € RH,(dx).

@ D, is solvable for some p if and only if the weights dwX
belong to A
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Definitions of Ay

A measure w defined on R” belongs to the weight class A (dx) if
any of the following equivalent conditions hold:
(i) For every € € (0,1) there exists § € (0,1) such that for any
cube @ C R" and E C Q with

——= < d then — <e. (2)

(ii) For every e € (0,1) there exists § € (0, 1) such that for any
cube @ CR" and E C Q with

E < 0 then ()

Q| w(Q)

(iii) there exists a p > 1 such that w belongs to A,(dx) or to RHp.

<e. (3)
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L := —div A(X, t)V, (X7 t) € R’H‘l

What conditions on A guarantee that the elliptic measure and
Lebesgue (or surface) measure are mutually absolutely continuous,
thus ensuring well-posedness and unique solvability of a Dirichlet
problem for L?

What criteria for Ay, expressed in terms of properties of the
solution, can be verified for large classes of operators in the

absence of L2 estimates?

Sharp, optimal answers to these questions are often found by
means of, or in terms of, Carleson measures.

Jill Pipher Carleson Measures and Boundary Value Problems



Background

e Kenig-Koch-P.-Toro: (2000) : developed several
characterizations of mutual absolute continuity, applicable in
the non-symmetric setting
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Background

e Kenig-Koch-P.-Toro: (2000) : developed several
characterizations of mutual absolute continuity, applicable in
the non-symmetric setting

@ In symmetric setting: theory of elliptic boundary value
problems developed: (1) characterizations of classes of
non-smooth operators, (2) perturbations, of elliptic operators
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Background

e Kenig-Koch-P.-Toro: (2000) : developed several
characterizations of mutual absolute continuity, applicable in
the non-symmetric setting

@ In symmetric setting: theory of elliptic boundary value
problems developed: (1) characterizations of classes of
non-smooth operators, (2) perturbations, of elliptic operators

o L[? identity of Rellich type (Jerison-Kenig); Carleson measures
in perturbation theory
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Background

e Kenig-Koch-P.-Toro: (2000) : developed several
characterizations of mutual absolute continuity, applicable in
the non-symmetric setting

@ In symmetric setting: theory of elliptic boundary value
problems developed: (1) characterizations of classes of
non-smooth operators, (2) perturbations, of elliptic operators

o L[? identity of Rellich type (Jerison-Kenig); Carleson measures
in perturbation theory

@ In the absence of an L2 theory, new machinery needed to
prove mutual absolute continuity, and A.,: e-approximation of
bounded solutions
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Definition of e-approximation of bounded solutions

Definition
Let u € L®(RTM), with [|ullso < 1. Given € > 0, we say that u is

e-approximable if for every cube Qg C R”, there is a
© =g, € WH(Tgq,) such that

lu = @lle(Tq) <€, (4)

and

Sz 1// Veo(x, )] dxdt < C., (5)
Qcq QI /T (@)

where C. depends also upon dimension and ellipticity, but not on

Qo-
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Connection between A,, and e-approximability

@ Theorem: e-approximability implies that the elliptic measure
belongs to As. (KKPT, 2000)
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Connection between A,, and e-approximability

@ Theorem: e-approximability implies that the elliptic measure
belongs to As. (KKPT, 2000)

@ How to verify e-approximability? KKPT introduced another
characterization, namely:
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Connection between A,, and e-approximability

@ Theorem: e-approximability implies that the elliptic measure
belongs to As. (KKPT, 2000)

@ How to verify e-approximability? KKPT introduced another
characterization, namely:

@ A is equivalent to the existence of a p such that
lu*]|p = ||S(u)|lp (on all Lipschitz subdomains).
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Connection between A,, and e-approximability

@ Theorem: e-approximability implies that the elliptic measure
belongs to As. (KKPT, 2000)

@ How to verify e-approximability? KKPT introduced another
characterization, namely:

@ A is equivalent to the existence of a p such that
lu*]|p = ||S(u)|lp (on all Lipschitz subdomains).

@ Applications to several classes of non-symmetric elliptic
operators, classes for which the conclusion Ay is sharp.
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Why e-approximability

o J. Garnett, Bounded Analytic Functions, chapter 6:
e-approximability implies a “quantitative Fatou theorem”.
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Why e-approximability

o J. Garnett, Bounded Analytic Functions, chapter 6:
e-approximability implies a “quantitative Fatou theorem”.

@ The (doubling) measure w on R" is a space of homogeneous
type, and by M. Christ’'s construction has a dyadic grid.
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Why e-approximability

o J. Garnett, Bounded Analytic Functions, chapter 6:
e-approximability implies a “quantitative Fatou theorem”.

@ The (doubling) measure w on R" is a space of homogeneous
type, and by M. Christ’'s construction has a dyadic grid.

o If w(E)/w(Q) is small, using the dyadic grid, can construct a
bounded f such that the solution u (to Lu = 0 with data f)
oscillates by least ¢ a large number (k:) of times over E.
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Why e-approximability

o J. Garnett, Bounded Analytic Functions, chapter 6:
e-approximability implies a “quantitative Fatou theorem”.

@ The (doubling) measure w on R" is a space of homogeneous
type, and by M. Christ’'s construction has a dyadic grid.

o If w(E)/w(Q) is small, using the dyadic grid, can construct a
bounded f such that the solution u (to Lu = 0 with data f)
oscillates by least ¢ a large number (k:) of times over E.

@ Specifically, for the approximant ¢ and for all x € E,

/ t~"|V|dydt > k2
I (x)
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Why e-approximability

J. Garnett, Bounded Analytic Functions, chapter 6:
e-approximability implies a “quantitative Fatou theorem”.

@ The (doubling) measure w on R" is a space of homogeneous
type, and by M. Christ’'s construction has a dyadic grid.

o If w(E)/w(Q) is small, using the dyadic grid, can construct a
bounded f such that the solution u (to Lu = 0 with data f)
oscillates by least ¢ a large number (k:) of times over E.

@ Specifically, for the approximant ¢ and for all x € E,
/ t~"|V|dydt > k2
rr(x)

e Integrate over E, to obtain |E|/|Q| < Ck—2, verifying A.

Jill Pipher Carleson Measures and Boundary Value Problems



Another Carleson condition characterization of A,

@ Towards a characterization of A, without introducing an
approximant......
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Another Carleson condition characterization of A,

@ Towards a characterization of A, without introducing an
approximant......

Theorem

Let L := —div A(x)V, be an elliptic divergence form operator, not
necessarily symmetric, with bounded measurable coefficients,
defined in Rfl. Then w € A if and only if, for every solution u
to Lu = 0 with boundary data f € BMO, one has the Carleson
measure estimate:

supi // t|Vu(x, t)|? dxdt < C||f||Zmo0, (6)
@ 1R/

v

@ Dindos-Kenig-P., 2011
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Main idea in proof

@ Suppose |E|/|Q] is small.
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Main idea in proof

@ Suppose |E|/|Q] is small.

@ A key estimate (Kenig-P., 1993): For any bounded f, with
f=1on E and f = 0 outside 2Q:

i u\x 2 X
“(E)/(Q) < g //mo) HVu(x, £)|2 dxdt
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Main idea in proof

@ Suppose |E|/|Q] is small.

@ A key estimate (Kenig-P., 1993): For any bounded f, with
f=1on E and f = 0 outside 2Q:

i u\x 2 X
“(E)/(Q) < g //mo) HVu(x, £)|2 dxdt

@ Use the Jones-Journé construction to find a function f

satisfying f =1 on E and f = 0 outside 2Q but with [|f|/gmo
small.
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Main idea in proof

@ Suppose |E|/|Q] is small.

@ A key estimate (Kenig-P., 1993): For any bounded f, with
f=1on E and f = 0 outside 2Q:

i u\x 2 X
“(E)/(Q) < g //mo) HVu(x, £)|2 dxdt

@ Use the Jones-Journé construction to find a function f
satisfying f =1 on E and f = 0 outside 2Q but with ||f||amo
small.

@ Specifically,

f = max{olog(Mxg) + 1, 0}
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An optimal Carleson measure characterization of A,

Theorem

Let L := —divA(x)V, be an elliptic divergence form operator, not
necessarily symmetric, with bounded measurable coefficients,
defined in Rt Then w € A if and only if, for every solution u
to Lu = 0 with boundary data f < 1, one has the Carleson
measure estimate:

supl// €V u(x, )2 dxdt < C. (7
Q 1Rl J /7

~—

Kenig-Kirchheim-P.-Toro, 2014
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Ideas in the proof

Definition

Let g > 0 be given and small. If E C g, a good egp-cover for E of
length k is a collection of nested open sets {Q,—}f-(:l with
ECQCQp_1C---CQ CQpsuchthatfor/=1,...,k,

(i) Q C U2, 5,-(1), U SI(I)\Q/ C dQo, where each Si(l) is a
dyadic cube in Re”,

(i) Uy S < Uy SV and

(iii) for all 1 </ < k, W(Qlﬂs,-(l_l)) < Eow(Sl.(l_l)),
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Ideas in the proof

e Each Q, is a union of dyadic intervals S/, and each S/" has a
(bounded) number of immediate dyadic subintervals.
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Ideas in the proof

e Each Q, is a union of dyadic intervals S/, and each S/" has a
(bounded) number of immediate dyadic subintervals.

o For each S™ choose one of its dyadic children, 5.
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Ideas in the proof

e Each Q, is a union of dyadic intervals S/, and each S/" has a
(bounded) number of immediate dyadic subintervals.

o For each S™ choose one of its dyadic children, 5.

o If m is even, define f,, to take the value 1 on |J,(S/" \ 5/")
and 0 elsewhere.
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Ideas in the proof

e Each Q, is a union of dyadic intervals S/, and each S/" has a
(bounded) number of immediate dyadic subintervals.

o For each S™ choose one of its dyadic children, 5.

o If m is even, define f,, to take the value 1 on |J,(S/" \ 5/")
and 0 elsewhere.

o If mis odd, f,, = —1 where f,, =1 and is 0 elsewhere. Set
f=5K_0fm
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Ideas in the proof

e Each Q, is a union of dyadic intervals S/, and each S/" has a
(bounded) number of immediate dyadic subintervals.

o For each S™ choose one of its dyadic children, 5.

o If m is even, define f,, to take the value 1 on |J,(S/" \ 5/")
and 0 elsewhere.

o If mis odd, f,, = —1 where f,, =1 and is 0 elsewhere. Set
f=5K_0fm

@ The solution u to Lu = 0 with boundary data f will oscillate
by a fixed amount in a large number of dyadic blocks.
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Ideas in the proof

For some C,c > 0, and every x € E, there are sequences
{Xm, tm }X _o With ctm_1 < tm < Ctm_1 for which
|u(Xm, tm) — U(Xm—1, tm—1)| > €.
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Ideas in the proof

For some C,c > 0, and every x € E, there are sequences
{Xm, tm }X _o With ctm_1 < tm < Ctm_1 for which
|u(Xm, tm) — U(Xm—1, tm—1)| > €.

”
Corollary

For every x € E,

/ t2"|Vu(y, t)|?dydt > ck
Ir(x)
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Ideas in the proof

For some C,c > 0, and every x € E, there are sequences
{Xm, tm }X _o With ctm_1 < tm < Ctm_1 for which
|u(Xm, tm) — U(Xm—1, tm—1)| > €.

”
Corollary

For every x € E,

/ t2"|Vu(y, t)|?dydt > ck
Ir(x)

Integrate this inequality over E with respect to Lebesgue measure
gives the result that E has small Lebesgue measure.
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Extension to parabolic operators

o L =D, —divA(x, t)V, where A= A j(x,xo, t), divergence in
spatial variable.
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Extension to parabolic operators

o L =D, —divA(x, t)V, where A= A j(x,xo, t), divergence in
spatial variable.

@ L is defined in an “allowed” parabolic domain Q C R” x R in
the sense of Lewis-Murray.
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Extension to parabolic operators

o L =D, —divA(x, t)V, where A= A j(x,xo, t), divergence in
spatial variable.

@ L is defined in an “allowed” parabolic domain Q C R” x R in
the sense of Lewis-Murray.

@ Hofmann-Lewis, 1991: study of Dirichlet problem and
absolute continuity of parabolic measure.
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Extension to parabolic operators

o L =D, —divA(x, t)V, where A= A j(x,xo, t), divergence in
spatial variable.

@ L is defined in an “allowed” parabolic domain Q C R” x R in
the sense of Lewis-Murray.

@ Hofmann-Lewis, 1991: study of Dirichlet problem and
absolute continuity of parabolic measure.

@ Dindos - P.- Petermichl: proved the parabolic analog of
KKrPT, namely A of parabolic measure wrt surface measure
if and only if bounded solutions satisfy a parabolic Carleson
measure estimate.
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Applications: establish absolute continuity of classes of

elliptic/parabolic operators

e Elliptic divergence form operators (with drift) where
coefficients satisfy a Carleson measure property.
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Applications: establish absolute continuity of classes of

elliptic/parabolic operators

e Elliptic divergence form operators (with drift) where
coefficients satisfy a Carleson measure property.

° t|VA;J]2dxdt is a Carleson measure then the elliptic measure
is Ao wrt surface measure (Kenig - P.)
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Applications: establish absolute continuity of classes of

elliptic/parabolic operators

e Elliptic divergence form operators (with drift) where
coefficients satisfy a Carleson measure property.

° t|VA;J]2dxdt is a Carleson measure then the elliptic measure
is Ao wrt surface measure (Kenig - P.)

e t|VA,;|?dxdt is a vanishing -Carleson measure then the
elliptic measure is RH,, for all 1 < p < 0o wrt surface measure
(Dindos-P.-Petermichl)
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Applications: establish absolute continuity of classes of

elliptic/parabolic operators

e Elliptic divergence form operators (with drift) where
coefficients satisfy a Carleson measure property.

° t|VA;J]2dxdt is a Carleson measure then the elliptic measure
is Ao wrt surface measure (Kenig - P.)
e t|VA,;|?dxdt is a vanishing -Carleson measure then the

elliptic measure is RH,, for all 1 < p < 0o wrt surface measure
(Dindos-P.-Petermichl)

@ Parabolic analogues follow from the Carleson measure
characterization of bounded solutions (Dindos-Huang 2013,
Dindos-P.-Petermichl 2014)
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