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Setting:
G : complex classical group
H : certain subgroup of G (mostly symmetric subgroup)

Examples of (G, H): (GL,, O,), (Sp,,, GL,,), (GL, x GL,,, GL,)

Branching problem for (G, H)

If V be an irreducible rational G module, what is V|4?

Vig = @ myyU
U

where the Us are irreducible H modules.

(1) We have

Determine the branching multiplicities m(U, V).

(2) Describe the H submodules of V.



Use highest weight theory:
Let By = AyzUp be a Borel subgroup of H, and consider
VUi ={v: gv=vVge Uy

This 1s a module for Ay, and

VU= DV,
A

where
(VUmy, = {ve VY av=JAa)VvVa e Ay)
(H highest weight vectors of weight A)
Then
Vi = P dim(vVUm) U,
Jl
where

U, = 1irreducible H module with highest weight A.



Branching rule G | H: Vig = @) dim(VV),)U,
A

Questions:
1. How to calculate dim(VY"),?

2. Can we describe a basis for (VY#)?



Howe’s approach:

(1) Consider a “concrete” algebra Rg with an G action such that
R 1s decomposed as a multiplicity free sum of irreducible G

submodules as
Rg = EB V..
[
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Howe’s approach:

(1) Consider a “concrete” algebra Rg with an G action such that
R 1s decomposed as a multiplicity free sum of irreducible G

submodules as
Rg = EB Vi.
[

(11) Consider the subalgebra of Uy invariants:
U U
ﬂ(G,H) .= RGH = @ Vi H
l

It 1s a Ay module.

(i11) The structure of A gy encodes part of the branching rule
from G to H, so call it a branching algebra for (G, H).

(iv) Study the branching algebra A g).
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Basic example:
G = GL, X GLy, H = A(GLy) = {(8.8) : g € GLy}.
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Basic example:
G = GL, X GLy, H = A(GLy) = {(8.8) : g € GLy}.

Polynomial representations of GL,, are parametrized by Young di-
agrams with at most n rows (i.e. with depth < n).

D (Young diagram) — p,? (representation of GL;,).
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Basic example:
G = GL, X GLy, H = A(GLy) = {(8.8) : g € GLy}.

Polynomial representations of GL,, are parametrized by Young di-
agrams with at most n rows (i.e. with depth < n).

D (Young diagram) — p,l,? (representation of GL;,).

Example of a Young diagram:

D = =(6,4,4,2) or (6,4,4,2,0) etc

12



Branching problem for (G, H) = (GL, x GL,, GL,,):

For Young diagrams D and E, p,? ® pf 1s an irreducible module
for GL,, X GL,,.

Restrict the action to GL,;,, = A(GL;), and describe the GL,;, mod-
ule structure of an ® p,lf :
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Branching problem for (G, H) = (GL, x GL,, GL,,):

For Young diagrams D and E, p,? ® pf 1s an irreducible module
for GL, X GL,,.

Restrict the action to GL,;,, = A(GL;), and describe the GL,;, mod-
ule structure of an ® p,lf :

In other wrods, we want to decompose the GL, tensor product
oD @ oF
n n°e
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Branching problem for (G, H) = (GL, x GL,, GL,,):

For Young diagrams D and E, p,? ® pf 1s an irreducible module
for GL, X GL,,.

Restrict the action to GL,;,, = A(GL;), and describe the GL,;, mod-
ule structure of an ® p,lf :

In other wrods, we want to decompose the GL, tensor product
oD @ o
n n°e

So the branching rule in this case is the Littlewood-Richardson

(LR) Rule:
D E rFF
Pn Py = @CD,EPn’
F
where cg £ 18 the number of LR tableaux of shape F//D and con-
tent E.
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We want to construct a branching algebra A gy which encodes
the LR rule.
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We want to construct a branching algebra A gy which encodes
the LR rule.

First we need an algebra Rg = @ p,l,? ® ,0,? :
D.E
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We want to construct a branching algebra A gy which encodes
the LR rule.

First we need an algebra Rg = @ p,l,? ® ,0,? :
D.E

Then

AG.H) = ﬂgH where Uy = U, =« e GL, ;.
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The construction of Rs:

GL,, X GL; acts on the algebra £(M,,;) of polynomial functions
on M,,;(C):

PMu) = (D Py ©pf  (GLn. GLy) duality)
D
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The construction of Rs:

GL,, X GL; acts on the algebra £(M,,;) of polynomial functions
on M,,;(C):

PMu) = (D Py ©pf  (GLn. GLy) duality)
D

Extracting U}, invariants:

PM,0U ~ D pR @ (0P) 7 ~ D pP.
D D
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The construction of Rs:

GL,, X GL; acts on the algebra £(M,,;) of polynomial functions
on M,,;(C):

PMu) = Doy ®p  (GLn, GLy) duality)
D

Extracting U}, invariants:

P, ~ D pR @ ()7 ~ D pP.
D D

Take another copy:
Ue
PM,,0) Yt = @pf ® (pf) o @pf-
E

E

21



Form the tensor product:

Ri = PMu) "k @ P(M,)"¢ = (EB p,?) ® (@pﬁ) = @pff ® Py
D E D.,E
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Form the tensor product:

Ri = PMu) "k @ P(M,)"¢ = (EB p,?) ® (@pﬁ) = @pff ® Py
D E D.,E

Extract the U, = A(U,) invariants:

Ac.m =Ry = (PM0" @ PM,0)") " = P (P @pf) "
D,E
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Form the tensor product:

Re = PMu0) ' @ P(M,) " = (EB p,?) ® (@p,’f) ~Prr ey

D
Extract the U,, = A(U,) invariants:

A = R = (PM" 0 PM V)" ~ ED (0 @ p5) ™"

It can be further decomposed as

A ~ D {@ (2o 0E) } D APED

DE \ F D.E,F
where
ﬂgg Z)F) (pn ® pn) = highest weight vectors of weigth F in p” ® p~
D,E.F . oge . .
dim ﬂEG ) ) = multiplicity of Pl in p? ® pf

Howe et al. call A ) a GL, tensor product algebra.
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It turns out that A, ) also encodes another branching rule:

U
no PM,,;, & Mng)UnXUkXUg

]UnxkaUg

U
A, = R = (PM,) Yk @ PM,,0) V)
= P(Mygp) VU = [@ P ® Py
F

= EB (p'f)Un ® (pll;f)UkXW = EB (plié’)UkXUg‘

F F
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It turns out that A, ) also encodes another branching rule:

Ug _ Un

AG.r) = R = (PM)Uk @ PM,)U) " = P(My @ M, ) Ur<UixUe

UnxUpxUyp
n ~ F F
o P(Mn(k+£))U <UixUe o [@ Pn ®Pk+gJ
F

= EB (p'f)Un ® (pll;f)UkXW = EB (plié’)UkXUg‘

F F

A(G.H) encodes the branching rule for GLy, | GLy X GL,.

So the algebra A g encodes two branching rules.
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It turns out that A, ) also encodes another branching rule:
)"

U
A,y = R = (PM,) Yk @ PM,,0) V¢

UnXUpXUp
n ~ F F
o P(Mn(k+£))U <Uixle o [@ Pn ®Pk+gJ
F

- @ (oF) " & (o, )V @ (oF,e) "

A(G.H) encodes the branching rule for GLy, | GLy X GL,.

So the algebra A g encodes two branching rules.

From this, we obtain the reciprocity law:

(D,E.F)
ﬂ(G,H)

E
n

dim = multiplicity of p,? ® pf in p”’ = multiplicity of p, in p” ® p

27
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Problem: Find a basis for A p).

Since AG.H) = @ ﬂggzg’)m, it suffices to find a basis for each

D,E.F
ﬂ(DaEaF)

subspace GH) -
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Problem: Find a basis for A p).

Since AG.H) = @ ﬂgg’fl’)m, it suffices to find a basis for each
DEF
subspace ﬂgg’fl’)F).

By the Littlewood-Richardson Rule,

. (D,E,F) _F
dlmﬂ(G,H) = CpE

= number of LR tableaux T of shape F'/D and content E.
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Problem: Find a basis for A p).

Since AG.H) = @ ﬂgg’fl’)m, it suffices to find a basis for each
DEF
subspace ﬂgg’g’)F).

By the Littlewood-Richardson Rule,

. (D,E,F) _F
d1mﬂ(G’H) = CpE

= number of LR tableaux T of shape F'/D and content E.

ﬂ(D,E )

Plan: LR tableau T — construct a basis vector A7 in (G.H)
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Now
Un
AG.H) = (p(Mnk)Uk ® ?(Mnf)Uf)
— P(Mn,k D Mn,f)UnXUkXUg,

it 1s a subalgebra of P(M,,  ® M, o).
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Now

AG.H) = (p(Mnk)Uk ® P(M)Y¢

)"

= PM,, ;& M,, ))Un=UixUe,

it 1s a subalgebra of P(M,,  ® M, o).

Write the coordinates of M,, ; & M,, ¢ as

(X171 X12 - X1k

X1 X22 -ttt X2k

\Anl *n2 " Xnk

Y11 Y12 -
Y21 Y22 -

Ynl Yn2

yie)

Y2¢r

Then each At 1s a polynomial on these variables.
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Associate each skew tableau 7" with a monomial m 7.

Example: T =

X11

X11

Y11

X22

Y21

Y32

33

— myp = (X11X20Y11Y32)(X11Y21)



Associate each skew tableau 7" with a monomial m 7.

X11 | X11 | Y
1
Example: T = 1 — | X22 | )21
2
y32

— myp = (X11X20Y11Y32)(X11Y21)

Introduce a monomial ordering: the graded lexicographic order with

X11>X21 > > Xyl > X12> > Xk > Y11 > Y21 > * > Yue.

LM(f) = leading monomial of f.
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Associate each skew tableau 7" with a monomial m 7.

X11 | X11 | Y11
1
Example: T = 1 —> | X22 | Y21
2
Y32

— myp = (X11X20Y11Y32)(X11Y21)

Introduce a monomial ordering: the graded lexicographic order with

X11 > X212 > Xyl > X12> > Xk > Y11 > Y21 > ° > Yue.

LM(f) = leading monomial of f.

Theorem (Howe-Tan-Willenbring, Advances 2005)

ﬂ(D’E )

G has abasis {Ar} with the property that for each T,

LM(A7) = my.
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Example. Let D = E = F =

Then p” occurs in p? ® p with multiplicity 2.
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Example. Let D = E = F =

Then p, occurs in p; ® p- with multiplicity 2.

1 X11 X12 Y11 Y12
T, = 1 AT1 _ | X2t A22 Y21 Y22 || X1 Y
5 X31 X32 Y31 Y32 || X21 Y21

0 0 yn yn

LM(Ar,) = (x11x20y11y32)(X11Y21) = mr,
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Example. Let D =

E =

F =

Then p, occurs in p; ® p- with multiplicity 2.

X11 X12 Y11 Y12
X21 X22 Y21 Y22
oo X3 X3 31 y32
0 0 yn yn

X11 Y11
X21 Y21

LM(Ar,) = (x11x20y11y32)(X11Y21) = mr,

1
T) = 1 Az, =
2
1 X11 X12 Y11
o= |2 A7, = | X21 X220 Y21
1 X31 X32 Y31

X11 Y11 Y12
X21 Y21 Y22
0 yiu yi2

LM(A7,) = (x11%22y31)(X11y11Y22) = mr,
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Let
S.m) ={LM(f) : f € A,H), | # 0} ={mr}.
Then S (G ) 1s a semigroup because A g 1s an algebra and

LM(f1/2) = LM(f1)LM(f>).
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Let
S.m) ={LM(f) : f € A,H), | # 0} ={mr}.
Then S (G ) 1s a semigroup because A g 1s an algebra and

LM(f1/2) = LM(f1)LM(f>).

What we can we say about this semigroup S G g)?
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Let
S.m) ={LM(f) : f € A,H), | # 0} ={mr}.
Then S (G ) 1s a semigroup because A g 1s an algebra and

LM(f1/2) = LM(f1)LM(f>).

What we can we say about this semigroup S G g)?
There 1s a rational polyhedral cone C in some RY such that

SG.H)=CN ZN.

It 1s finitely generated.
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Let
S.m) ={LM(f) : f € A,H), | # 0} ={mr}.
Then S (G ) 1s a semigroup because A g 1s an algebra and

LM(f1/2) = LM(f1)LM(f>).

What we can we say about this semigroup S G g)?
There 1s a rational polyhedral cone C in some RY such that

SG.H)=CN ZN.
It 1s finitely generated.

The polyhedral cone C 1s called the Littlewood-Richardson cone
by Igor Pak, and

cg, £ = number of integral points in a polytope contained in C.

42



The initial algebra in(AG g)) of A gy 1s the subalgebra of
PM,i & My,)) generated by S (G, ).
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The initial algebra in(AG g)) of A gy 1s the subalgebra of
PM,i & My,)) generated by S (G, ).

So
(A7) = C[S (6.1l
is the semigroup algebra on § (G ), and it 1s finitely generated.
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The initial algebra in(AG g)) of A gy 1s the subalgebra of
PM,i & My,)) generated by S (G, ).

So
(A7) = C[S (6.1l
is the semigroup algebra on § (G ), and it 1s finitely generated.

By a general results of Conca, Herzog, and Valla, we have:

Theorem ([HJLTW]). The semigroup algebra C[S (G ] is a flat
deformation of A G H)-
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Similar results also hold for the following symmetric pairs (under
a stable range condition):

(GLna Ol’l)9 (OH+M9 Ol’l X OWL)a (Sp2na GLn)a (GLGa szn)a
(Sp2(n+m)’ SP2y X Spom)s (O2p, GLy)

Branching multiplicities in these cases can be deduced from the
algebra structure and the LR rule.
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m-fold tensor product algebra
This 1s a branching algebra A gy which describes the decompo-
sition of m-fold tensor products of GL,, modules:

D D D
Pn ®pp @ ®p,"

where
G = GLZ’, H = A(GL)).
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m-fold tensor product algebra
This 1s a branching algebra A gy which describes the decompo-
sition of m-fold tensor products of GL,, modules:

D D D
Pn ®pp @ ®p,"

where
G = GLZ’, H = A(GL)).

A Special case: tensor product of the form

prep; ey Ve @py" = p@s (€S P(Ce 08 (L")

We call a description of this tensor product an iterated Pieri rule.
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An algebra which encodes the iterated Pieri rule:

PM,ip+0) = PMupeC'eC'@---@C")
= PM,1) P(CHRP(CH® - P(C")

i o

=~ PP eV ep? e op ") ®p}
D,«a
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An algebra which encodes the iterated Pieri rule:

PM,ip+0) = PMupeC'eC'@---@C")
= PM,1) P(CHRP(CH® - P(C")

i o

=~ PP eV ep? e op ") ®p}
D,«a

Extract U,, X Uy invariants:

PMere) " = @ (Pn @p ®p;?® ®P'(1a£)) (p l?)Uk
D,«

We call P(Mn(kJrg))U”XUk an iterated Pieri algebra for GL,,.
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The iterated Pieri algebra P(M;,(x+¢)) UnxUk als0 encodes the branch-
ing rule for

GLgy¢ L GLg x GL{ = GLy x (GLy X --- x GLy).
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The iterated Pieri algebra P(M;,(x+¢)) UnxUk als0 encodes the branch-
ing rule for

GLgy¢ L GLg x GL{ = GLy x (GLy X --- x GLy).

Special case: If £ = 1, then this is branching for

{+1
GL¢y1 L= GL{*' =GLy x -+~ x GL;.

That 1s, decompose p? ~1 Into weight spaces, and find a basis of
each weight space.
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Comparing tensor product algebra with iterated Pieri algebra
GL,, tensor product algebra:

P(M,ir0) V< VR*Ve describes general tensor products p, ® pr
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Comparing tensor product algebra with iterated Pieri algebra
GL,, tensor product algebra:

P(M,ir0) V< VR*Ve describes general tensor products p, ® pr
Iterated Pieri algebra for GL,,; :

P(Mn(kJrg))U”XUk describes tensor products of the form

Pepen?e- o

54



Comparing tensor product algebra with iterated Pieri algebra
GL,, tensor product algebra:

P(M,ir0) V< VR*Ve describes general tensor products p, ® pr
Iterated Pieri algebra for GL,,; :

P(Mn(kJrg))U”XUk describes tensor products of the form

Pepen?e- o

We have
PMir-£) 7 VY C PMyy s )V

By analyzing how the tensor product algebra sits inside the iter-
ated Pier1 algebra, we can give a proot of the Littlewood-Richardson
Rule ([Howe-Lee], BAMS 2012).
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What is the semigroup S associated with the iterated Pieri algebra P(Mn(k+g))U”XUk?

The elements of S should count the multiplicity in the tensor product
(a2) (ap)

PP oo @pi?® - ®p)
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What is the semigroup S associated with the iterated Pieri algebra P(Mn(k+g))U”XU’<?

The elements of S should count the multiplicity in the tensor product
prepep e ep.

By the Pieri Rule,
0y ®p\" = @ p,  (multiplicity free)
F

where F satisfies the interlacing condition: If D = (dy, ...,d,) and F' = (f1, ..., f,),
then
f12d12f22d22"'2fp2dp.
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What is the semigroup S associated with the iterated Pieri algebra P(Mn(k+g))U”XU’<?

The elements of § should count the multiplicity in the tensor product

PP @i @Y @ - @ py.

By the Pieri Rule,

o, Dgp) = @pp (multiplicity free)

where F satisfies the interlacing condition: If D = (dy, ...,d,) and F' = (f1, ..., fp),
then
f12d12f22d22"'2fp2dp.

We indicate these inequalities by writing

d e d,
i  fL Ip
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By iterating the Pieri Rule,

D
Repy e e oo = P mpof
F

where mg 1s the number of “Gelfand-Zeltlin” of the form

A10 A20 o Ano
A11 A21 e An1

A1 Ao ah Ane

where D = (110, 420, -+, Apo) and F = (Ay¢, A2¢, -+, Aye)-
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By iterating the Pieri Rule,

D
Rep e e e = P mpof
F

where mg 1s the number of “Gelfand-Zeltlin” of the form

A10 A20 o Ano
A11 A21 e Ay

S VA5Y, o Ane

where D = (/1109 /1209 T /lp()) and F = (/llfa /1257 T /ll’lf)

These patterns can be viewed as order preserving functions on
a poset I
1:T—>7Z"
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The set
(ZzH= = {f : T - Z*| f is order preserving}

forms a semigroup, and is called a Hibi cone. It has a very simple
semigroup structure.

(More genearlly, we can replace I' by a finite poset)
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The set
(ZzH= = {f : T - Z*| f is order preserving}

forms a semigroup, and is called a Hibi cone. It has a very simple
semigroup structure.

(More genearlly, we can replace I' by a finite poset)

Call a subset A of I' increasing it
aceA, xel, x>a— x €A.

Denote by J*(I') the collection of all increasing subsets of T".
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For each A € J*(I), let

(x) = 1l xeA
XA = 0 x¢A.

Then clearly y 4 € (Z+)r’2.
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For each A € J*(I), let

(x) = 1l xeA
XAV = 0 x¢A.

Then clearly y 4 € (Z+)F’Z.

Theorem. The semigroup (Z+)r = s generated by {y4 : A €
J*(D)} and it has relations

XA +XB=XAuB+XxanB A,Be J (D).
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For each A € J*(I), let

(x) = 1l xeA
XAV = 0 x¢A.

Then clearly y4 € Qr.

Theorem. The semigroup (ZJ“)F’Z is generated by {y4 : A €
J*(D)} and it has relations

XA+ XB=XAUB +XxanB A,Be J (D).

It follows that every f € (ZJF)F’Z can be expressed as
f — Z C]XAj
J

where cj e Nand Aj € Ap € --- € Ay =T is a chain in J*(I').
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In the case when n = 3, k = £ = 2, (Z")"*= consists of patterns of the form

Ao A0 O
A1 A1 Az
A2 A A3

A
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In the case when n = 3, k = £ = 2, (Z")"*= consists of patterns of the form

Ao A0 O
A1 A1 Az
A2 A A3

A

The generators y4 of (ZH'= are:
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For general n, k, £, each generator y4 of (Z*)!*> corresponds to an element in
PM,ks0)) " V* of the form

X11 X120 Xip Yis; Vs, 0 Ylsy
| X21 X2 ot X2p Yas; Y2s, 0 Y2y,
04 = . . . . . .
AXp+l X(p+@2 " Xp+op Yp+@)si Yp+@)sr ~°° Y(p+qg)sq

Let O be the set of all 4.
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For general n, k, £, each generator y4 of (Z*)'*> corresponds to an element in
PM,ks0)) " V* of the form

X11 X120 Xip Yis; Vs, 0 Ylsy
| X21 X2 ot X2p Yas; Y2s, 0 Y2y,
04 = . . . . . .
AXp+l X(p+@2 " Xp+op Yp+@)si Yp+@)sr ~°° Y(p+qg)sq

Let O be the set of all 4.
IfA; C A, C--- CA,, then we call the product
54,04, O

r

a standard monomial on Q.
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For general n, k, £, each generator y4 of (Z*)'*> corresponds to an element in
PM,ks0)) " V* of the form

X11 X120 Xip YVis; Vs, 0 Vlsy
| X2 X220 X2p Yas; Y2s, 1t Y2y,
04 = . . . . . .
Xp+l X(p+@2 ~°° Xp+op Yp+@si Yp+@)sy ~°° Y(p+qg)sq

Let O be the set of all d4.

IfA; C A, C--- CA,, then we call the product
54,04, 04

r

a standard monomial on Q.

It turns out that the set of all standard monomials on Q forms a vector space
basis for P(M,x+¢)) "k, We say that P(M,,+¢) "% has a standard monomial
theory for Q.

This treatment was given by Sangjib Kim in his thesis.
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What other branching algebras are associated with Hibi cones?

The double Pieri algebra £, ;) (x4 for GL, X GL;

It describes
; (@)
o o (oL )} @ fef o (o110,

with depth(D) < k < n.

71



What other branching algebras are associated with Hibi cones?

The double Pieri algebra £, ;) (x4 for GL, X GL;

It describes
; (@)
o o (oL )} @ fef o (o110,

with depth(D) < k < n.

The iterated Pieri algebra A, ; , for O, where 2(k + p) < n.
It describes
0',? X (®f:10'§lai))

where O'nD 1s the irreducible representation of O, labelled by D

and depth(D) < k.
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The iterated Pieri algebra Q,, ; , for Sp,, where k + p < n.

It describes @)
D 4 ;
T, ® (®i:172nl )

where Té) , 18 the 1rreducible representation of Sp,,, labelled by D

and depth(D) < k.
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The iterated Pieri algebra Q,, ; , for Sp,, where k + p < n.

It describes @)
D 4 Q;
T, ® (®i:172nl )

where Té) , 18 the 1rreducible representation of Sp,,, labelled by D

and depth(D) < k.

It turns out that Q,, ; , ~ Ay, pfork+p <n.
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The (more general) iterated Pieri algebra %, ; ,, , for GL,
where k + p + € + q) < n.
It describes

p q )
Prlz)’E ? ( ® pglai)) ? ( ® pglcxi) ]
i=1 =1

where depth(D) < k and depth(E) < <.
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The (more general) iterated Pieri algebra %, ; ,, , for GL,
where k + p + € + q) < n.
It describes

P q
D.E ; i)’
o ® (@pﬁfy )) ® [@pﬁ“) ]
i=1 =1
where depth(D) < k and depth(E) < <.

It turns out that double Pier1 algebras can be regarded as a com-
mon structure shared by the iterated Pier1 algebras.

Theorem. We have the isomorphism of graded algebras
ﬂn,k,p = L(n,p),(k,p) ® p(/\Z(Cp)),
Unjet.p.g = Lnp).ig) ® Ling).e.p) ®FPMpg).
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Can the stable range condition be removed?
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Can the stable range condition be removed?

Antirow Pieri algebra for GL,, (without stable range condition)
\

q
(X) P(C) (@ fot ®p§) ® {@ pox )J
D i=1

/

@l

F.a

Ripg = PMp,) ®
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Can the stable range condition be removed?

Antirow Pieri algebra for GL,, (without stable range condition)

Ripg = PMp,) ®

= D

F.a

oo

@ P(C)

)

(@pf@bpl’f)@(@pn ")*]

/

Extract GL,, X GL, highest weight vectors:

RUUp _
Rn.p.a

@

q | U
oo Q|| o)
i=1 )
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Can the stable range condition be removed?

Antirow Pieri algebra for GL,, (without stable range condition)
\

4q 4q
(X) PC| = (@ Pr ®p,’3) ® [@ P )J
D i=1

/

@l

Riupg = PMp,) ®

F.a

Extract GL,, X GL, X Aq highest weight vectors:

q \ Uj
5 Db e Qi o)
i=1 J

UnxUp . b [N @)
So the algebra R, ), , * describes p, ® (X) e .
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On * | are counted by patterns of the

q
Multiplicities in p,ll) ®

i=1
form

V10 V20 "t Vno
V11 V21 Vnl

qu qu o o o vnq

with D = (v10,v20, " » Vn0)-
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On * | are counted by patterns of the

q
Multiplicities in p,ll) ®

i=1
form
V10 V20 T Vn0
V11 V21 Vnl
y =
with D = (v10,v20, " » Vn0)-

Some of the entries v;; can be negative. The associated semigroup
can be i1dentified with a set of order preserving functions f : I' —
Z, and 1s called a signed Hibi cone.
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q
Multiplicities in p,ll) ® On * | are counted by patterns of the
i=1
form
V10 V20 T V0
V11 V21 Vil

with D = (v10,v20, " » Vn0)-

Some of the entries v;; can be negative. The associated semigroup
can be i1dentified with a set of order preserving functions f : I' —
Z, and 1s called a signed Hibi cone.

The structure of the signed Hibi cone and the algebra were deter-
mined in Y1 Wang’s thesis (2013).
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Thank you.
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