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Solutions of the Schrödinger equation

Aim: Construct solutions of the Schrödinger equation on an open
bounded set Ω ⊂ Rn

−∆u+ qu = 0

with an L∞ potential q on Ω.

One method: use complex geometrical optics solutions

Introduced by Sylvester and Uhlmann Construction presented in
this introduction by Kenig, Sjöstrand and Uhlmann
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Complex geometrical solutions

Pick x0 not in the convex hull of Ω̄.
Coordinates in Ω

t = log |x− x0| ∈ R, ω =
x− x0

|x− x0|
∈ Sn−1

>α0
,

with respect to which the Laplace operator reads

∆ = e−
n+2
2
t
(
∂2
t + ∆̂Sn−1

)
e
n−2
2
t

where ∆̂Sn−1 = ∆Sn−1 − (n− 2)2/4.



Prologue The Calderón problem Carleman weights The geodesic ray transform Quasimodes and semiclassical measures

Hemisphere caps

Definition

A compact manifold with boundary (M, g) is said to be simple if
its boundary ∂M is stricly convex and if the exponential map
expx : Ux →M defined on its maximal set of definition is a
diffeomorphism for all x ∈M .

Cap strictly smaller than the northern hemisphere

Sn−1
>α0

=
{
x ∈ Sn−1 : xn > α0

}
, 0 < α0 < 1,

is a simple manifold.

Geodesic ray transform is injective on simple manifolds and there
are stability estimates !
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Complex geometrical optics solutions

Approximate solutions of the Schrödinger equation of the form

u = e−
(
s+n−2

2

)
tvs(ω), s = τ + iλ, λ > 0

where vs is a quasimode of ∆̂Sn−1(
∆̂Sn−1 + s2

)
vs = OL2(Sn−1

+ )(1).

With this choice, we have

∆u = e−
(
s+n+2

2

)
t(∆̂Sn−1 + s2

)
vs

and therefore u is an approximate solution of the Schrödinger
equation

‖|x− x0|s+
n−2
2 (−∆ + q)u‖L2(Ω) = O(1).
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Quasimodes
Pick y ∈ ∂Sn−1

+ on the equator

∆̂Sn−1 + s2 = (sin θ)−
n−2
2

(
∂2
θ + s2 1

sin2 θ
∆̃Sn−2

)
(sin θ)

n−2
2

θ = dSn−1(θ, ω) is the distance to y, i.e. the colatitude with
respect to the pole y,
η ∈ Sn−2, remaining angular variables,
Quasimode on the sphere

vs(ω) = (sin θ)−
n−2
2 eisθb(η), ω = expy(θη)

b is any smooth function

Approximate solutions can be upgraded to exact solutions of the
Schrödinger equation of the form

u = e−
(
s+n−2

2

)
t(vs(ω) +O(τ−1)

)
thanks to Carleman estimates.
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Semiclassical measure
Choose u1, u2 to be the solutions

u1(x) = e−
(
s+n−2

2

)
t(vs(ω) +O(τ−1)

)
,

u2(x) = e−
(
−s̄+n−2

2

)
t(v−s̄(ω) +O(τ−1)

)
with s = τ + iλ, we have∫
qu1u2 dx =

∫
Sn−1
+

∫ ∞
−∞

e2iλte2tq(x0 + etω) dt︸ ︷︷ ︸
=Q(λ,ω)

vsv−s̄ dω +O(τ−1)

and passing to the limit as τ →∞ from
∫
qu1u2 dx we finally

control ∫
Sn−2
+

(∫ π

0
Q(−2λ, expy(θη))e−2λθ dθ

)
b2(η) dη
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The attenuated geodesic ray transform

Varying b,
∫
qu1u2 dx we control the attenuated geodesic ray

transform

T2λQ(y, η) =

∫ π

0
Q(λ, expy(θη))e−2λθ dθ

which is injective (and for which we have stability estimates) when
λ is small.

The maximal principle allows to recover large frequencies λ of
Q(λ, ·).
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Remarks

What have we used in this construction?

1. the warped structure of
(Ω,dx2) ⊂ (R+ × Sn−1

>α0
, e2t(dt2 × gSn−1)),

2. the existence of Carleman estimates to upgrade approximate
solutions to exact ones,

3. the explicit computation of semiclassical measures and the
relation with an attenuated geodesic ray transform.

One can therefore adapt this construction to Riemannian manifolds
with boundary presenting a similar structure (DSF, Kenig, Salo,
Uhlmann).
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The Calderón problem

On an inverse boundary value
problem,
Seminar on Numerical Analysis
and its Applications to
Continuum Physics, Rio de
Janeiro,
Editors W.H. Meyer and M.A.
Raupp,
Sociedade Brasileira de
Matematica (1980), 65–73.

http://en.wikipedia.org/wiki/Alberto Calderón

In a foundational paper of 1980, A. Calderón asked the following
question:
Is it possible to determine the electrical conductivity of a body by
making current and voltage measurements at the boundary?
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Riemannian rigidity

In fact, one can state the inverse problem with a geometric flavour.

Let (M, g) be a compact Riemannian manifold with boundary ∂M
of dimension n ≥ 3 and q a bounded measurable function.
Consider the Dirichlet problem{

(∆g + q)u = 0

u|∂M = f ∈ H
1
2 (∂M)

and define the associated Dirichlet-to-Neumann map (under a
natural spectral assumption)

Λg,qu = ∂νu|∂M

where ν is a unit normal to the boundary.
If q = 0, we use Λg = Λg,0 as a short notation.



Prologue The Calderón problem Carleman weights The geodesic ray transform Quasimodes and semiclassical measures

Riemannian rigidity

The inverse problem is whether the DN map determines the metric
g.
There is a gauge invariance, that is by isometries which leave the
boundary points unchanged:

Λϕ∗g = Λg, ϕ|∂M = Id∂M

Inverse problem: Does the Dirichlet-to-Neumann map Λg,q
determine the potential q and the metric g modulo such isometries?

If n ≥ 3 and q = 0 this is a generalization of the anisotropic
conductivity problem and one passes from one to the other by

γjk =
√

det g gjk, gjk = (det γ)−
2

n−2 gjk.
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Conformal metrics

There is a conformal gauge transformation

∆cgu = c−1(∆g + qc)(c
n−2
4 u), qc = c

n+2
4 ∆g(c

n−2
4 )

which translates at the boundary into

Λcg,qf = c−
n+2
4 Λg,q+qc(c

n−2
4 u) +

n− 2

4
c−

1
2∂νcf.

So if one knows c, ∂νc at the boundary (boundary determination)
then one can deduce one DN map from the other.

A more reasonable inverse problem: Λcg = Λg ⇒ c = 1.
Note that there is no isometry gauge invariance in this case.
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Some references n ≥ 3

1987 Sylvester-Uhlmann: isotropic case

1989 Lee-Uhlmann: boundary determination, analytic metrics, no
potential, determination of the metric

2001 Lassas-Uhlmann: improvement on topological assumptions

2007 Kenig-Sjöstrand-Uhlmann: small subsets of the boundary,
n ≥ 3, global Carleman estimates with logarithmic weights,
introduction of limiting Carleman weights.

2009 Guillarmou-Sa Baretto: Einstein manifolds, no potential,
determination of the metric, unique continuation argument

2009 DSF-Kenig-Salo-Uhlmann: fixed admissible geometries,
determination of a smooth potential, CGOs

2011 DSF-Kenig-Salo: fixed admissible geometries, determination
of an unbounded potential, CGOs
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Remarks

1. Analytic metrics case fairly well understood. The smooth case
remains a challenging problem.

2. There are limitations in the method using CGO construction:
the existence of limiting Carleman weights

3. We will concentrate on the case of identifiability of the metric
within a conformal class

Λcg = Λg ⇒ c = 1.

4. With boundary determination

Λcg = Λg ⇒ c|∂M = 1, ∂νc|∂M = 0.

it is enough to solve the inverse problem on the Schrödinger
equation with a fixed metric

Λg,q1 = Λg,q2 ⇒ q1 = q2.
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A density property

Green’s formula and the fact that Λ∗g,q = Λg,q yield∫
M

(q1 − q2)u1u2 dV =

∫
∂M

(Λg,q1 − Λg,q2)u1u2 dS = 0

for all pairs (u1, u2) of solutions of the Schrödinger equations
(−∆g + q1)u1 = 0, (−∆g + q2)u2 = 0. So we are reduced to the
following density property

Is the linear span of products u1u2 of solutions u1, u2 to two
Schrödinger equations with two potentials q1 and q2 dense in, say,
L1(M) ?
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Warped products

Let (M0, g0) be a compact Riemannian manifold (with boundary)
and let ψ be a smooth function on R, the warped product
(R,dt2)×e2ψ (M0, g0) is the manifold R×M0 endowed with the
following metric

dt2 + e2ψ(t)g0.

Our fixed metric g will be conformal to such a warped product.
Two reasons for this choice:

• Warped metrics admit limiting Carleman weights.

• This is the natural setting to solve equations by separation of
variables.
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Unwarping warped products

An open manifold which is conformally imbedded in the warped
product of the Euclidean line R and a Riemannian manifold
(M0, g0) of dimension n− 1 admits limiting Carleman weights.
Indeed the metric on R×e2ψ M0 is conformal to

e−2ψ(t)dt2 + g0

and one can make the change of variable

t′ =

∫ t

0
e−ψ(t′′) dt′′

to reduce the metric to
dt′2 + g0

where ϕ(t′) = t′ is a natural limiting Carleman weight.
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Limiting Carleman weights

Definition

A limiting Carleman weight on an open Riemannian manifold is
smooth real-valued function without critical points such that

1

i

{
pϕ, pϕ

}
= 0 on p−1

ϕ (0)

where pϕ(x, ξ) = |ξ|2g − |dϕ|2g + 2i〈ξ,dϕ〉g is the semiclassical
principal symbol of the conjugated operator eτϕ(−∆g)e

−τϕ.

This notion was introduced by Kenig-Sjöstrand-Uhlmann.
In a product metrics g = dt2 + g0, ϕ = t is a limiting weight:

pϕ = (τ + i)2 + g0 = τ2 + g0 − 1 + 2iτ

1

i

{
pϕ, pϕ

}
= 4{τ2 + g0 − 1, τ} =

∂g0

∂t
= 0.
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Carleman estimates

Theorem

There exist two constants C, τ0 > 0 such that

|Re s| ‖estw‖L2 + ‖estdw‖L2 ≤ C‖est(∂2
t + ∆g0 + q)w‖L2

for all w ∈ C∞0 (R×M0) and all s ∈ C such that |Re s| ≥ τ0.

By Hahn-Banach, one can construct a correction term rs such that

(∂2
t + ∆g + q)(estrs,q) = estf

‖rs,q‖L2 ≤ |Re s|−1‖f‖L2 .

Remark: There exist Lp versions of Carleman estimates with
limiting weights in this context (DSF, Kenig, Salo) which can be
viewed as version of estimates of Jerison and Kenig and of Kenig,
Ruiz and Sogge on manifolds.
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The geodesic ray transform
The unit sphere bundle :

SM0 =
⋃
x∈M0

Sx, Sx =
{

(x, ξ) ∈ TxM0 ; |ξ|g = 1
}
.

Boundary: ∂(SM0) = {(x, ξ) ∈ SM0 ; x ∈ ∂M0} union of inward
and outward pointing vectors:

∂±(SM0) =
{

(x, ξ) ∈ SM0 ; ±〈ξ, ν〉 ≤ 0
}
.

Denote by t 7→ γ(t, x, ξ) the unit speed geodesic starting at x in
direction ξ, and let τ(x, ξ) be the time when this geodesic exits
M0.
Geodesic ray transform :

T0f(x, ξ) =

∫ τ(x,ξ)

0
f(γ(t, x, ξ)) dt, (x, ξ) ∈ ∂+(SM0).
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Simple manifolds

Definition

A compact manifold (M0, g0) with boundary is simple if for any
p ∈M0 the exponential map expp with its maximal domain of
definition is a diffeomorphism onto M0, and if ∂M0 is strictly
convex (that is, the second fundamental form of ∂M0 ↪→M0 is
positive definite).

1. Simple manifolds are non-trapping.

2. Simple manifolds are diffeomorphic to a ball.

3. A hemisphere is not simple.
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Injectivity of the ray transform

Injectivity of the ray transform is known to hold for

1. Simple manifolds of any dimension.

2. Manifolds of dimension ≥ 3 that have strictly convex
boundary and are globally foliated by strictly convex
hypersurfaces (Uhlmann-Vasy).

3. A class of non-simple manifolds of any dimension such that
there are sufficiently many geodesics without conjugate points
and the metric is close to a real-analytic one
(Stefanov-Uhlmann).

4. There are counterexamples to injectivity of the ray transform.
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Main results in a conformal class

Theorem

Let (M, g) be a compact manifold with boundary which can be
embedded in the warped product of the Euclidean line and another
manifold. Let q1, q2 ∈ C(M) such that 0 is not a Dirichlet
eigenvalue of the corresponding Schrödinger operators. Assume in
addition that the ray transform in the transversal manifold is
injective. If Λg,q1 = Λg,q2 , then q1 = q2.

Corollary

Let (M, g) be a compact manifold with boundary which can be
embedded in the warped product of the Euclidean line and another
manifold. Assume in addition that the ray transform in the
transversal manifold is injective. If Λcg = Λg, then c = 1.
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Separation of variables
We are interested in the density of the set of products of solutions
of Schrödinger equations. Let us start by harmonic functions u
using separation of variables

∆g(w(t)v(x)) = (∂2
t + ∆g0)(w(t)v(x)) = 0

and for s ∈ C take

(D2
t − s2)w = 0, (∆g0 + s2)v = 0

i.e. u = estvs, (∆g0 + s2)vs = 0.
By Hahn-Banach, one can construct a correction term rs such that

(∂2
t + ∆g + q)(estrs,q) = −est(∆g0 + s2 + q)vs

‖rs,q‖L2 ≤ |Re s|−1‖(∆g0 + s2 + q)vs‖L2 .

So it suffices to require (∆g0 + s2)vs = oL2(Re s) and vs = OL2(1)
to obtain a solution of the Schrödinger equation of the form

u = est(vs + rs,q), rs,q = oL2(1).
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Quasimodes

We take h = (Re s)−1 as a semiclassical parameter and write
s = h−1 + iλ. We consider the family of products u1u2 of
u1 = e−st(vs + rs,q1) and u2 = est(vs + rs,q2) when s ∈ C

e−2iλt|vs|2 + o(1)

where vs is a quasimode

(h2∆g0 + (1 + iλh)2)vs = oL2(h).

The density property we are looking for will be satisfied if we can
find quasimodes such that

lim
h→0

∫
M
qe−2iλt|vs|2 dtdVg0 = lim

h→0

∫
M0

q̂(2λ, x)|vs|2 dVg0 = 0

for q ∈ C0
0 (R×M0) implies q = 0.
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Semiclassical measures

In fact, one is lead to study the measures which are limits of
|vs|2 dVg0 when Re s→∞ where vs is a quasimode.

If one lifts those measures to the cotangent bundle T ∗M0, one
obtains semiclassical defect measures. These are in fact supported
in the cosphere bundle S∗M0 and satisfy a transport equation
(loosely speaking, they are invariant under the cogeodesic flow
when λ = 0).

In a previous work, we (Carlos Kenig, Mikko Salo, Gunther
Uhlmann and myself) were able to construct quasimodes in a
simple manifold which concentrate on a geodesic γ, thus obtaining

Tλ(q̂(0, ·))(γ) =

∫ L

0
e−2λr q̂(2λ, γ(r)) dr = 0

for all geodesics γ and all λ ≥ 0.
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Getting rid of the attenuation
Although it seems that one needs the injectivity of an attenuated
geodesic ray transform to conclude q = 0, it suffices to deal with
the case λ = 0. Indeed from∫ L(x,θ)

0
q̂(0, expx(rθ)) dr = 0

one gets q̂(0, ·) = 0. Differentiating∫ L(x,θ)

0
e−2λr q̂(λ, expx(rθ)) dr = 0

with respect to λ at λ = 0, one gets∫ L(x,θ)

0
∂λq̂(0, expx(rθ)) dr = 0

hence ∂λq̂(0, ·) = 0. Etc. Since q̂ is analytic with respect to λ we
get q = 0.
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Quasimodes

One of the contribution of our work is the construction of such
quasimodes — concentrating on a non-closed geodesic γ — in the
general case. This construction can be done in two ways:

• using Gaussian beams Gauss ,

• by a microlocal approach Micro .

To simplify, we will take λ = 0.
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Microlocal construction

There is a canonical transformation ς which sends the cogeodeisc
Γ to the line Λ = R× {0, εm} (εm = (0, . . . , 0, 1) with
m = dimM0 = n− 1). Quantizing such a transformation by
semiclassical Fourier integral operators one gets

Vh

(√
−h2∆g0 − 1

)
Uh = hD1 +O(h∞)

Our quasimode will be

vh = Uh(1⊗ wh(x′)), WFsc(wh) = {(0, εm},

this is a quasimode microlocally near Γ and also away from Γ since

WFsc(vh) ⊂ Γ.

The choice for wh is a wave packet (or coherent state).
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An application of Egorov’s theorem

The semiclassical defect measure associated to the quasimode vh
can be computed using Egorov’s theorem:∫

M0

(Oph a)vhvh dVg0 =

∫
Rm

U∗h(Oph a)Uhwhwh dx1dx′

=

∫
Rm

(Oph ς
∗a)whwh dx1dx′ +O(h)

and since the defect measure associated to wave packets
concentrated near (0, εn) is δ(0,ε) passing to the limit we get∫

Λ
ς∗a =

∫
Γ
a.

Hence the semiclassical measure is the measure on Γ (and its
projection on M0 the measure on the geodesic γ.
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Gaussian beams

We look for quasimodes of the form vh = e
i
h

Φa, we have

(h2∆g0 − 1)vh = e
i
h

Φ
(
h0(1− |dΦ|2g0)a+ h(2L∇Φ + ∆g0ϕ)a+ h2∆g0a

)
• Eikonal equation: |dΦ|2g0 = 1, a solution given by

Φg0 = dg0(x, x0) if there are no conjugate points,

• Transport equation : (L∇g0Φ + 1
2∆g0Φ)a = 0, again explicit

solutions in simple manifolds.

In the case of general manifolds, an alternative is to solve
approximately those equations close to a geodesic and use a
complex phase Φ.
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Gaussian beams in Euclidean space

Our geodesic: γ = {(x1, 0) : x1 ∈ [0, T ]}

Approximate eikonal equation: (dΦ)2 = 1 +O(|x′|4)
Approximate transport equation: L∇Φa+ 1

2∆Φa = O(|x′|2)
Phase: Φ(x) = x1 + 1

2〈Q(x1)x′, x′〉 with ImQ(x1) > cIn so that

(dΦ)2 − 1)e
i
h

Φa = O(|x′|4)e−
c
h
|x′|2 = O(h2)(

L∇Φa+
1

2
∆Φa

)
e
i
h

Φ = O(|x′|2)e−
c
h
|x′|2 = O(h)

Solving the approximate eikonal equation

(dΦ)2 − 1 = 〈Q̇(x1)x′, x′〉+ (Q(x1)x′)2 +O(|x′|4)

= 〈(Q̇+Q2)x′, x′〉+O(|x′|4)

leads to a Riccati equation on the matrix Q̇+Q2 = 0
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Gaussian beams in Euclidean space
Solving the approximate eikonal equation(
L∇Φ +

1

2
∆Φ

)
a = ∂x1a+

1

2
TrQ(x1)a+ 〈Qx′,∇x′a〉+O(|x′|2)

leads if a is independent on x′ to

a = c exp

(
− 1

2

∫ x1

0
TrQ(t) dt

)
An explicit Gaussian beam:

vh = h−
n−2
4 e−

1
2

∫ x1
0 TrQ(t) dt ei

x1
h e

i
2h
〈Q(x1)x′,x′〉,

Q̇+Q2 = 0.

Modulus of a Gaussian beam

|vh|2 = h−
n−2
2 e−

∫ x1
0 Tr ReQ(t) dt e−

1
2
〈ImQ(x1)x′,x′〉,
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Limit measure

For Riccati matrices, we have e−
∫ x1
0 Tr ReQ(t) dt =

√
det ImQ(x1)

det ImQ(0)

therefore passing to the limit in∫
q̂(0, x)|vh|2 dx =∫ ∞

−∞

(
h
n−2
2

∫
Rn−2

√
det ImQ(x1)

detQ(0)
e−

1
2
〈ImQ(x1)x′,x′〉q̂(0, x) dx′

)
dx1

gives

lim
h→0

∫
q̂(0, x)|vh|2 dx = cn

∫ ∞
−∞

q̂(0, x1, 0) dx1 = cnT0(q̂(0, ·))(γ)

an information on the geodesic ray transform T0 of q̂(0, ·).
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