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Critical wave equation

∂2
t u −∆u = |u|

4
N−2 u, x ∈ RN

~u�t=0 = (u0,u1) ∈ Ḣ1(RN)× L2(RN)

where N ∈ {3,4,5}.

Conserved energy

E(~u) =
1
2

∫
RN
|∇xu(t)|2 +

1
2

∫
RN
|∂tu(t)|2 − N − 2

2N

∫
|u(t)|

2N
N−2 .

and momentum
P(~u) =

∫
RN
∇xu∂tu.

Invariant by the scaling of the equation

uλ(t , x) = λ
N−2

2 u(λt , λx).
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Typical solutions I

Denote by T+(u) the maximal time of existence of u.
Goal: describe the asymptotics of u as t → T+(u), for large solutions.

Typical asymptotics
a) Scattering: T+(u) = +∞ and

lim
t→+∞

‖∇t ,xu −∇t ,xuL(t , x)‖Ḣ1×L2 = 0

for some uL, ∂2
t uL −∆uL = 0.

b) Type I blow-up: T+(u) <∞ and

lim
t→T+(u)

‖~u(t)‖Ḣ1×L2 = +∞.

Example given by the ODE y ′′ = y
N+2
N−2 .
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Typical solutions II

c) Stationary solutions:

−∆Q = |Q|
4

N−2 Q, Q ∈ Ḣ1(RN)

Existence, with arbitrarily large energy: [W.Y. Ding 1986], [Del Pino,
Musso, Pacard, Pistoia 2013].

“Unique” radial solution (ground state):

W =
1(

1 + |x |2
N(N−2)

)N
2−1

.

c’) Travelling waves: , p = |p| < 1:

Qp(t , x) = Q

((
− t√

1− p2
+

1
p2

(
1√

1− p2
− 1

)
p · x

)
p + x

)
Qp(t , x) = Qp(0, x − tp).
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Soliton resolution conjecture

Conjecture:
Let u a solution which does not scatter and such that

lim inf
t→T+(u)

‖~u(t)‖Ḣ1×L2 <∞.

Then there exist J ≥ 1 and
vL s.t. ∂2

t vL −∆vL = 0,
Travelling waves Qj

pj
, j = 1 . . . J,

Parameters xj(t) ∈ RN , λj(t) > 0,
such that

u(t) = vL(t) +
J∑

j=1

1

λ
N−2

2
j (t)

Qj
pj

(
0,

x − xj(t)
λj(t)

)
+ r(t),

where
lim

t→T+(u)

∥∥~r(t)
∥∥

Ḣ1×L2 = 0.
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Remarks on the conjecture

a) Existence of solutions with J = 1 and Q = W :
T+(u) <∞ [Krieger, Schlag, Tataru 2009], [Hillairet, Raphaël
2012], [Krieger, Schlag 2012]
T+(u) =∞, λ(t) = 1 [Krieger-Schlag 2007], λ(t) ≈ tη, |η| small
[Donninger, Krieger 2013]

b) Soliton resolution was only known for smooth solutions of
completely integrable equations, using the method of inverse
scattering: for example KdV [Eckhaus, Schuur 1985].

c) The dynamics described in the conjecture is believed to be unstable,
at the threshold between type I blow-up and scattering. However, it is
the stable dynamics for more geometric equations (wave maps...).
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References on energy-critical waves

Defocusing equation (scattering for all solutions) [Grillakis 90, 92],
[Shatah Struwe, 93, 94], [Kapitanski 94], [Ginibre Velo 95], [Nakanishi
95], [Bahouri Shatah 98], [Bahouri Gérard 99], [Tao 06].

Focusing equation
Below the ground-state energy [Kenig Merle]
At the ground state energy [TD Merle]
Slightly above the ground state energy (center stable manifold):
[Krieger Nakanishi Schlag 2013]
Remarks on Type II blow-up [Krieger Wong]
Dimension N ≥ 6: [Bulut Czubak Li Pavlović Zhang]
In this talk: soliton resolution for radial data N = 3, [TD Kenig Merle
2013] and weaker results in the nonradial case [TD Kenig Merle 2012,
2014]
Some results for radial data in space dimension 4: [Côte Lawrie Kenig
Schlag 2013].
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Soliton resolution

Theorem. Assume N = 3. Let u be a radial solution which does not
scatter and such that

lim inf
t→T+(u)

‖~u(t)‖Ḣ1×L2 <∞.

Then there exist J ≥ 1 and:
vL such that ∂2

t vL −∆vL = 0,
signs ιj ∈ {±1}, j = 1 . . . J,
parameters λj(t), 0 < λ1(t)� λ2(t)� . . .� λJ(t),

such that

u(t) = vL(t) +
J∑

j=1

ιj

λ
N−2

2
j (t)

W
(

x
λj(t)

)
+ r(t),

where lim
t→T+(u)

∥∥~r(t)
∥∥

Ḣ1×L2 = 0.
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Proof of the resolution I: general strategy

Let u be a non-scattering solution. Assume ∃{tn}n such that

tn −→n→∞
T+, tn < T+

lim sup
n→∞

‖~u(tn)‖Ḣ1×L2 <∞.

Using the profile expansion of [Bahouri Gérard] and approximation
results, we have (for small τ or |x | ≥ |τ |+ R, R large)

u(tn + τ) ≈ vL(tn + τ) +
J∑

j=1

U j
n(τ, x) + wJ

n (τ)

where vL is a fixed solution of the linear wave equation, wJ
n is a

dispersive remainder and U j
n are nonlinear profiles:

U j
n(τ, x) =

1

λ
N−2

2
j,n

U j
(
τ − tj,n
λj,n

,
x
λj,n

)
.

∂2
t U j −∆U j = |U j |

4
N−2 U j , xj,n ∈ RN , λj,n > 0
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Proof of the resolution II: exterior energy

Goal: prove that the only possible profiles U j are W (up to scaling and
sign change).
Main tool:
Assume N = 3. Let u be a radial, nonstationary solution of the
equation. Then there exists r0 > 0, η > 0 and a small, global solution ũ
such that

ũ(t , r) = u(t , r) if r ≥ r0 + t t in the domain of existence of u (1)

and

∀t ≥ 0 or ∀t ≤ 0,
∫ +∞

|t |+r0

|∇t ,x ũ(t , x)|2 dx ≥ η, (2)

Proof: use exterior energy estimates for radial solutions of the linear
wave equation in dimension 3 and small data theory.
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Proof of the resolution III: channels of energy.

Assume to fix ideas T+(u) <∞. Then

~u(tn) −−−⇀
n→∞

(v0, v1) in Ḣ1 × L2

and ~u(t)− (v0, v1) will concentrate in a light cone.

Channels of energy method:

Consider a profile expansion for a sequence {u(tn)}n, with nonlinear
profiles U j . If one of the profiles U j is not equal to W , then by the two
preceding slides, he will send energy outside of the light-cone, at the
blow-up time, or arbitrarily close to the boundary of the light cone, at
the initial time, yielding a contradiction.
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N ≥ 4 or nonradial data

New difficulties
Weaker exterior energy estimates for the linear equation.
In the nonradial case, no classification of stationary solutions.
Technical difficulties given by new geometric transformations:
space translations, rotations, Lorentz transformation, Kelvin
transformation for the elliptic equation.

We have proved partial results:
A “small data” result (Ḣ1 × L2 norm close to the Ḣ1-norm of W ).
Local strong convergence up to the transformations of the
equation analog to the result of [Struwe 2003] for wave maps.
Rigidity theorem for solutions with the compactness property.
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Compact solution:

Definition. A solution u has the compactness property if there exist
λ(t), x(t) such that

K =

{(
1

λ
N−2

2 (t)
u
(

t ,
x − x(t)
λ(t)

)
,

1

λ
N
2 (t)

∂tu
(

t ,
x − x(t)
λ(t)

)
:

t ∈ (T−(u),T+(u))

}
has compact closure in Ḣ1 × L2.

Exactly what is used in the compactness-rigidity method initiated in
[Kenig Merle 2006,2008].
Classification of these solutions is crucial: Remember the talk of Frank
Merle on Friday. See also [Tao 2007] for NLS in high dimensions.
Goes back to [Glangetas Merle 1995], [Martel Merle 2000].

Rigidity conjecture for solutions with the compactness property:
the only such solutions are 0 and solitary waves Qp.
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Transformations of the elliptic equation

Consider the stationary equation −∆Q = Q5, Q ∈ Ḣ1(RN). Then, if Q
is a solution, so is:

1

λ
N−2

2
Q
( x
λ

)
, λ > 0 (scaling)

Q(x + a), a ∈ RN (translation)
Q(R · x), R ∈ O(n) (rotation) and

1
|x |N−2 Q

(
x
|x |2

)
(Kelvin transformation).

Let a ∈ RN . Conjugating the Kelvin transformation and the translation
with respect to a, we obtain that the equation is also invariant by

Q 7→
∣∣∣∣ x
|x |
− a|x |

∣∣∣∣2−N

Q
(

x − a|x |2

1− 2〈a, x〉+ |a|2|x |2

)
.
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with respect to a, we obtain that the equation is also invariant by

Q 7→
∣∣∣∣ x
|x |
− a|x |

∣∣∣∣2−N

Q
(

x − a|x |2

1− 2〈a, x〉+ |a|2|x |2

)
.
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is a solution, so is:

1

λ
N−2

2
Q
( x
λ

)
, λ > 0 (scaling)

Q(x + a), a ∈ RN (translation)

Q(R · x), R ∈ O(n) (rotation) and
1

|x |N−2 Q
(

x
|x |2

)
(Kelvin transformation).

Let a ∈ RN . Conjugating the Kelvin transformation and the translation
with respect to a, we obtain that the equation is also invariant by

Q 7→
∣∣∣∣ x
|x |
− a|x |

∣∣∣∣2−N

Q
(

x − a|x |2

1− 2〈a, x〉+ |a|2|x |2

)
.

Duyckaerts Kenig Merle Critical wave 2014 18 / 22



Transformations of the elliptic equation

Consider the stationary equation −∆Q = Q5, Q ∈ Ḣ1(RN). Then, if Q
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Nondegeneracy assumption

To study the (conditional) stability of Q, consider the linearized

operator LQ := −∆− N + 2
N − 2

|Q|
4

N−2 . Then

σ(Q) =
{
− ω2

p ≤ . . . ≤ −ω2
1 < 0

}
∪ [0,+∞).

Let ZQ =
{

f ∈ Ḣ1 : LQf = 0
}

. Each of the preceding transformation
generates an element of ZQ: let

Z̃Q = span
{

(2− N)xjQ + |x |2∂xj Q − 2xjx · ∇Q, ∂xj Q, 1 ≤ j ≤ N,

(xj∂xk − xk∂xj )Q, 1 ≤ j < k ≤ N,
N − 2

2
Q + x · ∇Q

}
.

Then Z̃Q ⊂ ZQ. Nondegeneracy assumption: ZQ = Z̃Q.

True for W .
[Musso Wei 2014]: true for the solutions of [Del Pino & al].
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Nonradial result

Theorem Let u be a nonzero solution with the compactness property,
with maximal time of existence (T−,T+). Then

1 There exist a sequence of time {tn}n, and a travelling wave Qp
such that limn→+∞ tn = T+ and

lim
n→∞

∥∥∥λN
2−1 (tn) u (tn, λ (tn) ·+x (tn))−Qp (tn)

∥∥∥
Ḣ1

+
∥∥∥λN

2 (tn) ∂tu (tn, λ (tn) ·+x (tn))− ∂tQp (tn)
∥∥∥

L2
= 0.

2 Assume that Q satisfies the non-degeneracy assumption. Then
u = Q̃p, where Q̃ ≈ Q up to translation and scaling.

Proof of point (1) “classical”: monotonicity formulas and nonexistence
of self-similar compact solutions from [Kenig Merle 08].
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More energy channels

Main new idea of the proof of point (2): consider the equation

∂2
t v + LQv = 0, LQ = −∆− N + 2

N − 2
|Q|

4
N−2 .

Proposition (Exterior energy for eigenfunctions). Let

v(t , x) = e−ωtY (x), LQY = −ω2Y , Y 6≡ 0

Then if r0 � 1, we have the following exterior energy property

lim
t→−∞

∫
|x |≥r0+|t |

|∇t ,xv(t , x)|2 dx = ε(r0) > 0

where ε(r0) > 0, limr0→∞ ε(r0) = 0.

Proof. In radial coordinates x = rθ, we have [Agmon 82], [Meshkov
91], for r → +∞,

Y (r , θ) ≈ e−ωr

r
N−1

2

V (θ) , V ∈ C0(SN−1) \ {0}.

Independent of the dimension!
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Further references:
Channels of energy method :

wave maps: [Côte, Kenig, Lawrie, Schlag 2012], [Kenig, Lawrie,
Schlag 2013], [Côte 2013], [Liu, Kenig, Lawrie, Schlag 2014].
energy-supercritical wave equations: [TD, Kenig, Merle 2012],
[Dodson, Lawrie 2014].
energy-subcritical wave equations: [Ruipeng Shen 2012],
[Dodson, Lawrie 2014].
defocusing energy-critical wave with potential: [Hao Jia, Baoping
Liu, Guixiang Xu 2014]

Failure of the radial exterior energy estimate in even space dimension:
[Côte, Kenig, Lawrie, Schlag 2012]
Exterior energy estimate in odd space dimension: [Liu, Kenig, Lawrie,
Schlag 2014]
Open questions. Full resolution in dimension N ≥ 4, and in dimension
3 for nonradial data. Existence of solutions with several stationary
profiles. Classification of stationary solutions. Nondegeneracy
assumptions for these stationary solutions. Other equations.
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