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Outline

• The ”division problem”

• A quasilinear model : the Euler–Maxwell one-fluid model in 2D

• Existence of smooth global solutions

• Energy estimates using a quasilinear I-method

• Semilinear analysis : a Fourier integral operator

• Semilinear analysis : control of the Z -norm



The ”division” problem. Consider a generic evolution problem of
the type

∂tu + iΛu = N (u,Dxu)

where Λ is real and N is a quadratic nonlinearity. At first iteration

u(t) = e−itΛφ.

At second iteration, assuming N = u2,

û(ξ, t) = e−itΛ(ξ)φ̂(ξ)

+ Ce−itΛ(ξ)

∫
φ̂(ξ − η)φ̂(η)

1− e it[Λ(ξ)−Λ(η)−Λ(ξ−η)]

Λ(ξ)− Λ(η)− Λ(ξ − η)
dη.

One has to understand the contribution of the set of (time)
resonances :

{(ξ, η) : ±Λ(ξ)± Λ(η)± Λ(ξ − η) = 0}.
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In semilinear problems one can iterate using X s,b spaces
(Bourgain, Kenig–Ponce–Vega, Klainerman–Machedon). The
iteration method completely fails in quasilinear problems due to the
unavoidable loss of derivative.

In quasilinear problems, the classical methods are energy and
vector-field methods (Klainerman, Christodoulou). The long-term
goal of our project is to implement Fourier analysis techniques in
the study of quasilinear problems.

There are two possible situations : low regularity + short time or
high regularity + long time. We focus on the second case.

In many interesting quasilinear evolutions it is not known how to
construct even one nontrivial global solution.
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In quasilinear problems understanding the division problem is
necessary when :
• The solution has strictly less than 1/t pointwise decay ;
• There is a full set (codimension 1) of time resonances and no
matching ”null structure”.

We have two results in this direction : I.–Pusateri (the capillary
water waves in 2d), Deng–I.–Pausader (the Euler–Maxwell
one-fluid system in 2d).
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The Euler–Maxwell two-fluid model
Two compressible ion and electron fluids interact with their own
self-consistent electromagnetic field. The Euler-Maxwell system
describes the dynamical evolution of the functions ne , ni : R3 → R,
ve , vi ,E ,B : R3 → R3, which evolve according to the quasi-linear
coupled system,

∂tne + div(neve) = 0,

neme [∂tve + ve · ∇ve ] +∇pe = −nee
[
E +

ve

c
× B

]
,

∂tni + div(nivi ) = 0,

niMi [∂tvi + vi · ∇vi ] +∇pi = Znie
[
E +

vi

c
× B

]
,

∂tB + c∇× E = 0,

∂tE − c∇× B = 4πe [neve − Znivi ] ,

together with the elliptic equations

div(B) = 0, div(E ) = 4πe(Zni − ne)

and two equations of state expressing pe = pe(ne) and pi = pi (ni ).



These equations describe a plasma composed of electrons and one
species of ions. The electrons have charge −e, density ne , mass me ,
velocity ve , and pressure pe , and the ions have charge Ze, density
ni , mass Mi , velocity vi , and pressure pi . In addition, c denotes the
speed of light and E and B denote the electric and magnetic field.
The two elliptic equations are propagated by the dynamic flow,
provided that we assume that they are satisfied at the initial time.

At the linear level, there are ion-acoustic waves, Langmuir waves,
as well as light waves. At the nonlinear level, the Euler-Maxwell
system is the origin of many well-known dispersive PDE, such as
KdV, KP, Zakharov, Zakharov-Kuznetsov, and NLS, which can be
derived from via different scaling and asymptotic expansions. One
can also derive the Euler–Poisson model, the cold-ion model, and
quasi-neutral equations.
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Variants : 2D model Euler–Maxwell, relativistic versions, periodic
solutions.

Main question : Are there any smooth nontrivial global solutions
of the Euler–Maxwell system ? This is a system of nonlinear
hyperbolic laws with no dissipation and no relaxation effects.

Constant solutions : (ne , ve , ni , vi ,E ,B) = (n0, 0, n0/Z , 0, 0, 0).

Positive conserved energy for small perturbations of the
constant solutions.
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Construction of global irrotational solutions of the full system
(Guo–I–Pausader 2013) for data corresponding to small, smooth
and localized perturbations of the constant solutions.

Earlier global existence results on simplified models : Guo (1998)
for the Euler–Poisson electron model, Guo–Pausader for the
Euler–Poisson ion model, Germain–Masmoudi for the
Euler–Maxwell electron model (weak decay), I.–Pausader for the
Euler–Maxwell electron model (robust decay).

Blow-up solutions for small irrotational initial data for the pure
compressible Euler equations (John, Sideris).



In dimension 2 we consider the Euler-Maxwell system for
electrons, namely

∂tne + div(neve) = 0,

neme (∂tve + ve · ∇ve) +∇pe = −nee

(
E − bv⊥e

c

)
,

∂tb + c · curl(E ) = 0,

∂tE + c∇⊥b = 4πeneve ,

where ne , b : R2 × I → R and ve ,E : R2 × I → R2 are C 2

functions, and e,me , c are strictly positive constants. We consider
the quadratic pressure law pe = Tn2

e/2 together with the
compatibility and irrotationality equations

div(E ) = 4πe(n0 − ne), curl(ve) =
e

mec
b.



We show that a constant neutral equilibrium,

(n, v ,E ,B) = (n0, 0, 0, 0)

is asymptotically stable : small smooth perturbations leads to
globally smooth solutions that return to equilibrium.

Main Theorem (Deng–I.–Pausader) : There exists a norm X and
ε > 0 such that irrotational perturbations of size OX (ε) of a
constant equilibrium lead to global solutions which remain globally
smooth and scatter. Besides, the solution obeys some mild decay

‖(n − n0, v ,E ,B)‖L∞ . (1 + |t|)−1+δ, δ > 0.

Irrotationality and neutrality are conditions on the initial data :

div(E ) = 4πe(n0 − n), curl(v) =
e

mec
b.

They are transported by the nonlinear flow.



After nondimensionalization the Euler–Maxwell system can be
rewritten as a quasilinear dispersive system which only depends on
the parameter

0 < d =
Tn0

mec2
=

V 2
e

c2
≤ 1.

More precisely, after diagonalization, we get

(∂t + iΛe) Ue = Ne ,

(∂t + iΛb) Ub = Nb,

where
Λe :=

√
1− d∆, Λb :=

√
1−∆,

Ne = (1/2)|∇|
(
u2

1 + u2
2

)
− iΛe

(
R1(ρu1) + R2(ρu2)

)
,

Nb = −i
(
R1(ρu2)− R2(ρu1)

)
,

and

ρ = |∇|Λ−1
e =Ue ,

uj = −Rj<(Ue)+ ∈jk RkΛ−1
b <(Ub).



This is a quasilinear time-reversible system, with no dissipation and
no relaxation effects.

Main theorem (quantitative). Assume that d ∈ (0, 1), let
N0 := 1015, and assume that

‖(U0
e ,U

0
b)‖HN0 + ‖(U0

e ,U
0
b)‖Z = ε0 ≤ ε.

Then there exists a unique global solution
(Ue ,Ub) ∈ C ([0,∞) : HN0) of the system with initial data
(Ue(0),Ub(0)) = (U0

e ,U
0
b). Moreover, for any t ∈ [0,∞)

‖(Ue(t),Ub(t))‖HN0 + sup
|α|≤4

(1+t)199/200‖Dα
x (Ue(t),Ub(t))‖L∞ . ε0.



Main difficulties :

(1) Less than 1/t pointwise decay of the solutions. The optimal
linear 1/t decay cannot be propagated by the nonlinear flow, even
in simpler semilinear evolutions, as it was pointed out by
Bernicot–Germain who found a logarithmic loss.

(2) Large set of time resonances. One can overcome sometimes the
slow pointwise decay using the method of normal forms of Shatah.
The main ingredient : absence of time resonances (or at least a
suitable ”null structure” of the quadratic part of the nonlinearity
matching the set of time resonances). Our system has a full
(codimension 1) set of time resonances, and no meaningful null
structures.
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Main bootstrap proposition : Suppose (Ue ,Ub) is a solution on
some time interval [0,T ], T ≥ 1, with initial data (U0

e ,U
0
b), and

define Vσ = e itΛσUσ, σ ∈ {e, b}. Assume that

‖(U0
e ,U

0
b)‖HN0 + ‖(V 0

e ,V
0
b )‖Z ≤ ε0 � 1

and

‖(Ue(t),Ub(t))‖HN0 + ‖(Ve(t),Vb(t))‖Z ≤ ε1 � 1

for all t ∈ [0,T ]. Then

‖(Ue(t),Ub(t))‖HN0 + ‖(Ve(t),Vb(t))‖Z . ε0 + ε
3/2
1

for any t ∈ [0,T ].

We use a ”quasilinear I-method”, in the spirit of the semilinear
I-method of Colliander–Keel–Stafillani–Takaoka–Tao.



The energy estimate :
In our problem it is not hard to construct high order energy
functionals EN , which are of the same size as ‖(Ue ,Ub)‖2

HN at
least as long as solutions are ”small”, and which satisfy energy
identities of the form

∂tEN(t) = Semilinear cubic terms.

The semilinear cubic terms are sums of nonsingular cubic
paraproducts of the form

Semilinear cubic terms ≈ 〈D〉NU ∗ 〈D〉NU ∗ 〈D〉2U,

which do not lose derivatives. Such basic energy estimates can be
used to develop the local regularity theory of the equation. They
can also be used, sometimes, as a step to proving global regularity,
provided that one can also prove at least 1/t pointwise decay of
solutions.



Shatah normal form method : ”transform” the problem into a
nonlinear problem with a cubic nonlinearity, in such a way that one
could prove quartic energy estimates of the form

∂tEN(t) = Semilinear quartic terms,

for a suitable energy functional EN .

Potential loss of derivatives in quasilinear problems : carefully
constructed nonlinear changes of variables (as in Wu), or the
”iterated energy method” of Germain–Masmoudi, or the
”paradifferential normal form method” of Alazard–Delort, or the
”modified energy method” of Hunter–Ifrim–Tataru.

Regardless of the method used, the critical underlying ingredient
needed to achieve a quartic energy identity is the effective absence
of quadratic time resonances.
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Construction of improved energy functionals : Our starting
point is to construct improved high order energy functionals KN ,
which are of the same size as ‖(Ue ,Ub)‖2

HN as long as the
solutions are ”small” in suitable low-regularity norms, and which
satisfy improved energy identities of the form

∂tKN(t) = Strongly semilinear cubic terms

+ Semilinear quartic terms .

In our case,

Semilinear quartic terms ≈ 〈D〉NU ∗ 〈D〉NU ∗ 〈D〉2U ∗ 〈D〉2U.

and

Strongly semilinear cubic terms ≈ 〈D〉NU ∗ 〈D〉N−1U ∗ 〈D〉3U.

The main gain, compared with the standard semilinear cubic terms,
is the gain of one derivative in one of the high order terms. This
derivative transfer is the key algebraic ingredient in the problem.



The semilinear quartic terms can be estimated elliptically, using
simple L2 ∗ L2 ∗ L∞ ∗ L∞ bounds on every time slice on the four
components. On the other hand, to estimate the strongly
semilinear cubic terms we decompose the (ξ, t) space and consider
two cases : if

|ξ| & |t|β,

where ξ is the frequency of the high order derivatives and β is a
suitable exponent, then we are in the quasilinear case. We estimate
the resulting space-time integrals using again simple L2 ∗ L2 ∗ L∞

bounds.

On the other hand, if
|ξ| . |t|β,

then we are in the semilinear case. In this case we use the Fourier
transform method : our main ingredients are a critical L2 bound
and a bootstrap argument based on a suitable choice of a norm.



The Duhamel formula : The system can be rewritten as

(∂t + iΛσ)Uσ =
∑
µ,ν∈P

Nσµν(Uµ,Uν)

for all σ ∈ {e, b}, where the nonlinearities are defined by

(FNσµν(f , g)) (ξ) =

∫
R2

mσµν(ξ, η)f̂ (ξ − η)ĝ(η) dη.

The multipliers mσµν satisfy suitable symbol-type estimates. We
define Vσ by

Vσ(t) = e itΛσUσ(t).

The Duhamel formula :

V̂σ(t, ξ) =V̂σ(0, ξ)

+
∑
µ,ν∈P

∫ t

0
e isΦσµν(ξ,η)mσµν(ξ, η)V̂µ(s, ξ − η)V̂ν(s, η) dηds.



The phase functions are

Φσµν(ξ, η) = Λσ(ξ)− Λµ(ξ − η)− Λν(η),

where

Λ±e(ξ) = ±
√

1 + d |ξ|2, Λ±b(ξ) = ±
√

1 + |ξ|2.

Main L2 lemma : Assume that T is given by

Tf (ξ) :=

∫
R2

e isΦ(ξ,η)a(ξ, η)ϕ(2νΦ(ξ, η))f (η)dη,

with 2m − 1 ≤ |s| ≤ 2m+1, m ∈ Z+, and

2(1+δ1)ν ≈ 2m, δ1 > 0.

The function a is supported in the ball ξ, η . 1 and satisfies

sup
ξ,η∈R2

∣∣Dα
ξ,ηa(ξ, η)

∣∣ .α 2|α|m/2.

Then ∥∥Tf
∥∥

L2 .δ1 2−1.005ν‖f ‖L2 .
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Main idea of proof : Let

R := 2−ν/16

and decompose at scale ≈ R,

T =
∑

(i ,j)∈Z2×Z2

Tij ,

Tij f (ξ) :=

∫
R2

e isΦ(ξ,η)a(ξ, η)ϕ(2νΦ(ξ, η))f (η)χi (ξ)χj(η)dη,

The of the operator T is based on the size of the smooth function
Υ : R2 × R2 → R,

Υ(ξ, η) = ∇2
ξ,ηΦ(ξ, η)

[
∇⊥ξ Φ(ξ, η),∇⊥η Φ(ξ, η)

]
.

Let

V 1 := {(i , j) ∈ Z2 × Z2 : Υ(v i , v j) < D2R},
V 2 := {(i , j) ∈ Z2 × Z2 : Υ(v i , v j) ≥ D2R}.



Lemma 1 : With the definitions above, for any (i , j) ∈ V 2,∥∥Tij

∥∥
L2→L2 . 2−5ν/4R−3/2.

The proof uses a TT ∗ argument and Schur’s lemma.

Lemma 2 : With the definitions above,∥∥∥ ∑
(i ,j)∈V 1

Tij

∥∥∥
L2→L2

. 2−νR1/25.

The proof uses Schur’s lemma and the following set bounds : if

E = {(ξ, η) : max(|ξ|, |η|) . 1, |Φ(ξ, η)| ≤ ε}

then

sup
ξ

∫
R2

1E (ξ, η) dη + sup
η

∫
R2

1E (ξ, η) dξ . ε log(1/ε).
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If ε ≤ ε′ ≤ 1/2, and

E ′ = {(ξ, η) : |Φ(ξ, η)| ≤ ε, |Υ(ξ, η)| ≤ ε′},

then we can write E ′ = E ′1 ∪ E ′2 such that

sup
ξ

∫
R2

1E ′1
(ξ, η) dη + sup

η

∫
R2

1E ′2
(ξ, η) dξ . ε log(1/ε) · (ε′)1/12.

This L2 lemma and the improved energy identity allow us close the
energy argument to control the increment of high order Sobolev
norms.
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The L2 lemma can also be used to control the growth of the
weighted norm

‖u‖Z2 := sup
b∈[0,N1]

‖Ωbu‖L2

where Ω = x1∂2 − x2∂1 is the rotation vector-field. Note :
combining the quasilinear I-method and the vector-field method
could be challenging, leading to the notion of ”compatible
vector-field structures”.

The main remaining issue is to prove t−1+δ decay. We use the
Duhamel formula

V̂σ(t, ξ) =V̂σ(0, ξ)

+
∑
µ,ν∈P

∫ t

0
e isΦσµν(ξ,η)mσµν(ξ, η)V̂µ(s, ξ − η)V̂ν(s, η) dηds.



We need a space Z1 such that

T : Z1 ∩ Z2 ∩ HN0 × Z1 ∩ Z2 ∩ HN0 → Z1.

and
‖e itΛσ f ‖L∞ . (1 + t)−1+δ‖f ‖Z1 .

Critical points (spacetime resonances) :

{(ξ, η) : Φσµν(ξ, η) = 0 and ∇ηΦσµν(ξ, η) = 0}.

In our case
(ξ, η) = (rω,Rω),

where ω ∈ S2.

We need to study the contributions of sub-level sets

{(ξ, η) : |Φσµν(ξ, η)| ≤ δ1 and |∇ηΦσµν(ξ, η)| ≤ δ2}.

We use localization and L2 orthogonality arguments to bound
these contributions.
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{(ξ, η) : |Φσµν(ξ, η)| ≤ δ1 and |∇ηΦσµν(ξ, η)| ≤ δ2}.

We use localization and L2 orthogonality arguments to bound
these contributions.



We define
Qjk f := ϕj(x)Pk f (x).

For σ ∈ {e, b} we define

Zσ
1 := {f ∈ L2(R3) : ‖f ‖Zσ

1
:= sup

(k,j)∈J
210k+‖Qjk f ‖Bσ

j
<∞},

where

‖g‖Bσ
j

: = 2(1−10δ)j‖Aσ≤D
g‖L2 + 2(1−10δ)j sup

D<n<j

2−(1/2−9δ)n‖Aσng‖L2

+ 2(1/2−δ)j‖Aσ≥jg‖L2 .

The operators Aσ are projection operators relative to the location
of the spheres of space-time resonances.



Perspective : the goal is to implement Fourier analysis methods in
the study of global solutions of quasilinear equations and systems.
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