Branching to maximal compact subgroups

David Vogan

Department of Mathematics Massachusetts Institute of Technology

Roger Howe 70th, Yale 6/4/15

Branching to maximal compact subgroups

David Vogan

Outline

Prequel

Introduction

What are the questions?

Equivariant K-theory

K-theory and representations

Birthday business

Branching to maximal compact subgroups

David Vogan

Something to do during the talk

 k_{v} local field, $G_{v} = G(k_{v})$ reductive, $g_{v} = \text{Lie}(G_{v})$. $g_{v}^{*} = \text{lin fnls on } g_{v}, O_{v} = G_{v} \cdot x_{v}$ coadjt orbit. $N(O_{v}) =_{\text{def}} \overline{k_{v} \cdot O_{v}} \cap N_{v}^{*}$ asymp nilp cone of O_{v} . k global, $\pi = \otimes_{v} \pi_{v}$ automorphic rep of G reductive.

Conjecture

1. \exists coadjt orbit $G(k) \cdot x \subset \mathfrak{g}(k)^*$, $N(G_v \cdot x) = WF(\pi_v)$. 2. \exists global version of local char expansions for π_v .

Says $G(k) \cdot x \rightarrow$ asymp of *K*-types at each place.

$$O_{\overline{k}} =_{\mathsf{def}} G(\overline{k}) \cdot x \rightsquigarrow \mathcal{N}(O_{\overline{k}}) = \overline{k} \cdot O_{\overline{k}} \cap \mathcal{N}_{\overline{k}}^*$$

 $N(O_{\overline{k}}) =$ closure of one nilp orbit \mathcal{M} .

 $N(G_v \cdot x)$ contained in $N(O_{\overline{k}})$, but may not meet \mathcal{M} .

Branching to maximal compact subgroups

David Vogan

Setting

Compact groups *K* are relatively easy... Noncompact groups *G* are relatively hard. Harish-Chandra *et al.* idea:

understand $\pi \in \widehat{G} \leftrightarrow$ understand $\pi|_{K}$

(nice compact subgroup $K \subset G$). Get an invariant of a repn $\pi \in \widehat{G}$:

$$m_{\pi} \colon \widehat{K} \to \mathbb{N}, \qquad m_{\pi}(\mu) = \text{mult of } \mu \text{ in } \pi|_{K}.$$

- 1. What's the support of m_{π} ? (subset of \widehat{K})
- 2. What's the rate of growth of m_{π} ?
- 3. What functions on \widehat{K} can be m_{π} ?

Branching to maximal compact subgroups

David Vogan

Examples

1. $G = GL(n, \mathbb{C}), K = U(n)$. Typical restriction to K is

$$\pi|_{\mathcal{K}} = \operatorname{Ind}_{U(1)^n}^{U(n)}(\gamma) = \sum_{\mu \in \widehat{U(n)}} m_{\mu}(\gamma)\gamma \quad (\gamma \in \widehat{U(1)^n}):$$

 $m_{\pi}(\mu)$ = mult of μ is $m_{\mu}(\gamma)$ = dim of γ wt space.

2. $G = GL(n, \mathbb{R}), K = O(n)$. Typical restriction to K is $\pi|_{K} = \operatorname{Ind}_{O(1)^{n}}^{O(n)}(\gamma) = \sum_{\mu \in \widehat{O(n)}} m_{\mu}(\gamma)$:

 $m_{\pi}(\mu)$ = mult of μ in π is $m_{\mu}(\gamma)$ = mult of γ in μ .

3. G split of type E_8 , K = Spin(16). Typical res to K is

$$\pi|_{Spin(16)} = \operatorname{Ind}_{M}^{Spin(16)}(\gamma) = \sum_{\mu \in Spin(16)} m_{\mu}(\gamma)\gamma;$$

here $M \subset Spin(16)$ subgp of order 512, cent ext of $(\mathbb{Z}/2\mathbb{Z})^8$.

Moral: may compute m_{π} using compact groups.

Branching to maximal compact subgroups

David Vogan

Machinery to use

Roger's approach to these questions:

Roger's results on classical groups

Our approach today:

Use fundamental tools

Ask George and Roman for advice

Get new results on general groups

Branching to maximal compact subgroups

David Vogan

Work with real reductive Lie group $G(\mathbb{R})$.

Describe (old) associated cycle $\mathcal{AC}(\pi)$ for irr rep $\pi \in \widehat{G(\mathbb{R})}$: geometric shorthand for approximating restriction to $K(\mathbb{R})$ of π .

Describe (new) algorithm for computing $\mathcal{AC}(\pi)$.

A *real* algorithm is one that's been implemented on a computer. This one has not, but should be possible soon.

Branching to maximal compact subgroups

David Vogan

Prequel Introduction

Questions

K-theory

K-theory & repns

Assumptions

 $G(\mathbb{C}) = G = \text{cplx conn reductive alg gp.}$ $G(\mathbb{R}) = \text{group of real points for a real form.}$ Could allow fin cover of open subgp of $G(\mathbb{R})$, so allow nonlinear. $K(\mathbb{R}) \subset G(\mathbb{R})$ max cpt subgp; $K(\mathbb{R}) = G(\mathbb{R})^{\theta}$. $\theta = \text{alg inv of } G; K = G^{\theta}$ possibly disconn reductive. Harish-Chandra idea:

∞-diml reps of $G(\mathbb{R}) \iff$ alg gp $K \frown$ cplx Lie alg g (g, K)-module is vector space V with

- 1. repn π_K of algebraic group K: $V = \sum_{\mu \in \widehat{K}} m_V(\mu)\mu$
- 2. repn π_g of cplx Lie algebra g
- 3. $d\pi_{\mathcal{K}} = \pi_{\mathfrak{g}}|_{\mathfrak{k}}, \qquad \pi_{\mathcal{K}}(k)\pi_{\mathfrak{g}}(X)\pi_{\mathcal{K}}(k^{-1}) = \pi_{\mathfrak{g}}(\mathrm{Ad}(k)X).$

In module notation, cond (3) reads $k \cdot (X \cdot v) = (Ad(k)X) \cdot (k \cdot v)$.

Branching to maximal compact subgroups

David Vogan

Geometrizing representations

 $G(\mathbb{R})$ real reductive, $K(\mathbb{R})$ max cpt, $g(\mathbb{R})$ Lie alg $\mathcal{N}^* =$ cone of nilpotent elements in g^* .

$$\mathcal{N}^*_{\mathbb{R}} = \mathcal{N}^* \cap i\mathfrak{g}(\mathbb{R})^*$$
, finite # $G(\mathbb{R})$ orbits.

 $\mathcal{N}_{\theta}^{*} = \mathcal{N}^{*} \cap (\mathfrak{g}/\mathfrak{k})^{*}$, finite # K orbits.

Goal 1: Attach orbits to representations in theory. Goal 2: Compute them in practice.

"In theory there is no difference between theory and practice. In practice there is." Jan L. A. van de Snepscheut (or not). (π, \mathcal{H}_{π}) irr rep of $G(\mathbb{R})$ \mathcal{H}_{π}^{K} irr (\mathfrak{g}, K) -module \downarrow Howe wavefront \downarrow assoc var of gr $WF(\pi) = G(\mathbb{R})$ orbs on $\mathcal{N}_{\mathbb{R}}^{*}$ $\mathcal{A}C(\pi) = K$ orbits on \mathcal{N}_{θ}^{*}

Columns related by HC, Kostant-Rallis, Sekiguchi, Schmid-Vilonen.

So Goal 1 is completed. Turn to Goal 2...

Branching to maximal compact subgroups

David Vogan

Associated varieties

 $\mathcal{F}(\mathfrak{g}, \mathbf{K})$ = finite length $(\mathfrak{g}, \mathbf{K})$ -modules...

noncommutative world we care about.

 $C(\mathfrak{g}, K) = \mathfrak{f.g.} (S(\mathfrak{g}/\mathfrak{k}), K)$ -modules, support $\subset \mathcal{N}_{\theta}^* \dots$ commutative world where geometry can help.

$$\mathcal{F}(\mathfrak{g}, K) \xrightarrow{\mathsf{gr}} C(\mathfrak{g}, K)$$

gr not quite a functor (choice of good filts), but **Prop.** gr induces surjection of Grothendieck groups $K\mathcal{F}(\mathfrak{g}, K) \xrightarrow{gr} KC(\mathfrak{g}, K);$

image records restriction to K of HC module.

So restrictions to *K* of HC modules sit in equivariant coherent sheaves on nilp cone in $(g/f)^*$

$$\mathcal{KC}(\mathfrak{g},\mathcal{K}) =_{\mathrm{def}} \mathcal{K}^{\mathcal{K}}(\mathcal{N}_{\theta}^*),$$

equivariant *K*-theory of the *K*-nilpotent cone. Goal 2: compute $K^{K}(N_{\theta}^{*})$ and the map **Prop.** Branching to maximal compact subgroups

David Vogan

Equivariant K-theory

Setting: (complex) algebraic group K acts on (complex) algebraic variety X.

Originally *K*-theory was about vector bundles, but for us coherent sheaves are more useful.

 $\operatorname{Coh}^{K}(X)$ = abelian categ of coh sheaves on X with K action. $K^{K}(X)$ =_{def} Grothendieck group of $\operatorname{Coh}^{K}(X)$.

Example: $\operatorname{Coh}^{\mathcal{K}}(\operatorname{pt}) = \operatorname{Rep}(\mathcal{K})$ (fin-diml reps of \mathcal{K}).

 $K^{K}(\text{pt}) = R(K) = \text{rep ring of } K; \text{ free } \mathbb{Z}\text{-module, basis } \widehat{K}.$

Example: X = K/H; Coh^K(K/H) \simeq Rep(H)

 $E \in \operatorname{Rep}(H) \rightsquigarrow \mathcal{E} =_{\operatorname{def}} K \times_H E$ eqvt vector bdle on K/H $K^K(K/H) = R(H)$.

Example: X = V vector space.

 $E \in \operatorname{Rep}(K) \rightsquigarrow \operatorname{proj} \operatorname{module} O_V(E) =_{\operatorname{def}} O_V \otimes E \in \operatorname{Coh}^K(X)$ proj resolutions $\implies K^K(V) \simeq R(K)$, basis $\{O_V(\tau)\}$. Branching to maximal compact subgroups

David Vogan

Doing nothing carefully

Suppose $K \frown X$ with finitely many orbits: $X = Y_1 \cup \cdots \cup Y_r$, $Y_i = K \cdot y_i \simeq K/K^{y_i}$. Orbits partially ordered by $Y_i \ge Y_i$ if $Y_i \subset \overline{Y_i}$.

$$(\tau, E) \in \widehat{K^{y_i}} \rightsquigarrow \mathcal{E}(\tau) \in \operatorname{Coh}^K(Y_i).$$

Choose (always possible) K-eqvt coherent extension

$$\widetilde{\mathcal{E}}(\tau) \in \mathsf{Coh}^{K}(\overline{Y_{i}}) \rightsquigarrow [\widetilde{\mathcal{E}}] \in K^{K}(\overline{Y_{i}}).$$

Class $[\widetilde{\mathcal{E}}]$ on \overline{Y}_i unique modulo $\mathcal{K}^{\mathcal{K}}(\partial Y_i)$. Set of all $[\widetilde{\mathcal{E}}(\tau)]$ (as Y_i and τ vary) is basis of $\mathcal{K}^{\mathcal{K}}(X)$. Suppose $M \in \operatorname{Coh}^{\mathcal{K}}(X)$; write class of M in this basis

$$[M] = \sum_{i=1}^{r} \sum_{\tau \in \widehat{K^{\mathcal{Y}_i}}} n_{\tau}(M) [\widetilde{\mathcal{E}}(\tau)].$$

Maxl orbits in Supp(M) = maxl Y_i with some $n_{\tau}(M) \neq 0$. Coeffs $n_{\tau}(M)$ on maxl Y_i ind of choices of exts $\tilde{\mathcal{E}}(\tau)$. Branching to maximal compact subgroups

David Vogan

Our story so far

We have found

1. homomorphism

virt $G(\mathbb{R})$ reps $K\mathcal{F}(\mathfrak{g}, K) \xrightarrow{gr} K^{K}(\mathcal{N}_{\theta}^{*})$ eqvt K-theory

- 2. geometric basis $\{[\widetilde{\mathcal{E}(\tau)}]\}$ for $\mathcal{K}^{\mathcal{K}}(\mathcal{N}^*_{\theta})$, indexed by irr reps of isotropy gps
- 3. expression of $[gr(\pi)]$ in geom basis $\rightsquigarrow \mathcal{A}C(\pi)$.

Problem is expressing ourselves...

Teaser for the next section: Kazhdan and Lusztig taught us how to express π using std reps $I(\gamma)$:

 $[\pi] = \sum_{\gamma} m_{\gamma}(\pi) [I(\gamma)], \qquad m_{\gamma}(\pi) \in \mathbb{Z}.$ {[gr I(\gamma)]} is another basis of $K^{K}(N_{\theta}^{*})$. Last goal is compute change of basis matrix. Branching to maximal compact subgroups

David Vogan

The last goal

Studying cone $\mathcal{N}_{\theta}^{*} = \text{nilp lin functionals on } \mathfrak{g}/\mathfrak{k}$. Found (for free) basis $\{[\widetilde{\mathcal{E}(\tau)}]\}$ for $\mathcal{K}^{\mathcal{K}}(\mathcal{N}_{\theta}^{*})$, indexed by orbit $\mathcal{K}/\mathcal{K}^{i}$ and irr rep τ of \mathcal{K}^{i} .

Found (by rep theory) second basis {[gr $I(\gamma)$]}, indexed by (parameters for) std reps of $G(\mathbb{R})$.

To compute associated cycles, enough to write

$$[\operatorname{gr} I(\gamma)] = \sum_{\operatorname{orbits}} \sum_{\substack{\tau \text{ irr for} \\ \operatorname{isotropy}}} N_{\tau}(\gamma)[\widetilde{\mathcal{E}}(\tau)].$$

Equivalent to compute inverse matrix

$$[\widetilde{\mathcal{E}}(au)] = \sum_{\gamma} n_{\gamma}(au) [ext{gr } I(\gamma)].$$

Need to relate geom of nilp cone to geom std reps: parabolic subgroups. Use Springer resolution. Branching to maximal compact subgroups

David Vogan

requel

Introduction

Questions

K-theory

K-theory & repns

Introducing Springer

 $g = \mathfrak{t} \oplus \mathfrak{s} \text{ Cartan decomp, } \mathcal{N}_{\theta}^* \simeq \mathcal{N}_{\theta} =_{\text{def}} \mathcal{N} \cap \mathfrak{s} \text{ nilp cone in s.}$ Kostant-Rallis, Jacobson-Morozov: nilp $X \in \mathfrak{s} \rightsquigarrow Y \in \mathfrak{s}, \ H \in \mathfrak{t}$ $[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H,$ $\mathfrak{g}[k] = \mathfrak{t}[k] \oplus \mathfrak{s}[k] \quad (\text{ad}(H) \text{ eigenspace}).$ $\rightsquigarrow \mathfrak{g}[\geq 0] =_{\text{def}} \mathfrak{q} = \mathfrak{l} + \mathfrak{u} \quad \theta \text{-stable parabolic.}$

Theorem (Kostant-Rallis) Write $O = K \cdot X \subset N_{\theta}$.

1. $\mu: O_Q =_{def} K \times_{Q \cap K} \mathfrak{s}[\geq 2] \to \overline{O}, \quad (k, Z) \mapsto \mathrm{Ad}(k)Z$ is proper birational map onto \overline{O} .

2.
$$K^X = (Q \cap K)^X = (L \cap K)^X (U \cap K)^X$$
 is a Levi decomp; so $\overline{K^X} = [(L \cap K)^X]^{-1}$.

So have resolution of singularities of \overline{O} :

$$\begin{array}{c} & K \times_{Q \cap K} \mathfrak{s}[\geq 2] \\ & \swarrow^{\mu} \\ & K/Q \cap K \\ & \overline{O} \end{array}$$

Use it (*i.e.*, copy McGovern, Achar) to calculate equivariant *K*-theory...

Branching to maximal compact subgroups

David Vogan

Prequel

Introduction

Questions

K-theory

K-theory & repns

Using Springer to calculate *K*-theory

 $X \in \mathcal{N}_{\theta}$ represents $O = K \cdot X$. $\mu: O_Q =_{def} K \times_{Q \cap K} \mathfrak{s}[\geq 2] \to \overline{O}$ Springer resolution. **Theorem** Recall $\widehat{K^X} = [(L \cap K)^X]^{\frown}$.

- 1. $K^{K}(O_{Q})$ has basis of eqvt vec bdles: $(\sigma, F) \in \operatorname{Rep}(L \cap K) \rightsquigarrow \mathcal{F}(\sigma).$
- 2. Get extension of $\mathcal{E}(\sigma|_{(L\cap K)^{\times}})$ on O $[\overline{\mathcal{F}}(\sigma)] =_{def} \sum_{i} (-1)^{i} [R^{i} \mu_{*}(\mathcal{F}(\sigma))] \in K^{K}(\overline{O}).$ 3. Compute (very easily) $[\overline{\mathcal{F}}(\sigma)] = \sum_{\gamma} n_{\gamma}(\sigma) [\operatorname{gr} I(\gamma)].$
- 4. Each irr $\tau \in [(L \cap K)^X]$ extends to (virtual) rep $\sigma(\tau)$ of $L \cap K$; can choose $\overline{\mathcal{F}(\sigma(\tau))}$ as extension of $\mathcal{E}(\tau)$.

Branching to maximal compact subgroups

David Vogan

Prequel Introduction Questions

K-theory

K-theory & repns

Now we're done

Recall
$$X \in \mathcal{N}_{\theta} \rightsquigarrow \mathcal{O} = K \cdot X; \tau \in [(L \cap K)^X]^{\frown}$$

Now we know formulas

$$[\widetilde{\mathcal{E}}(\tau)] = [\overline{\mathcal{F}(\sigma(\tau))}] = \sum_{\gamma} n_{\gamma}(\tau) [\text{gr } I(\gamma)].$$

Here's why this does what we want:

- 1. inverting matrix $n_{\gamma}(\tau) \rightsquigarrow$ matrix $N_{\tau}(\gamma)$ writing $[\widetilde{\mathcal{E}}(\tau)]$ in terms of [gr $I(\gamma)$].
- 2. multiplying $N_{\tau}(\gamma)$ by Kazhdan-Lusztig matrix $m_{\gamma}(\pi)$ \rightsquigarrow matrix $n_{\tau}(\pi)$ writing [gr π] in terms of [$\widetilde{\mathcal{E}}(\tau)$].
- 3. Nonzero entries $n_{\tau}(\pi) \rightsquigarrow \mathcal{AC}(\pi)$.

Side benefit: algorithm (for $G(\mathbb{R})$ cplx) also computes bijection (conj by Lusztig, estab by Bezrukavnikov)

(dom wts) \leftrightarrow (pairs (τ, O))

Branching to maximal compact subgroups

David Vogan

Prequel Introduction Questions K-theory

K-theory & repns

Mirror, mirror, on the wall

Who's the fairest one of all?

The winner and still champion!

Branching to maximal compact subgroups

David Vogan

Branching to maximal compact subgroups

David Vogan

Prequel Introduction Questions K-theory K-theory & repns Birthday business

HAPPY BIRTHDAY ROGER!