One-Phase Free Boundaries

David Jerison (MIT)

In honor of Carlos Kenig; September 2014

Joint work with Nikola Kamburov

- 4 同 6 4 日 6 4 日 6

One-Phase Free Boundary Problem

$$u \ge 0$$
, continuous on $D \subset \mathbf{R}^2$
 $\Delta u = 0$ on $D^+ := \{u > 0\}$ simply-connected
 $|\nabla u(x)| = 1, x \in F := D \cap \partial D^+$

~

・ロト ・回ト ・ヨト ・ヨト

One-Phase Free Boundary Problem

$$u \ge 0$$
, continuous on $D \subset \mathbf{R}^2$
 $\Delta u = 0$ on $D^+ := \{u > 0\}$ simply-connected
 $|\nabla u(x)| = 1, x \in F := D \cap \partial D^+$

$$D^+ \cap D_{1/2} = ??$$

David Jerison Compactness and Singular Limits of Free Boundaries

イロト イヨト イヨト イヨト

æ

Outline

- Double hairpin solutions
- Minimal surfaces!
- Removable singularities thm for
 Flat ⇒ Lipschitz

Hauswirth, Hélein, Pacard 2011

$$S = \{\zeta = \xi + i\eta : |\eta| \le \pi/2\}$$

 $\Omega := \varphi(S), \qquad \varphi(\zeta) = i(\zeta + \sinh \zeta).$

$${\it H}(z)={\sf Re}\ {\sf cosh}(\phi^{-1}(z))=({\sf cosh}\,\xi)({\sf cos}\,\eta)$$

Hauswirth, Hélein, Pacard 2011

$$S = \{\zeta = \xi + i\eta : |\eta| \le \pi/2\}$$

 $\Omega := \varphi(S), \qquad \varphi(\zeta) = i(\zeta + \sinh \zeta).$
 $H(z) = \operatorname{Re} \cosh(\varphi^{-1}(z)) = (\cosh \xi)(\cos \eta)$
 $H_a(z) = aH(z/a); \qquad \Omega_a = a\Omega$

・ロン ・回と ・ヨン ・ヨン

æ

Theorem. Up to translation and dilation, the only simply-connected global solutions in \mathbf{R}^2 are:

double hairpin (HHP) and 1-plane, x_1^+ .

Traizet (2014), if $\partial \Omega =$ finitely many smooth strands.

Khavinson, Lundberg, Teodorescu (2013), if Ω is Smirnov; in particular assuming chord-arc condition.

Thm 1. There is c > 0 such that if $0 \in \partial D^+$ and D^+ is simply-connected, then either

 $B_c(0) \cap \partial D^+$ has one strand of bounded curvature or it resembles a piece of a double hairpin HHP Thm 2 (Rigidity). $\forall \delta > 0$, $\exists c > 0$ such that if two strands of ∂D^+ are separated by $\varepsilon > 0$ near 0, then

there is $a \approx \varepsilon$, $\psi : \Omega_a \cap B_c(0) \to D^+$ Near isometry:

 $|\psi'(z)-1|\leq \delta, \,\, z\in \Omega_{a}; \quad |\psi'(z)|=1, \,\, z\in \partial\Omega_{a}$

Thm 2 (Rigidity). $\forall \delta > 0$, $\exists c > 0$ such that if two strands of ∂D^+ are separated by $\varepsilon > 0$ near 0, then

there is $a \approx \varepsilon$, $\psi : \Omega_a \cap B_c(0) \to D^+$

Near isometry:

 $|\psi'(z)-1|\leq \delta, \,\, z\in \Omega_{a}; \quad |\psi'(z)|=1, \,\, z\in \partial\Omega_{a}$

Curvature bounds:

 $|\psi''(z)| \leq \delta, \ z \in \Omega_a; \quad |\kappa(\psi(z)) - \kappa_a(z)| \leq \delta; \ z \in \partial \Omega_a$

Colding-Minicozzi: Embedded minimal annulus

 $M \subset B_1 \subset \mathbf{R}^3$ with neck size $\varepsilon > 0$,

satisfies $M \approx$ standard catenoid, $|x| < \sqrt{\epsilon}$

Colding-Minicozzi: Embedded minimal annulus

 $M \subset B_1 \subset \mathbf{R}^3$ with neck size $\varepsilon > 0$,

satisfies $M \approx$ standard catenoid, $|x| < \sqrt{\epsilon}$ Our rigidity gives extra when

 $\sqrt{\varepsilon} \leq |x| < 1/C.$

Colding-Minicozzi: Embedded minimal annulus

 $M \subset B_1 \subset \mathbf{R}^3$ with neck size $\varepsilon > 0$,

satisfies $M \approx$ standard catenoid, $|x| < \sqrt{\epsilon}$ Our rigidity gives extra when

 $\sqrt{\varepsilon} \leq |x| < 1/C.$

Traizet correspondence: free boundary solutions \leftrightarrow minimal surfaces with reflection symmetry Where the two theorems overlap, ours is slightly stronger.

伺下 イヨト イヨト

Colding-Minicozzi (Removable singularities) $\forall \delta > 0, \exists C$, such that every minimal annulus

 $M \subset B_1 \setminus B_{\varepsilon}$; $\partial M =$ two loops in $\partial B_{\varepsilon} \cup \partial B_1$,

satisfies

M is a δ -Lipschitz graph in $B_{1/C} \setminus B_{C\epsilon}$ (Major estimate leading to classification of minimal disks.)

高 とう きょう うちょう

Thm 3. Suppose A^+ is simply-connected in annulus $A = \{\epsilon < |x| < 1\},\$

F = two strands connecting ∂D_1 to ∂D_{ε} that don't get too close to each other.

Then $\forall \delta > 0$, $\exists C$ such that

F is a δ -Lipschitz graph on $C\epsilon < |x| < 1/C$

Thm 3. Suppose A^+ is simply-connected in annulus $A = \{\epsilon < |x| < 1\},\$

F = two strands connecting ∂D_1 to ∂D_{ε} that don't get too close to each other.

Then $\forall \delta > 0$, $\exists C$ such that

F is a δ -Lipschitz graph on $C\varepsilon < |x| < 1/C$

Significance: rules out spirals.

Thm 4. Blow-up limits. If u_k solves FBP with simply-connected $D_k^+ \subset D$, $0 \in \partial D_k^+$, $R_k \to \infty$, and

 $R_k u_k(x/R_k)
ightarrow U(x)$ unif. on compact $\subset \mathbf{R}^2$

Then after a rigid motion either

$$U(x) = x_1^+; \quad U(x) = x_1^+ + (x_1 + b)^+, \ b \ge 0$$

or

$$U(x) = H_a(x), \quad a > 0$$

周 トレイモト イモト

Proof of classification of blow-up limits U

- $|\nabla u_k| \leq C$
- nondegeneracy: $u_k(x) \ge c \operatorname{dist}(x, F)$
- All strands of F escape to ∞
- V+V = Viscosity + Variational solutions (Caffarelli + Georg Weiss)

V+V = Viscosity + Variational Solutions

Blow-down of U = either s|x₁|, 0 < s ≤ 1 or x₁⁺.
|∇U| ≤ 1.

V+V = Viscosity + Variational Solutions

- ▶ Blow-down of $U = \text{either } s|x_1|$, $0 < s \le 1$ or x_1^+ .
- $\bullet |\nabla U| \le 1.$
- If |∇U| ≡ 1, then U is a 1-plane or 2-plane solution.

高 とう モン・ く ヨ と

V+V = Viscosity + Variational Solutions

- ▶ Blow-down of U = either $s|x_1|$, $0 < s \le 1$ or x_1^+ .
- $|\nabla U| \leq 1$.
- If $|\nabla U| \equiv 1$, then U is a 1-plane or 2-plane solution.
- If |∇U| < 1, then at all but one boundary point, the blow up is 1-plane x₁⁺.
- If |∇U| < 1, then the zero set is convex at every point where it is smooth.

高 とう モン・ く ヨ と

Small Lipschitz constant/Removable singularities

Goal: $A^+ = \{x \in D_{1/C} \setminus D_{C\varepsilon} : x_2 > f(x_1)\}; \quad |f'(x_1)| \le \delta.$

→ □ → → 目 → → 目 → ○ へ ○

Small Lipschitz constant/Removable singularities

Goal: $A^+ = \{x \in D_{1/C} \setminus D_{C\varepsilon} : x_2 > f(x_1)\}; \quad |f'(x_1)| \le \delta.$

Conformal
$$\Phi = u + i\tilde{u} : A^+ \rightarrow \{\operatorname{Re} w > 0\}$$

 $G = \Phi^{-1}; \quad G' = e^{h+i\tilde{h}}$

向下 イヨト イヨト 二日

Small Lipschitz constant/Removable singularities

Goal: $A^+ = \{x \in D_{1/C} \setminus D_{C\varepsilon} : x_2 > f(x_1)\}; \quad |f'(x_1)| \leq \delta.$

Conformal
$$\Phi = u + i\tilde{u} : A^+ \to \{\operatorname{Re} w > 0\}$$

 $G = \Phi^{-1}; \quad G' = e^{h+i\tilde{h}}$
Linear estimate for conjugate, $h \mapsto \tilde{h}$.
 $h(iy) = 0, \ \varepsilon \le |y| \le 1; \quad |h(w)| \le \delta, \ \varepsilon < |w| \le 1$
 $\implies |\operatorname{osc} \tilde{h}(w)| \le C\delta, \quad C\varepsilon < |w| < 1/C.$

(4月) (3日) (3日) 日

Curvature bounds

$$\Phi_{a} = H_{a} + i\tilde{H}_{a} : \Omega_{a} \to \{\operatorname{Re} w > 0\}$$
$$\psi = \Phi^{-1} \circ \Phi_{a}$$

Both mappings are double coverings.

- E

Curvature bounds

$$\Phi_{a} = H_{a} + i\tilde{H}_{a} : \Omega_{a} \to \{\operatorname{Re} w > 0\}$$
$$\psi = \Phi^{-1} \circ \Phi_{a}$$

Both mappings are double coverings.

$$\psi' = e^{f+i ilde{f}} \implies f = 0 ext{ on } \partial\Omega_a$$

Need linear estimates for $|\nabla f|$. Valid uniformly in a > 0 because Ω_a has Green's function with slope 1.

TRAIZET CORRESPONDENCE $dX_1 + idX_2 = \frac{1}{2}d\bar{z} - 2\left(\frac{\partial u}{\partial z}\right)^2 dz$ $z \mapsto (X_1, X_2, \pm u(z))$

The image is an immersed minimal surface with symmetry $x_3 \leftrightarrow -x_3$. Moreover,

$$|
abla u| < 1 \iff \mathsf{embedded}$$