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Something to do during the talk

kv local field, Gv = G(kv ) reductive, gv = Lie(Gv ).
g∗v = lin fnls on gv , Ov = Gv · xv coadjt orbit.

N(Ov ) =def kv · Ov ∩ N
∗
v asymp nilp cone of Ov .

k global, π = ⊗vπv automorphic rep of G reductive.

Conjecture

1. ∃ coadjt orbit G(k) · x ⊂ g(k)∗, N(Gv · x) = WF(πv ).
2. ∃ global version of local char expansions for πv .

Says G(k) · x  asymp of K -types at each place.

Ok =def G(k) · x  N(Ok ) = k · Ok ∩ N
∗

k
N(Ok ) = closure of one nilp orbitM.
N(Gv · x) contained in N(Ok ), but may not meetM.
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Setting

Compact groups K are relatively easy. . .
Noncompact groups G are relatively hard.
Harish-Chandra et al. idea:

understand π ∈ Ĝf understand π|K

(nice compact subgroup K ⊂ G).

Get an invariant of a repn π ∈ Ĝ:

mπ : K̂ → N, mπ(µ) = mult of µ in π|K .

1. What’s the support of mπ? (subset of K̂ )

2. What’s the rate of growth of mπ?

3. What functions on K̂ can be mπ?
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Examples

1. G = GL(n,C), K = U(n). Typical restriction to K is

π|K = IndU(n)
U(1)n(γ) =

∑
µ∈Û(n)

mµ(γ)γ (γ ∈ Û(1)n) :

mπ(µ) = mult of µ is mµ(γ) = dim of γ wt space.

2. G = GL(n,R), K = O(n). Typical restriction to K is

π|K = IndO(n)
O(1)n(γ) =

∑
µ∈Ô(n)

mµ(γ) :

mπ(µ) = mult of µ in π is mµ(γ) = mult of γ in µ.

3. G split of type E8, K = Spin(16). Typical res to K is

π|Spin(16) = IndSpin(16)
M (γ) =

∑
µ∈ ̂Spin(16)

mµ(γ)γ;

here M ⊂ Spin(16) subgp of order 512, cent ext of (Z/2Z)8.

Moral: may compute mπ using compact groups.
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Machinery to use
Roger’s approach to these questions:

Roger’s results on classical groups

Our approach today:

Use fundamental tools

Ask George and Roman for advice

Get new results on general groups
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Plan for today

Work with real reductive Lie group G(R).
Describe (old) associated cycle AC(π) for irr rep
π ∈ Ĝ(R): geometric shorthand for approximating
restriction to K (R) of π.
Describe (new) algorithm for computing AC(π).
A real algorithm is one that’s been implemented on a
computer. This one has not, but should be possible soon.
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Assumptions

G(C) = G = cplx conn reductive alg gp.
G(R) = group of real points for a real form.
Could allow fin cover of open subgp of G(R), so allow nonlinear.

K (R) ⊂ G(R) max cpt subgp; K (R) = G(R)θ.
θ = alg inv of G; K = Gθ possibly disconn reductive.
Harish-Chandra idea:
∞-diml reps of G(R)! alg gp K y cplx Lie alg g

(g,K )-module is vector space V with
1. repn πK of algebraic group K : V =

∑
µ∈K̂ mV (µ)µ

2. repn πg of cplx Lie algebra g
3. dπK = πg|k, πK (k)πg(X )πK (k−1) = πg(Ad(k)X ).

In module notation, cond (3) reads k · (X · v) = (Ad(k)X ) · (k · v).
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Geometrizing representations

G(R) real reductive, K (R) max cpt, g(R) Lie alg
N∗ = cone of nilpotent elements in g∗.
N∗R = N∗ ∩ ig(R)∗, finite # G(R) orbits.
N∗θ = N∗ ∩ (g/k)∗, finite # K orbits.
Goal 1: Attach orbits to representations in theory.
Goal 2: Compute them in practice.
“In theory there is no difference between theory and practice. In
practice there is.” Jan L. A. van de Snepscheut (or not).
(π,Hπ) irr rep of G(R) HK

π irr (g,K )-module−
→ Howe wavefront
−
→ assoc var of gr

WF(π) = G(R) orbs on N∗R AC(π) = K orbits on N∗θ

Columns related by HC, Kostant-Rallis, Sekiguchi, Schmid-Vilonen.

So Goal 1 is completed. Turn to Goal 2. . .
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Associated varieties
F (g,K ) = finite length (g,K )-modules. . .

noncommutative world we care about.

C(g,K ) = f.g. (S(g/k),K )-modules, support ⊂ N∗θ . . .

commutative world where geometry can help.

F (g,K )
gr
 C(g,K )

gr not quite a functor (choice of good filts), but

Prop. gr induces surjection of Grothendieck groups
KF (g,K )

gr
−→ KC(g,K );

image records restriction to K of HC module.
So restrictions to K of HC modules sit in equivariant
coherent sheaves on nilp cone in (g/k)∗

KC(g,K ) =def K K (N∗θ ),

equivariant K -theory of the K -nilpotent cone.
Goal 2: compute K K (N∗θ ) and the map Prop.
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Equivariant K -theory

Setting: (complex) algebraic group K acts on
(complex) algebraic variety X .
Originally K -theory was about vector bundles, but for
us coherent sheaves are more useful.
CohK (X ) = abelian categ of coh sheaves on X with K action.

K K (X ) =def Grothendieck group of CohK (X ).

Example: CohK (pt) = Rep(K ) (fin-diml reps of K ).

K K (pt) = R(K ) = rep ring of K ; free Z-module, basis K̂ .

Example: X = K /H; CohK (K /H) ' Rep(H)

E ∈ Rep(H) E =def K ×H E eqvt vector bdle on K /H

K K (K /H) = R(H).
Example: X = V vector space.
E ∈ Rep(K ) proj module OV (E) =def OV ⊗E ∈ CohK (X )

proj resolutions =⇒ K K (V ) ' R(K ), basis
{
OV (τ)

}
.
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Doing nothing carefully
Suppose K y X with finitely many orbits:

X = Y1 ∪ · · · ∪ Yr , Yi = K · yi ' K /K yi .

Orbits partially ordered by Yi ≥ Yj if Yj ⊂ Yi .

(τ,E) ∈ K̂ yi  E(τ) ∈ CohK (Yi).

Choose (always possible) K -eqvt coherent extension

Ẽ(τ) ∈ CohK (Yi) [Ẽ] ∈ K K (Yi).

Class [Ẽ] on Y i unique modulo K K (∂Yi).

Set of all [Ẽ(τ)] (as Yi and τ vary) is basis of K K (X ).

Suppose M ∈ CohK (X ); write class of M in this basis

[M] =
r∑

i=1

∑
τ∈K̂ yi

nτ(M)[Ẽ(τ)].

Maxl orbits in Supp(M) = maxl Yi with some nτ(M) , 0.

Coeffs nτ(M) on maxl Yi ind of choices of exts Ẽ(τ).
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Our story so far

We have found
1. homomorphism

virt G(R) reps KF (g,K )
gr
−→ K K (N∗θ ) eqvt K -theory

2. geometric basis
{
[Ẽ(τ)]

}
for K K (N∗θ ), indexed by irr

reps of isotropy gps

3. expression of [gr(π)] in geom basis AC(π).

Problem is expressing ourselves. . .
Teaser for the next section: Kazhdan and Lusztig
taught us how to express π using std reps I(γ):

[π] =
∑
γ

mγ(π)[I(γ)], mγ(π) ∈ Z.{
[gr I(γ)]

}
is another basis of K K (N∗θ ).

Last goal is compute change of basis matrix.
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The last goal

Studying cone N∗θ = nilp lin functionals on g/k.

Found (for free) basis
{
[Ẽ(τ)]

}
for K K (N∗θ ), indexed by

orbit K /K i and irr rep τ of K i .
Found (by rep theory) second basis

{
[gr I(γ)]

}
,

indexed by (parameters for) std reps of G(R).
To compute associated cycles, enough to write

[gr I(γ)] =
∑

orbits

∑
τ irr for
isotropy

Nτ(γ)[Ẽ(τ)].

Equivalent to compute inverse matrix

[Ẽ(τ)] =
∑
γ

nγ(τ)[gr I(γ)].

Need to relate geom of nilp cone to geom std reps:
parabolic subgroups. Use Springer resolution.
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Introducing Springer
g = k ⊕ s Cartan decomp, N∗θ ' Nθ =def N ∩ s nilp cone in s.
Kostant-Rallis, Jacobson-Morozov: nilp X ∈ s Y ∈ s, H ∈ k

[H ,X ] = 2X , [H ,Y ] = −2Y , [X ,Y ] = H ,

g[k ] = k[k ] ⊕ s[k ] (ad(H) eigenspace).
 g[≥0] =def q = l+ u θ-stable parabolic.

Theorem (Kostant-Rallis) Write O = K · X ⊂ Nθ.
1. µ : OQ =def K ×Q∩K s[≥2]→ O, (k ,Z ) 7→ Ad(k)Z is

proper birational map onto O.

2. K X = (Q ∩ K )X = (L ∩ K )X (U ∩ K )X is a Levi
decomp; so K̂ X = [(L ∩ K )X ] .̂

So have resolution of singularities of O:
K ×Q∩K s[≥2]

vec bdle
↙ ↘

µ

K /Q ∩ K O

Use it (i.e., copy McGovern, Achar) to calculate
equivariant K -theory. . .
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Using Springer to calculate K -theory

X ∈ Nθ represents O = K · X .
µ : OQ =def K ×Q∩K s[≥2]→ O Springer resolution.

Theorem Recall K̂ X = [(L ∩ K )X ]̂ .

1. K K (OQ) has basis of eqvt vec bdles:
(σ,F ) ∈ Rep(L ∩ K ) F (σ).

2. Get extension of E(σ|(L∩K )X ) on O

[F (σ)] =def

∑
i

(−1)i [R iµ∗(F (σ))] ∈ K K (O).

3. Compute (very easily) [F (σ)] =
∑
γ nγ(σ)[gr I(γ)].

4. Each irr τ ∈ [(L ∩ K )X ]̂ extends to (virtual) rep σ(τ)
of L ∩ K ; can choose F (σ(τ)) as extension of E(τ).
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Now we’re done

Recall X ∈ Nθ  O = K · X ; τ ∈ [(L ∩ K )X ]̂ .
Now we know formulas

[Ẽ(τ)] = [F (σ(τ))] =
∑
γ

nγ(τ)[gr I(γ)].

Here’s why this does what we want:

1. inverting matrix nγ(τ) matrix Nτ(γ) writing [Ẽ(τ)] in
terms of [gr I(γ)].

2. multiplying Nτ(γ) by Kazhdan-Lusztig matrix mγ(π)

 matrix nτ(π) writing [gr π] in terms of [Ẽ(τ)].

3. Nonzero entries nτ(π) AC(π).

Side benefit: algorithm (for G(R) cplx) also computes
bijection (conj by Lusztig, estab by Bezrukavnikov)

(dom wts)↔ (pairs (τ,O))
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Mirror, mirror, on the wall

Who’s the fairest one of all?

The winner and still champion!
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HAPPY
BIRTHDAY
ROGER!
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