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We will work in 3 spatial dimensions, with N particles.
N
rv=(r,...,rv) €R?

An N-body wave function ©p(t,ry) describes a system of N
bosons if it is symmetric:

Vo€ Sy, UN(t s ) = ON(E, Foys - - To(n)
We normalize so [[¢hn||2(rsny = 1.

We will introduce a suitable N-particle Hamiltonian Hy and
consider the linear N-body Schrodinger evolution

i0vn = Hyow



Bose-Einstein condensation (BEC) means that the wave function is
approximately for large N a tensor product

N
on(t ) ~ ] o(t )
j=1
for some one-particle wave function ¢(t) € L?(R3).

As N — oo, the function space L2(R3N) is changing, so in what
sense do we require convergence as N — oo?

A pure quantum state described by vy € L?(R3N) is alternatively
described by a rank 1 orthogonal projection [2(R3V) — [2(R3N).

v € LR o e L(EN) PEN)
||¢N||L2(R3N) =1 ~vn = orth proj onto ¥y

Schrodinger equation converts to von-Neumann equation

iat¢N = HN7/JN = iat’YN = [HNany]



At the level of kernels:

(t, v ) = Un(t, rn)on(t, ry)
The k-particle marginal density (k < N) is

'y,(\f) = trace of 7y over last (N — k) coords

( ) € £(L2(R3K); [2(R3K)) is no longer necessarily a pure state,
(k)

and could be a more general operator with Tr~y’ = 1 representing
a mixed state.

It is customary to decompose
rv = (e, rv—«)

At the level of kernels, the k-particle marginal is

K
'7/(\/)(1'>rk;r;<):/ YN(E, Pk, Ok ¥l PN—k) dPN—k

'N—k

=/ Nt Y=k ) UN (Vs Y—k) dfv—k

'N—k



We said BEC is, informally, for large N,

N
n(ten) ~ [ ot )
j=1

for some one particle wave function ¢(t) € L?(R3)

Converted to a statement about k-particle marginal densities:

k
X _
k<N, gt ) ~ [T et na(e. )
j=1
A precise definition of BEC:
k
v k li (¢, (¢, =0
c im0 (e k) H1¢ e

J:

Tr



Equivalently, BEC means that

vk, 'y(k) def

(k)
0o N

lim ~y 7 is a pure state
N— oo
where limit is taken in trace norm.

The problem is to prove this holds and show that ¢ evolves
according to the nonlinear Schrodinger equation (NLS), which we
call the mean-field limit equation.



Next, we consider the form of the Hamiltonian Hy. We need to
decompose

n=(x5.2), xxER’ zZeR
x € R? is the transverse direction and z € R is the longitudinal
direction.

N
1 r—r
21,12 2.2
Hy = E (A, +wx|" +wzz7) + E a3ﬁlv<laﬁj>
j=1 1<i<j<N

V : R3 — R is the interatomic interaction potential, whose long
range |r; — rj| > a° effect as observed by low energy (energy O(1))
particles is expressed by the scattering length.

0<p<l1



For0< 8 <1, and axk 1.

a
1 2 [ v ifo<p<i
b = scat <3,3—1V (;)) ~ 87T /R3 /8
d a .
ascat(V) ifpg=1

The scattering length can be positive or negative.

The 3D to 3D problem means keep w = 1, w, = 1 fixed, send
N — oo with 1
a = N

Each particle x; interacts with NV other particles x;, i # j and the
strength of each interaction is ~ N71.

3D NLS becomes the mean-field limit equation

Jps V fo<pB<1

. o 20 =
/at¢+ A,«(b b’¢‘ ¢ 07 b {871' scat( V) if /@ =1

Results available for b > 0 (repulsive interaction, defocusing NLS)



The 3D to 1D problem means keep w, = 1, but send w — oo,
N — oo simultaneously.

In the time-independent case, five different regimes have been
considered

Chapter 8 of Lieb, Seiringer, Solovej, Yngvason, The mathematics
of the Bose gas and its condensation.

We consider their “region 2"

1 ri—r
Hio =3 (-8 + el +uZzf) + 3 5V ( B J>
= 1<i<j<N




(Nw)—o0 ||W

In this case, the mean-field limit becomes, for large N, w,

k
() Al(enari) ~ [ 6t 5)d(t )

where

o(t,r) = Vwh(vVwx)e(t,z),  h(x) =n Y2 X/

1D NLS becomes the mean-field limit equation:

V g []* 0 <1
i3t90+8§cp—b\g0]290 =0, b= fR3 fR2 |hl < p
8mscat(V) [ [H* B=1

By (*), we mean precisely V' t, V k

. y K N
k’Y/(v,ZJ <f, N \/%72‘<> = [T A0o)e(t )0 (t 2| =0

Tr



The main new features of our work

» We are able to handle the 3D to 1D dimensional reduction in
the BBGKY framework, where an co — oo cancelation is
needed that does not occur in the 3D to 3D case.

» We are able to handle b < 0, attractive interactions, leading
the focusing NLS. This is the only context in which focusing
NLS has been derived as a mean-field limit.

» We claim that our assumptions correspond to the setting of
successful physics experiments



Salomon et. al. (ENS) Formation of bright matter wave solitons,
Science (2002), experiments in ’Li condensates

Fig. 3. Absorption im-
ages at variable delays
after switching off the
vertical trapping beam.
Propagation of an ideal
BEC gas (A) and of a
soliton (B) in the hori-
zontal 1D waveguide in
the presence of an ex-
pulsive potential. Prop-
agation without disper-
sion over 1.1 mm is a
clear signature of a
soliton. Corresponding
axial profiles are inte-
grated over the vertical
direction.
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Strecker et. al. (Rice) Formation and propagation of matter wave
soliton trains, Nature (2002), experiments in ‘Li condensates
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Figure 3 C of the of repulsive with atomic solitons.
The images are obtained using destructive absorption imaging, with a probe laser detuned
27 MHz from resonance. The magnetic field is reduced to the desired value before

switching off the end caps (see text). The times given are the intervals between turning off
the end caps and probing (the end caps are on for the t = 0 images). The axial dimension
of each image frame corresponds to 1.28 mm at the plane of the atoms. The amplitude of
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oscillation is ~370 m and the period is 310 ms. The a > 0 data correspond to 630 G,
for which a = 10a,, and the initial condensate number is ~3 x 10°. The a < 0 data
correspond to 547 G, for which a = — 3a,, The largest soliton signals correspond to
~5,000 atoms per soliton, although significant image distortion limits the precision of
number measurement. The spatial resolution of ~10 wm is significantly greater than the
expected transverse dimension /, = 1.5 um.



The typical experiment (taking w, = 0 for convenience)

Step A. Confine bosons, initially repelling, inside a trap, with
Hamiltonian

N
Hrnwo = Y (= +wilx)
j=1
+ Y (Nwo) M Vo((Nwo)’(ri = 1)
1<i<j<N
where
Vo(r) >0 a repulsive pair interaction

Reduce the temperature so that the bosons settle into the ground
state Y w0 for Hy w.o-



Mathematical Problem 1. Show that the ground state ¢y .0
exhibits BEC as N, wg — .

Recall this means V k

! k

X o3 o ] hg)eo(z) A0 pe(z)| =0

(k) z: iy
) 1 ) )
Vwo' /g i

li 1 (
m

N wo—00 wé‘ IYN’WO’O
Tr

This has been addressed by other authors, and the field is
summarized in the book by Lieb, Seiringer, Solovej, and Yngvason,
The mathematics of the Bose Gas and Its Condensation (2005).



Recall the Hamiltonian from Step A:

N
HN w0 = Z(—Arj +will?) Vo(r) >0

D0 (Nwo) Vo((Nwo) (17 = 1))
1<i<j<N

Step B. Stengthen the trap (increase wp to w), which turns the
interaction from repulsive Vg > 0 to attractive V <0, by a
mechanism called Feshbach resonance. Assume that this is done
quickly enough so that the wave function 1y o remains unchanged,
but the Hamiltonian is now

N
Hnw = D (=0, + @ x[%) V(r) <0
j=1
O NPV () (s — 1)
1<i<j<N



Step C. Taking time t = 0, describe the subsequent evolution

iathw = HN,w¢N,w (*)

Since Hy ., # Hpn w0, the wave function vy ., 0 is no longer the
ground state, but it is asymptotically factorized (BEC).



Mathematical Problem 2. Show if ¥y, 0 exhibits BEC, i.e. V k,

k
k Xk TN
i |G 2 520 ~ [T H) ()| =0
Jj=1

Tr

then the solution ¥y(t) to (*) also exhibits BEC, i.e. Vt, V k,

k

1 X x/ -
im (e ez o2 = [T eoe(e 2)Ree(e 2| =0
j=1 Tr

and moreover ¢ evolves according to the 1D focusing NLS

i0rp + D — blp[Pp =0



Theorem [X. Chen, Holmer, 2014]. Problem 2 is solved for
attractive interatomic interactions fR3 V < 0 leading to the 1D
focusing NLS as a mean-field limiting equation when the
(N,w) — oo limit is taken under the constraints

for certain functions v1(3), v2(p).

logy w

08

06

04

0.2

g

GNP < < GN2O) |

3
0<pB<=

7

vi() = dotted
line

v2(B) = min of
solid lines



For

vV >0:
1D, Adami-Golse-Teta (2007)
3D, Elgart-Erdds-Schlein-Yau (2006-2010) Energy estimates,

weak-* convergence of BBGKY to GP, uniqueness of GP by
Feynman graph combinatorics

3D, Klainerman-Machedon (2008) uniqueness of GP via
“board game”, but under a priori space-time bound
1D,2D,3D, more on KM estimates and the needed a priori
space-time bound (2008-2014): Kirkpatrick-Staffilani-Schlein,
Gressman-Sohinger-Staffilani, T.Chen-Pavlovic, X.Chen,
X.Chen-Holmer, Hong-Taliaferro-Xie,
Tzirakis-T.Chen-Pavlovic

3D, T.Chen-Hainzl-Pavlovic-Seiringer (2013), new proof of
uniqueness for GP using the quantum de Finetti theorem.

3D, Sohinger-Staffilani, Sohinger (2013-2014) randomized GP

3D, Fock space method (2010-2014),
Grillakis-Machedon-Margetis, X.Chen,
Benedikter-Oliveira-Schlein



The above results all assume V > 0 if the BBGKY—GP derivation
is considered. Also, the problems considered are 3D—3D, 2D—2D.

Our (X.Chen, Holmer) angle in the field has been to consider

» dimensional reduction in the mean-field limit
3D—2D defocusing, (2012)

» allow for attractive interactions and focusing NLS limit
1D—1D focusing (2013)

Our current paper 3D—1D focusing (2014) combines the two.

Other different but related problems in which attractive
interactions have been permitted is:

» Hartree problem (8 = 0) with V of either sign, Erdds-Yau
(2001), Michelangeli-Schlein (2010)

» 2D—2D stationary problem, 8 > 0, V < 0 in region of
stability, Lewin-Nam-Rougerie (2014)



Other different but related problems in which dimensional
reduction has been considered:

» (n+ d)D NLS — dD NLS,
Abdullah-Méhats-Schmeiser-Weishaupl (2005). This
corresponds to sending N — oo first, then w — co.

» Hani-Thomann (2014)

Cornell-Weiman (2000) did experiments with 8°Rb condensates
without anisotropic confining. Once interaction tuned attractive
the 3D condensate blows-up in a manner not described by NLS.

So the experiments by Strecker (2002) and Salomon (2002)
employing strong anistropic confining are perhaps best
mathematically modeled by sending N,w — oo simultaneously. In
the experiments, N ~ 10%, w ~ 103.



Aspects of the proof. Let
h(x) = r12e= X2
It is the ground state:
(=, + |x|?)h = 2h
One key analytical component of the argument, quite different
from earlier papers, is the energy estimates.

Before getting to that, let us view the overall picture:



Define the scaled density

~ (K def 1 k Xy x/
’.YI(V,Z;(tvxkazk;X;(,Z;() = J’YI(V,ZJ(t? . Tk /)

It satisfies the BBGKY hierarchy

o) = wz[ Ay + 3522 a&kaZ[ 92,440

j=1
1 ~(k
N Z [Vivew(ri = )’Y/(VZ,]
1<i<j<k
N —

ki1
N ZTrk+1[VNw( — 1) A )]
j=1

where Vp ,(x, z) = MV((N“’)ﬁx,(Nw)ﬁz).

w

B



We seek to show that

(k) (

(5) At Xk 2k X, Z)) HhXJ (X1) | Aoo,z(t, 2k Z)

(N w)—>oo

If we assume that almost of the limiting form of RHS, then

2
w Y 1B + P2 AL
=1
is of co - 0 limit form.
Our energy estimates show that
~ (k) oo ol
'Dabove ground 'YN’w(ta Xky Zks X Zk) —0

sufficiently fast and implies

k
~(k)
W By + %2250 = 0
j=1



3D BBGKY

. ~k
1055, = wZ[ A + |22, w+2[ 250

—0
k
=Y Wl — )34
1</<J<k
—0
N— k&
TN D Tripal Vv (ri = riga), 7Nw1)]
j=1

collapses, as (N,w) — oo to 1D GP

k
~(k
i0:5%), = } =02, 78+ 0D Tro [0(z — zis1), 6
Jj=1 j=

with b:/ v/ |h|*
R3 R2



1D GP
k a (k+1
~ +
/at7002 = Z[ 7'7éo,)z] + bZTrzk+1 [5(21 - Zk+1) 700 z )]
j=1
Take ¢ solving 1D NLS
i0rp + 02 — blpfPp =0

Set
k

785t 26 24) = ] o(t, 2) (1. 2))
j=1

Then 54, solves the 1D GP.



Let
K = compact ops L?(R3%) — [%(R3K)

L} = trace class ops L?(R3%) — [2(R3K)
Then
(Ki)™ = Li
Consider (L}, wkx), the space L} with the weak-star topology.
Since Ky is separable, (£}, wkx) is metrizable.

Consider k-particle marginals
(k) (1
i € C[0, TT; (L, wkx))

with the compact-open topology (topology of uniform in time
convergence). Arzela-Ascoli characterizes compactness.

Boundedness and equicontinuity follow from the energy estimates,
giving Step (A) below.



(A) Prove that for each k, the set {'NY/(\;(L} is compact in
C([0, T]; (L%, wk*)). Relies on energy estimates

(B) Prove that every limit point has the reduced form

k
[T h0)h(x) | 588 (t, 24: 20)
j=1

and %Qz solves 1D GP. Relies on energy estimates

(C) Prove that, in the space in which all limit points lie, there is a
unique solution to the GP hierarchy. A compact sequence with a
unique limit point converges to that limit point. We use a 1D
Klainerman-Machedon estimate that we previously proved.

(D) Upgrade convergence from wk* to strong by appealing to

Griimm’s convergence theorem.



Energy estimates. In the energy estimates, we must confront the
focusing nonlinearity and the diverging w.

Let

§E (1— Ay + W[ — 2w)12

Since —A,; + w2]Xj|2 — 2w >0, we have S; > 0. Notice that

SF(Vah(Vex)e(t 5)) = Veh(vix) (1 - 92)¢(t, 2)
so no diverging factor in w is produced if solution is in x-ground

state.

The energy estimate is: 3C > 0 such that Vk
2
Sj wN,w < Ck<wN,wa (a + NleN,w_Qw)kwN,w>

k
=1 12 (R3N)

J

for
C1NV1(’B) <w< C2NV2(ﬂ)

and C;, (o, « depend on V.



The usefulness being that the RHS is constant in time.

To handle this, we use a decomposition of the energy different
from earlier works:

a+ N Hyy —2w=N"1 > H
1<i<j<N

where Hj; represents a two body interaction in r; and r;.

The most common terms are of the form
(x)  (a+ N Hyw —2w)% ~ Hij Hi, - - Hiji,

where all i, j are distinct.

Need to use the spectral cluster estimate for the Hermite operator

(Koch-Tataru (2005)) to

> extract positive lower bounds on each Hj;. [requires
w < NVI(B)]

» bound cross terms HiaHp3 (which occur less frequently than

those in (*)) [requires N2(%) < (]



Another important ingredient is the Klainerman-Machedon board
game argument and collapsing estimate. In our case, this takes the
following form:

He(t)Re(l)U(l)(_t)Bl,ZU(2)(t)R£25)¢(2)HL%LZI . < Ceollo@ 2 ,
X1X X2X2

where

o —
U(l) — eltaxle *1
ha2  —itd?, o2 —itd?
UR = %o M eltPae %
and the collapsing operator

B2 (x1, %) = o (xq, x1, x|, x1)

Estimate fails if 6(t) =1



