Theta Correspondence for Dummies

(Correspondance Theta pour les nuls)
Jeffrey Adams
Dipendra Prasad
Gordan Savin

Conference in honor of Roger Howe
Yale University
June 1-5, 2015
$M p=\widetilde{S p}(2 n, F):$ metaplectic group
$\left(G, G^{\prime}\right)$ a reductive dual pair:
$G=\operatorname{Cent}_{M p}\left(G^{\prime}\right), \quad G^{\prime}=\operatorname{Cent}_{M p}(G)$
ψ character of F, \rightarrow oscillator representation $\omega=\omega_{\psi}$
Definition: $\pi \in \widehat{G}, \pi^{\prime} \in \widehat{G^{\prime}}, \quad$ say $\pi \longleftrightarrow \pi^{\prime}$ if
$\operatorname{Hom}_{G \times G^{\prime}}\left(\omega, \pi \boxtimes \pi^{\prime}\right) \neq 0$

Howe Duality Theorem (Howe, Waldspurger, Gan-Takeda) F local

$$
\pi \longleftrightarrow \pi^{\prime} \text { is a bijection }
$$

(between subsets of \widehat{G} and \widehat{G}^{\prime})
Definition: $\pi^{\prime}=\theta(\pi), \pi=\theta\left(\pi^{\prime}\right)$

Describe $\pi \rightarrow \theta(\pi)$ (in terms of some kinds of parameters)
Properties of the map: preserving tempered, unitary, relation on wave front sets, functoriality (Langlands/Arthur)...
Typically there are some easy cases, and some hard ones

$\theta(\pi)$ irreducible, $\omega \rightarrow \pi \boxtimes \theta(\pi)$
Defintion (Howe) $\omega(\pi)=$ the maximal π-isotypic quotient of ω $\Theta(\pi)$ ("big-theta" of π):

$$
\omega(\pi) \simeq \pi \boxtimes \Theta(\pi)
$$

Proof of the duality theorem: $\theta(\pi)$ is the unique irreducible quotient of $\Theta(\pi)$
Generically, $\Theta(\pi)$ is irreducible and $\theta(\pi)=\Theta(\pi)$
$\Theta(\pi)$ is important, interesting, complicated
$\Theta(1)$ (Kudla, Rallis, ...)
Structure of reducible principal series (Howe...)
Lee/Zhu: $\operatorname{Sp}(2 n, \mathbb{R})$:

Howe

$$
\Theta\left(\sigma^{\prime}\right)[\pi] \boxtimes \sigma^{\prime} \simeq \pi \boxtimes \Theta(\pi)\left[\sigma^{\prime}\right]
$$

Roughly:

$$
\operatorname{mult}_{G}\left(\pi, \Theta\left(\sigma^{\prime}\right)\right)=\operatorname{mult}_{H^{\prime}}\left(\sigma^{\prime}, \Theta(\pi)\right)
$$

$m=n: \Theta_{n, n}(\pi)=\theta_{n, n}(\pi)=\pi^{*}$
Kudla: $P=M N, \quad M=G L(n) \times G L(r)$
$\operatorname{Hom}_{\mathrm{GL}(m)}\left(\omega_{m, n+r}, \pi \boxtimes \operatorname{Ind}_{P}^{\mathrm{GL}(n+r)}\left(\theta_{m, n}(\pi) \otimes 1\right)\right) \neq 0$

$\Theta_{m, n+r}(\pi) \stackrel{?}{=} \operatorname{lnd}_{P}^{G L(n+r)}\left(1 \otimes \theta_{m, n}(\pi)\right)$
$\theta_{m, n+r}(\pi)$ is (?) the unique irreducible quotient of
$\operatorname{Ind}_{P}^{G L(n+r)}\left(1 \otimes \theta_{m, n}(\pi)\right)$
Neither is true in general
$\omega=\mathcal{S}\left(M_{m, n}\right)$
filtration: ω_{k} : functions supported on matrices of rank $\geq k$:

$$
0=\omega_{t} \subset \omega_{t-1} \subset \cdots \subset \omega_{0}=\omega
$$

Serious issues with extensions here... also reducibility of induced representations

Basic Principle

$$
\text { Hom } \rightarrow \mathrm{Ext} \rightarrow \mathrm{EP}=\sum_{i}(-1)^{i} \mathrm{Ext}^{i}
$$

(+ vanishing...)
Problem: Study
$\operatorname{Ext}_{G \times G^{\prime}}^{i}\left(\omega, \pi \boxtimes \pi^{\prime}\right), \mathrm{EP}_{G \times G^{\prime}}\left(\omega, \pi \boxtimes \pi^{\prime}\right)$
alternatively:
$\operatorname{Ext}_{G}^{i}(\omega, \pi), \operatorname{EP}_{G}(\omega, \pi)$ as (virtual) representations of G^{\prime}
Idea: $\mathrm{EP}_{G}(\omega, \pi)$ is like $\operatorname{Hom}_{G}(\omega, \pi)$ with everything made completely reducible. . . all "boundary terms" vanish
$\left(G, G^{\prime}\right)=(G L(1), G L(1)) \subset S L(2, F)$
$\omega: \mathcal{S}(F)\left(\mathcal{S}=C_{c}^{\infty}\right.$, the Schwarz space)
$\omega(g, h)(f)(x)=f\left(g^{-1} x h\right)\left(\right.$ up to $\left.|\operatorname{det}|^{ \pm \frac{1}{2}}\right)$
χ character of $G L(1)$
Question: $\operatorname{Hom}_{G L(1)}(\mathcal{S}(F), \chi)=$?

$$
0 \rightarrow \mathcal{S}\left(F^{\times}\right) \rightarrow \mathcal{S}(F) \rightarrow \mathbb{C} \rightarrow 0
$$

$\operatorname{Hom}(, \chi)=\operatorname{Hom}_{G L(1)}(, \chi)$

$$
0 \rightarrow \operatorname{Hom}(\mathbb{C}, \chi) \rightarrow \operatorname{Hom}(\mathcal{S}(F), \chi) \rightarrow \operatorname{Hom}\left(\mathcal{S}\left(F^{\times}\right), \chi\right) \rightarrow \operatorname{Ext}(\mathbb{C}, \chi)
$$

$$
0 \rightarrow \operatorname{Hom}(\mathbb{C}, \chi) \rightarrow \operatorname{Hom}(\mathcal{S}(F), \chi) \rightarrow \operatorname{Hom}\left(\mathcal{S}\left(F^{\times}\right), \chi\right) \rightarrow \operatorname{Ext}(\mathbb{C}, \chi)
$$

$\chi \neq 1$:

$$
0 \rightarrow 0 \rightarrow \operatorname{Hom}(\mathcal{S}(F), \chi) \rightarrow \operatorname{Hom}\left(\mathcal{S}\left(F^{\times}\right), \chi\right) \rightarrow 0
$$

$\operatorname{Hom}_{\mathrm{GL}(1)}(\mathcal{S}(F), \chi)=\operatorname{Hom}_{G L(1)}\left(\mathcal{S}\left(F^{*}\right), \chi\right)=\mathbb{C}$
$\chi=1$:
$0 \rightarrow \mathbb{C} \rightarrow \operatorname{Hom}(\mathcal{S}(F), \chi) \rightarrow \operatorname{Hom}\left(\mathcal{S}\left(F^{\times}\right), \chi\right) \rightarrow \mathbb{C} \rightarrow \operatorname{Ext}^{1}(\mathcal{S}(F), \mathbb{C})=0$
$\operatorname{Hom}_{G L(1)}(\mathcal{S}(F), \chi)=1$ in all cases
Remark: Tate's thesis: this is true provided $|\chi(x)|=|x|^{s}$ with $s>1$. General case: analytic continuation in χ of Tate L-functions.

Punch line:
Theorem (Adams/Prasad/Savin)
Fix m, and consider the dual pairs $(G=G L(m), G L(n)) n \geq 0$.
$\pi \in \widehat{G}$

$$
\mathrm{EP}_{G}\left(\omega_{m, n}, \pi\right)^{\infty} \simeq \begin{cases}0 & n<m \\ \operatorname{lnd}_{P}^{G L(n)}(1 \otimes \pi) & n \geq m\end{cases}
$$

where $M=G L(n-m) \times G L(m)$
More details...

Reference: D. Prasad, Ext Analogues of Branching Laws
F : p-adic field, G : reductive group/ F
$\mathcal{C}=\mathcal{C}_{G}$:category of smooth representations
$\mathcal{S}(G)=C_{c}^{\infty}(G)$, smooth compactly supported functions, smooth representation of $G \times G$

Lemma: \mathcal{C} has enough projectives and injectives
$\operatorname{Ext}_{G}^{i}(X, Y)$: derived functors of $\operatorname{Hom}_{G}\left(_, Y\right)$ or $\operatorname{Hom}_{G}\left(X,{ }_{-}\right)$.
$P=M N \subset G, \operatorname{Ind}_{P}^{G}$ normalized induction r_{P}^{G} normalized Jacquet functor
X, Y smooth

1. $\operatorname{Ext}_{G}^{i}(X, Y)=0$ for $i>$ split rank of G
2. $\mathcal{S}(G)$ is projective (as a left G-module)
3. $\operatorname{Hom}_{G}(\mathcal{S}(G), X)^{G-\infty} \simeq X$
4. $\mathrm{EP}_{\mathrm{GL}(m)}(X, Y)=0(X, Y$ finite length $)$
5. $\operatorname{Ext}_{G}^{i}\left(X, \operatorname{Ind}_{P}^{G}(Y)\right) \simeq \operatorname{Ext}_{M}^{i}\left(r_{P}^{G}(X), Y\right)$
6. $\operatorname{Ext}_{G}^{i}\left(\operatorname{Ind}_{P}^{G}(X), Y\right) \simeq \operatorname{Ext}_{M}^{i}\left(X, r_{G}^{\bar{P}}(Y)\right)$
7. Kunneth Formula (X_{1} admissible):

$$
\operatorname{Ext}_{G_{1} \times G_{2}}^{i}\left(X_{1} \boxtimes X_{2}, Y_{1} \boxtimes Y_{2}\right) \simeq \bigoplus_{j+k=i} \operatorname{Ext}_{G_{1}}^{j}\left(X_{1}, Y_{1}\right) \otimes \operatorname{Ext}_{G_{2}}^{k}\left(X_{2}, Y_{2}\right)
$$

$X: G \times G^{\prime}$-modules (for example: ω)
Y : G-module
Ext ${ }_{G}^{i}(X, Y)$ is an G^{\prime}-module (not necessarily smooth)
Definition:

$$
\operatorname{Ext}_{G}^{i}(X, Y)^{\infty}=\operatorname{Ext}_{G}^{i}(X, Y)^{G^{\prime}-\infty} \quad \text { (a smooth } G^{\prime} \text {-module) }
$$

Dangerous bend: $\operatorname{Ext}_{G}^{i}(X, Y)$ is (probably) not the derived functors of $Y \rightarrow \operatorname{Hom}_{G}(X, Y)^{G^{\prime}-\infty}$
Definition: Assume $\operatorname{Ext}_{G}^{i}(X, Y)$ has finite length for all i
$\mathrm{EP}_{G}(X, Y)=\sum_{i}(-1)^{i} \operatorname{Ext}_{G}(X, Y)^{\infty}$ is a well-defined element of the Grothendieck group of smooth representations of G^{\prime}
(G, G^{\prime}) dual pair, ω, π irreducible representation of G
$\operatorname{EP}_{G}(\omega, \pi)^{\infty}$
$\omega \rightarrow \pi \boxtimes \Theta(\pi)$
Proposition: $\operatorname{Hom}_{G}(\omega, \pi)^{\infty}=\Theta(\pi)^{\vee}$
V : smooth dual
proof:

$$
0 \rightarrow \omega[\pi] \rightarrow \omega \rightarrow \pi \boxtimes \Theta(\pi) \rightarrow 0
$$

$\operatorname{Hom}(, \pi)$ is left exact:
$0 \rightarrow \operatorname{Hom}_{G}(\pi \boxtimes \Theta(\pi), \pi) \rightarrow \operatorname{Hom}_{G}(\omega, \pi) \xrightarrow{\phi} \operatorname{Hom}_{G}(\omega[\pi], \pi)$
$\phi=0 \Rightarrow \operatorname{Hom}(\omega, \pi) \simeq \Theta(\pi)^{*}$, take the smooth vectors

Computing EP

Recall: $\quad \omega_{k}=\mathcal{S}$ (matrices of rank $\geq k$)

$$
\begin{gathered}
0=\omega_{t} \subset \omega_{t-1} \subset \cdots \subset \omega_{0}=\omega \\
\omega_{k} / \omega_{k+1}=\mathcal{S}\left(\Omega_{k}\right) \quad\left(\Omega_{k}=\text { matrices of rank } k\right) \\
\mathcal{S}\left(\Omega_{k}\right) \simeq \operatorname{Ind}_{\mathrm{GL}(k) \times \operatorname{GL}(m-k) \times \operatorname{GL}(k) \times \operatorname{GL}(n-k)}^{\mathrm{GL}(m) \times \operatorname{GL}(\mathcal{S}(\mathrm{GL}(k)) \boxtimes 1) .}
\end{gathered}
$$

Compute

$$
\operatorname{Ext}_{G L(m)}^{i}\left(\mathcal{S}\left(\Omega_{k}\right), \pi\right)
$$

By Frobenius reciprocity, Kunneth formula, other basic properties...
$\operatorname{Ext}_{G L(m)}^{i}\left(S\left(\Omega_{k}\right), \pi\right)^{\infty} \simeq \sum_{j=1}^{\ell} \operatorname{Ind}_{G L(k) \times G L(n-k)}^{\mathrm{GL}(n)}\left(\sigma_{j} \boxtimes 1\right) \otimes \operatorname{Ext}_{G L(m-k)}^{i}\left(1, \tau_{j}\right)$
$r_{\bar{P}}(\pi)=\sum \sigma_{j} \boxtimes \tau_{j}$ implies
Lemma
$\operatorname{Ext}_{G L(m)}^{i}\left(\mathcal{S}\left(\Omega_{k}\right), \pi\right)$ is a finite length $\mathrm{GL}(n)$-module
$\mathrm{EP}_{\mathrm{GL}(m)}\left(\mathcal{S}\left(\Omega_{k}\right), \pi\right)$ is well defined
$\mathrm{EP}_{\mathrm{GL}(m)}\left(\mathcal{S}\left(\Omega_{k}\right), \pi\right)=0$ unless $k=m$.

Theorem
Fix m, and consider the dual pairs $(G=G L(m), G L(n)) n \geq 0$. $\pi \in \widehat{G}$

$$
\operatorname{EP}_{G}\left(\omega_{m, n}, \pi\right)^{\infty} \simeq \begin{cases}0 & n<m \\ \operatorname{lnd}_{P}^{G L(n)}(1 \otimes \pi) & n \geq m\end{cases}
$$

where $M=G L(n-m) \times G L(m)$

Similar idea, using Kudla (and MVW) calculation of the Jacquet module of the oscillator representation

For simplicity: state it for $(\mathrm{Sp}(2 m), \mathrm{O}(2 n))$ (split orthogonal groups)
$\omega=\omega_{m, n}$ oscillator representation for $\left(G, G^{\prime}\right)=(\mathrm{Sp}(2 m), \mathrm{O}(2 n))$
$t<m \rightarrow M(t)=\mathrm{GL}(t) \times \operatorname{Sp}(2 m-2 t) \subset \operatorname{Sp}(2 m)$
$P(t)=M(t) N(t), \operatorname{Ind}_{P(t)}^{G}()$
$t<n \rightarrow M^{\prime}(t)=G L(t) \times \mathrm{O}(2 n-2 t) \subset \mathrm{O}(2 m)$
$P^{\prime}(t)=M^{\prime}(t) N^{\prime}(t), \operatorname{Ind}_{P^{\prime}(t)}^{G^{\prime}}()$
$\omega_{M(t), M^{\prime}(t)}$ oscillator representation for dual pair $\left(M(t), M^{\prime}(t)\right)$

Theorem Fix an irreducible representation π of $M(t)$.
Then
$\operatorname{EP}_{G}\left(\omega_{G, G^{\prime}}, \operatorname{Ind}_{P(t)}^{G}(\pi)\right)^{\infty} \simeq \begin{cases}0 & t>n \\ \operatorname{lnd}_{P^{\prime}(t)}^{G^{\prime}}\left(\operatorname{EP}_{M(t)}\left(\omega_{M(t), M^{\prime}(t)}, \pi\right)^{\infty}\right) & t \leq n .\end{cases}$
$\mathrm{EP}(\omega,)^{\infty}$ commutes with induction

