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Critical wave equation

82u— Au=|u|v2u, xRN
Ui—o = (U, 1) € H'(RY) x L3(RN)
where N € {3,4,5}.

Duyckaerts Kenig Merle Critical wave

2014

4/22



Critical wave equation

82u— Au=|u|v2u, xRN
Ui—o = (Up, ) € H'(RN) x LA(RN)

where N € {3,4,5}.
Conserved energy

E@) = [, IVaudF + 5 [ ot - 52 [ 1u

and momentum

P(U)= [ Vxudsu.
RN

Duyckaerts Kenig Merle Critical wave 2014

4/22



Critical wave equation

82u— Au=|u|v2u, xRN
Ui—o = (Up, ) € H'(RN) x LA(RN)

where N € {3,4,5}.
Conserved energy

E@) = [, IVaudF + 5 [ ot - 52 [ 1u

and momentum

P(U)= [ Vxudsu.
RN
Invariant by the scaling of the equation

ux(t,x) = Az u(At, Ax).
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Typical solutions |

Denote by T, (u) the maximal time of existence of u.
Goal: describe the asymptotics of uas t — T (u), for large solutions.
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Typical asymptotics
a) Scattering: T, (u) = +oo and

t—liToo [Vixt = Viexur(t, X)|| i 2 =0

for some vy, 0?u; — Au, = 0.
b) Type | blow-up: T, (u) < oo and

lim ||d(t)]|; = .
t—>T+(u)” ()||H1XL2 oo

Example given by the ODE y” = y%.
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Typical solutions |l
c) Stationary solutions:
~AQ=1Q|"2Q, Qe H'(RN)

Existence, with arbitrarily large energy: [W.Y. Ding 1986], [Del Pino,
Musso, Pacard, Pistoia 2013].
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c) Stationary solutions:
~AQ=1Q|"2Q, Qe H'(RN)

Existence, with arbitrarily large energy: [W.Y. Ding 1986], [Del Pino,
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“Unique” radial solution (ground state):

1

W= —
<1+,\,(',’f,—'f2))2

Duyckaerts Kenig Merle Critical wave 2014 6/22



Typical solutions |l

c) Stationary solutions:

i AN
-AQ=|Q|"2Q, Qe H'(RY)
Existence, with arbitrarily large energy: [W.Y. Ding 1986], [Del Pino,

Musso, Pacard, Pistoia 2013].
“Unique” radial solution (ground state):

1
(1+ ,\,(',f,'fz))g_f

c’) Travelling waves: , p = |p| < 1:

W =

t 1 1
O"“’X):Q«‘m*w(W‘

Qp(t, x) = Qp(0, x — tp).
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Soliton resolution conjecture

Conjecture:
Let u a solution which does not scatter and such that

t'f}l?;) 1G] 1 2 < 00
Then there exist J > 1 and
@ v, s.t atZVL — Ay, = 07
@ Travelling waves Q,’;j,j =1...J,
® Parameters x;(t) € RN, \i(t) > 0,

such that
J

ult) = vl + Y. —e—h (0558 ) + rto,

where

im0 02 = O
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Remarks on the conjecture

a) Existence of solutions with J =1 and Q = W:

@ T, (u) < oo [Krieger, Schlag, Tataru 2009], [Hillairet, Raphaél
2012], [Krieger, Schlag 2012]

@ T, (u) =00, \(t) = 1 [Krieger-Schlag 2007], \(t) = t7, |n| small
[Donninger, Krieger 2013]
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@ T, (u) =00, \(t) = 1 [Krieger-Schlag 2007], \(t) = t7, |n| small
[Donninger, Krieger 2013]

b) Soliton resolution was only known for smooth solutions of
completely integrable equations, using the method of inverse
scattering: for example KdV [Eckhaus, Schuur 1985].
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Remarks on the conjecture

a) Existence of solutions with J =1 and Q = W:
@ T, (u) < oo [Krieger, Schlag, Tataru 2009], [Hillairet, Raphaél
2012], [Krieger, Schlag 2012]
@ T, (u) =00, \(t) = 1 [Krieger-Schlag 2007], \(t) = t7, |n| small
[Donninger, Krieger 2013]

b) Soliton resolution was only known for smooth solutions of
completely integrable equations, using the method of inverse
scattering: for example KdV [Eckhaus, Schuur 1985].

¢) The dynamics described in the conjecture is believed to be unstable,
at the threshold between type | blow-up and scattering. However, it is
the stable dynamics for more geometric equations (wave maps...).
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References on energy-critical waves

Defocusing equation (scattering for all solutions) [Grillakis 90, 92],
[Shatah Struwe, 93, 94], [Kapitanski 94], [Ginibre Velo 95], [Nakanishi
95], [Bahouri Shatah 98], [Bahouri Gérard 99], [Tao 06].

Duyckaerts Kenig Merle Critical wave 2014 9/22



References on energy-critical waves

Defocusing equation (scattering for all solutions) [Grillakis 90, 92],
[Shatah Struwe, 93, 94], [Kapitanski 94], [Ginibre Velo 95], [Nakanishi
95], [Bahouri Shatah 98], [Bahouri Gérard 99], [Tao 06].

Focusing equation

Below the ground-state energy [Kenig Merle]

At the ground state energy [TD Merle]

Slightly above the ground state energy (center stable manifold):
[Krieger Nakanishi Schlag 2013]

Remarks on Type Il blow-up [Krieger Wong]

Dimension N > 6: [Bulut Czubak Li Pavlovi¢ Zhang]

In this talk: soliton resolution for radial data N = 3, [TD Kenig Merle
2013] and weaker results in the nonradial case [TD Kenig Merle 2012,
2014]

Some results for radial data in space dimension 4: [Cote Lawrie Kenig
Schlag 2013].
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Outline

e Soliton resolution for radial data
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Soliton resolution

Theorem. Assume N = 3. Let u be a radial solution which does not

scatter and such that

Jimint 60,2 < o
Then there exist J > 1 and:

@ v, such that ?v, — Av, =0,

@ signsic {1}, j=1...J,

@ parameters \j(t), 0 < \q(f) < Ao(f) <

<L Ay(D),
such that
J Lj X
u(t) =vi()+ > —=2 W<)\‘ t)> +r(d),
() Y
where t_J|7(+rm(u) ()| 1.2 = O-
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Proof of the resolution |: general strategy

Let u be a non-scattering solution. Assume 3{t,}, such that

ty nﬁo T+, th < T+

lim sup || G(tn)|| g1, 2 < 0.
n—oo
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Proof of the resolution |: general strategy

Let u be a non-scattering solution. Assume 3{t,}, such that
ty n;)o T+, th < T+
lim sup || G(tn)|| g1, 2 < 0.
n—oo
Using the profile expansion of [Bahouri Gérard] and approximation

results, we have (for small = or |x| > |7| + R, R large)

J
U(tn +7) = Vit +7) + Y Un(7, X) + w; (7)
j=1

where v, is a fixed solution of the linear wave equation, w; is a
dispersive remainder and U, are nonlinear profiles:
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Proof of the resolution |: general strategy

Let u be a non-scattering solution. Assume 3{t,}, such that
ty n;)o T+, th < T+
lim sup || G(tn)|| g1, 2 < 0.
n—oo
Using the profile expansion of [Bahouri Gérard] and approximation

results, we have (for small = or |x| > |7| + R, R large)

J
U(tn +7) = Vit +7) + Y Un(7, X) + w; (7)
j=1

where v, is a fixed solution of the linear wave equation, w; is a
dispersive remainder and U, are nonlinear profiles:

i 1 T =1 X
i) = 70 (02 2.
N2 jn - Ajn

RU — AU = UV U, x, RN, Aj,>0
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Proof of the resolution II: exterior energy

Goal: prove that the only possible profiles U/ are W (up to scaling and
sign change).

Main tool:

Assume N = 3. Let u be a radial, nonstationary solution of the

equation. Then there exists ry > 0, n > 0 and a small, global solution u
such that

u(t,ry=u(t,r)ifr>rp+t tinthe domain of existence of u (1)

and
—+oo

Wt >0orvt <0, / Vet X)2 dx > 1, @
[t|+ro

Proof: use exterior energy estimates for radial solutions of the linear
wave equation in dimension 3 and small data theory.
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Proof of the resolution Ill: channels of energy.

Assume to fix ideas T, (u) < oco. Then

(tn) —— (vo,v1) in H' x I?

and 4(t) — (vp, v4) will concentrate in a light cone.
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Proof of the resolution Ill: channels of energy.

Assume to fix ideas T, (u) < oco. Then

(tn) —— (vo,v1) in H' x I?

and 4(t) — (vp, v4) will concentrate in a light cone.

Channels of energy method:

Consider a profile expansion for a sequence {u(fp)}n, with nonlinear

profiles U/. If one of the profiles U/ is not equal to W, then by the two
preceding slides, he will send energy outside of the light-cone, at the
blow-up time, or arbitrarily close to the boundary of the light cone, at

the initial time, yielding a contradiction.
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Outline

e Partial results in the nonradial case
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N > 4 or nonradial data

New difficulties
@ Weaker exterior energy estimates for the linear equation.

@ In the nonradial case, no classification of stationary solutions.
@ Technical difficulties given by new geometric transformations:

space translations, rotations, Lorentz transformation, Kelvin
transformation for the elliptic equation.
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N > 4 or nonradial data

New difficulties
@ Weaker exterior energy estimates for the linear equation.
@ In the nonradial case, no classification of stationary solutions.

@ Technical difficulties given by new geometric transformations:
space translations, rotations, Lorentz transformation, Kelvin
transformation for the elliptic equation.

We have proved partial results:
@ A “small data” result (H' x L2 norm close to the H'-norm of W).

@ Local strong convergence up to the transformations of the
equation analog to the result of [Struwe 2003] for wave maps.

@ Rigidity theorem for solutions with the compactness property.
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Compact solution:

Definition. A solution u has the compactness property if there exist
A(t), x(t) such that

= {<A22(t)“<t’ o) A;(r)at“(t’ o)

te (T_(u) T+(u))}

has compact closure in H' x L2.
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Exactly what is used in the compactness-rigidity method initiated in
[Kenig Merle 2006,2008].
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Compact solution:

Definition. A solution u has the compactness property if there exist
A(t), x(t) such that

= {<A22(t)“<” o) A;(r)at“(t’ o)

te (T_(u) T+(u))}

has compact closure in H' x L2.

Exactly what is used in the compactness-rigidity method initiated in
[Kenig Merle 2006,2008].

Classification of these solutions is crucial: Remember the talk of Frank
Merle on Friday. See also [Tao 2007] for NLS in high dimensions.
Goes back to [Glangetas Merle 1995], [Martel Merle 2000].

Rigidity conjecture for solutions with the compactness property:
the only such solutions are 0 and solitary waves Qp.
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Transformations of the elliptic equation

Consider the stationary equation —AQ = Q°, Q € H'(R"). Then, if Q
is a solution, so is:
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Transformations of the elliptic equation
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° AA,?Q (%), A > 0 (scaling)
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Transformations of the elliptic equation

Consider the stationary equation —AQ = @°, Q € H'(RN). Then, if Q

is a solution, so is:

° AA,?Q (%), A > 0 (scaling)

@ Q(x + a), a € RN (translation)
@ Q(R - x), R e O(n) (rotation) and

° M%O (ﬁ) (Kelvin transformation).
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Transformations of the elliptic equation

Consider the stationary equation —AQ = Q°, Q € H'(R"). Then, if Q
is a solution, so is:

o >Q (%), x>0 (scaling)
A2
@ Q(x + a), a € RN (translation)
@ Q(R - x), R e O(n) (rotation) and
1 X i i
° X2 Q <‘X|2> (Kelvin transformation).
Let a € RN. Conjugating the Kelvin transformation and the translation
with respect to a, we obtain that the equation is also invariant by

Z*NQ x — alx|?
1-2(a,x) +af?x? )

X
Q— ’ — alx|
|X]
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Nondegeneracy assumption

To study the (conditional) stability of @, consider the linearized

N+2
operator Lg := —A — i|Q| . Then

U(Q):{—wgg...g—w‘12<O}U[O,—|—oo).

Duyckaerts Kenig Merle Critical wave 2014

19/22



Nondegeneracy assumption

To study the (conditional) stability of @, consider the linearized

N+2
operator Lg := —A — i|Q| . Then

U(Q)—{—wgg...g—w‘12<O}U[O,—|—oo).

Let Zg = {f e H' : Lof = 0}. Each of the preceding transformation
generates an element of Zq: let

Zo= span{(z — N)XQ + [x[20,Q — 2xx - VQ,0,Q, 1 <j <N,
. N-2
(0% = Xdx)Q. 1 <] < k< N, =5 =Q+x-VQ}.
Then Zq C Zq.
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U(Q)—{—wgg...g—w‘12<O}U[O,—|—oo).

Let Zg = {f e H' : Lof = 0}. Each of the preceding transformation
generates an element of Zq: let

Zo= span{(z — N)XQ + [x[20,Q — 2xx - VQ,0,Q, 1 <j <N,
. N-2
(0% = Xdx)Q. 1 <] < k< N, =5 =Q+x-VQ}.
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Nondegeneracy assumption

To study the (conditional) stability of @, consider the linearized

N+2
operator Lg := —A — i|C)| . Then

U(Q)—{—wgg...g—w‘12<O}U[O,—|—oo).

Let Zg = {f e H' : Lof = 0}. Each of the preceding transformation
generates an element of Zq: let

Zo= span{(z — N)XQ + [x[20,Q — 2xx - VQ,0,Q, 1 <j <N,
. N-2
(0% = Xdx)Q. 1 <] < k< N, =5 =Q+x-VQ}.

Then Zg C Zo. Nondegeneracy assumption: Zg = Zq.
@ True for W.
@ [Musso Wei 2014]: true for the solutions of [Del Pino & all.
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Nonradial result

Theorem Let u be a nonzero solution with the compactness property,
with maximal time of existence (T_, T1). Then

@ There exist a sequence of time {t,}, and a travelling wave Qp
such thatlimp_, 1o th = T4 and

lim ‘)\2 tn) U (tn, A (ta) - + (1)) = Qp (t) |,

n— oo
+ ‘

© Assume that Q satisfies the non-degeneracy assumption. Then
u= Qp, where Q ~ Q up to translation and scaling.

=0.

AE (1) 85t (tn, A (1) - +X (tn)) — 81 Qp (1) .
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Nonradial result

Theorem Let u be a nonzero solution with the compactness property,
with maximal time of existence (T_, T1). Then

@ There exist a sequence of time {t,}, and a travelling wave Qp
such thatlimp_, 1o th = T4 and

lim ‘)\2 tn) U (tn, A (ta) - + (1)) = Qp (t) |,

n— oo
+ ‘

© Assume that Q satisfies the non-degeneracy assumption. Then
u= Qp, where Q ~ Q up to translation and scaling.

=0.

AE (1) 85t (tn, A (1) - +X (tn)) — 81 Qp (1) .

Proof of point (1) “classical”: monotonicity formulas and nonexistence
of self-similar compact solutions from [Kenig Merle 08].
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More energy channels

Main new idea of the proof of point (2): consider the equation
N+2
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More energy channels

Main new idea of the proof of point (2): consider the equation
N+2 4
2 _ — A _ -
8tv+LQv_0, LQ— A N—2|Q‘N2.

Proposition (Exterior energy for eigenfunctions). Let
v(t,x) = e “'Y(x), LqY=—-uw?Y, Y#0
Then if ry > 1, we have the following exterior energy property

lim / Vexv(t, X)Pdx = =(r5) > 0
=00 x| ro+1]

where e(rg) > 0, limg, o e(rg) = 0.
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More energy channels

Main new idea of the proof of point (2): consider the equation
N+2 4
2 _ — A _ -
3tV—|—LQV—0, LQ— A N—2|Q‘N2‘

Proposition (Exterior energy for eigenfunctions). Let
v(t,x) = e “'Y(x), LqY=—-uw?Y, Y#0
Then if ry > 1, we have the following exterior energy property

lim / Vexv(t, X)Pdx = =(r5) > 0
[X|>ro+1t|

t——o0
where e(rg) > 0, limg, o e(rg) = 0.
Proof. In radial coordinates x = r6, we have [Agmon 82], [Meshkov

91], for r — +o0,
—wr
Y(r,0)~ S V), Ve s\ {ob
r 2z
Independent of the dimension!
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Further references:
Channels of energy method:

@ wave maps: [Céte, Kenig, Lawrie, Schlag 2012], [Kenig, Lawrie,
Schlag 2013], [C6te 2013], [Liu, Kenig, Lawrie, Schlag 2014].

@ energy-supercritical wave equations: [TD, Kenig, Merle 2012],
[Dodson, Lawrie 2014].

@ energy-subcritical wave equations: [Ruipeng Shen 2012],
[Dodson, Lawrie 2014].

@ defocusing energy-critical wave with potential: [Hao Jia, Baoping
Liu, Guixiang Xu 2014]
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Further references:
Channels of energy method:
@ wave maps: [Cote, Kenig, Lawrie, Schlag 2012], [Kenig, Lawrie,
Schlag 2013], [Cbte 2013], [Liu, Kenig, Lawrie, Schlag 2014].
@ energy-supercritical wave equations: [TD, Kenig, Merle 2012],
[Dodson, Lawrie 2014].

@ energy-subcritical wave equations: [Ruipeng Shen 2012],
[Dodson, Lawrie 2014].
@ defocusing energy-critical wave with potential: [Hao Jia, Baoping
Liu, Guixiang Xu 2014]
Failure of the radial exterior energy estimate in even space dimension:
[Céote, Kenig, Lawrie, Schlag 2012]
Exterior energy estimate in odd space dimension: [Liu, Kenig, Lawrie,
Schlag 2014]
Open questions. Full resolution in dimension N > 4, and in dimension
3 for nonradial data. Existence of solutions with several stationary
profiles. Classification of stationary solutions. Nondegeneracy
assumptions for these stationary solutions. Other equations.
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