Branching algebras for classical groups

Soo Teck Lee National University of Singapore

Survey on some of the works done by Roger Howe and his collaborators (Jackson, Kim, Lee, Tan, Wang, Willenbring) on branching algebras.

Setting:

- G : complex classical group
- H: certain subgroup of G (mostly symmetric subgroup)

Examples of (G, H): (GL_n, O_n) , (Sp_{2n}, GL_n) , $(GL_n \times GL_n, GL_n)$

Setting:

- G : complex classical group
- H: certain subgroup of G (mostly symmetric subgroup)

Examples of (G, H): (GL_n, O_n) , (Sp_{2n}, GL_n) , $(GL_n \times GL_n, GL_n)$

Branching problem for (G, H)

If V be an irreducible rational G module, what is $V|_H$?

(1) We have

$$V|_H = \bigoplus_U m_{U,V} U$$

where the Us are irreducible H modules.

Determine the branching multiplicities m(U, V).

(2) Describe the H submodules of V.

Use highest weight theory:

Let $B_H = A_H U_H$ be a Borel subgroup of H, and consider

$$V^{U_H} = \{ \mathbf{v} : g \cdot \mathbf{v} = \mathbf{v} \; \forall g \in U_H \}.$$

This is a module for A_H , and

$$V^{U_H} = \bigoplus_{\lambda} (V^{U_H})_{\lambda}$$

where

$$(V^{U_H})_{\lambda} = \{ \mathbf{v} \in V^{U_H} : a.\mathbf{v} = \lambda(a)\mathbf{v} \; \forall a \in A_H \}$$

(*H* highest weight vectors of weight λ)

Then

$$V|_{H} \simeq \bigoplus_{\lambda} (\dim(V^{U_{H}})_{\lambda}) U_{\lambda}$$

where

$$U_{\lambda}$$
 = irreducible *H* module with highest weight λ .

Branching rule $G \downarrow H$:

$$V|_H \simeq \bigoplus_{\lambda} (\dim(V^{U_H})_{\lambda}) U_{\lambda}$$

Questions:

- 1. How to calculate $\dim(V^{U_H})_{\lambda}$?
- 2. Can we describe a basis for $(V^{U_H})_{\lambda}$?

(i) Consider a "concrete" algebra \mathcal{R}_G with an G action such that \mathcal{R}_G is decomposed as a multiplicity free sum of irreducible G submodules as

$$\mathcal{R}_G = \bigoplus_i V_i.$$

(i) Consider a "concrete" algebra \mathcal{R}_G with an G action such that \mathcal{R}_G is decomposed as a multiplicity free sum of irreducible G submodules as

$$\mathcal{R}_G = \bigoplus_i V_i.$$

(ii) Consider the subalgebra of U_H invariants:

$$\mathcal{A}_{(G,H)} := \mathcal{R}_G^{U_H} = \bigoplus_i V_i^{U_H}.$$

It is a A_H module.

(i) Consider a "concrete" algebra \mathcal{R}_G with an G action such that \mathcal{R}_G is decomposed as a multiplicity free sum of irreducible G submodules as

$$\mathcal{R}_G = \bigoplus_i V_i.$$

(ii) Consider the subalgebra of U_H invariants:

$$\mathcal{A}_{(G,H)} := \mathcal{R}_G^{U_H} = \bigoplus_i V_i^{U_H}.$$

It is a A_H module.

(iii) The structure of $\mathcal{A}_{(G,H)}$ encodes part of the branching rule from *G* to *H*, so call it a *branching algebra* for (*G*, *H*).

(i) Consider a "concrete" algebra \mathcal{R}_G with an G action such that \mathcal{R}_G is decomposed as a multiplicity free sum of irreducible G submodules as

$$\mathcal{R}_G = \bigoplus_i V_i.$$

(ii) Consider the subalgebra of U_H invariants:

$$\mathcal{A}_{(G,H)} := \mathcal{R}_G^{U_H} = \bigoplus_i V_i^{U_H}.$$

It is a A_H module.

(iii) The structure of $\mathcal{A}_{(G,H)}$ encodes part of the branching rule from *G* to *H*, so call it a *branching algebra* for (*G*, *H*).

(iv) Study the branching algebra $\mathcal{A}_{(G,H)}$.

Basic example:

 $G = \operatorname{GL}_n \times \operatorname{GL}_n, H = \Delta(\operatorname{GL}_n) = \{(g, g) : g \in \operatorname{GL}_n\}.$

Basic example:

 $G = \operatorname{GL}_n \times \operatorname{GL}_n, H = \Delta(\operatorname{GL}_n) = \{(g, g) : g \in \operatorname{GL}_n\}.$

Polynomial representations of GL_n are parametrized by Young diagrams with at most *n* rows (i.e. with depth $\leq n$).

D (Young diagram) $\rightarrow \rho_n^D$ (representation of GL_n).

Basic example:

 $G = \operatorname{GL}_n \times \operatorname{GL}_n, H = \Delta(\operatorname{GL}_n) = \{(g, g) : g \in \operatorname{GL}_n\}.$

Polynomial representations of GL_n are parametrized by Young diagrams with at most *n* rows (i.e. with depth $\leq n$).

D (Young diagram) $\rightarrow \rho_n^D$ (representation of GL_n).

Example of a Young diagram:

Branching problem for $(G, H) = (GL_n \times GL_n, GL_n)$: For Young diagrams D and E, $\rho_n^D \otimes \rho_n^E$ is an irreducible module for $GL_n \times GL_n$. Restrict the action to $GL_n = \Delta(GL_n)$, and describe the GL_n module structure of $\rho_n^D \otimes \rho_n^E$.

13

Branching problem for $(G, H) = (GL_n \times GL_n, GL_n)$:

For Young diagrams *D* and *E*, $\rho_n^D \otimes \rho_n^E$ is an irreducible module for $GL_n \times GL_n$.

Restrict the action to $GL_n = \Delta(GL_n)$, and describe the GL_n module structure of $\rho_n^D \otimes \rho_n^E$.

In other wrods, we want to decompose the GL_n tensor product $\rho_n^D \otimes \rho_n^E$.

Branching problem for $(G, H) = (GL_n \times GL_n, GL_n)$:

For Young diagrams *D* and *E*, $\rho_n^D \otimes \rho_n^E$ is an irreducible module for $GL_n \times GL_n$.

Restrict the action to $GL_n = \Delta(GL_n)$, and describe the GL_n module structure of $\rho_n^D \otimes \rho_n^E$.

In other wrods, we want to decompose the GL_n tensor product $\rho_n^D \otimes \rho_n^E$.

So the branching rule in this case is **the Littlewood-Richardson** (LR) Rule:

$$\rho_n^D \otimes \rho_n^E = \bigoplus_F c_{D,E}^F \rho_n^F,$$

where $c_{D,E}^F$ is the number of LR tableaux of shape F/D and content E.

We want to construct a branching algebra $\mathcal{A}_{(G,H)}$ which encodes the LR rule.

We want to construct a branching algebra $\mathcal{A}_{(G,H)}$ which encodes the LR rule.

First we need an algebra $\mathcal{R}_G = \bigoplus_{D,E} \rho_n^D \otimes \rho_n^E$.

We want to construct a branching algebra $\mathcal{A}_{(G,H)}$ which encodes the LR rule.

First we need an algebra
$$\mathcal{R}_G = \bigoplus_{D,E} \rho_n^D \otimes \rho_n^E$$
.

Then

$$\mathcal{A}_{(G,H)} := \mathcal{R}_{G}^{U_{H}} \quad \text{where} \quad U_{H} = U_{n} = \left\{ \begin{pmatrix} 1 & & \\ & 1 & * \\ & & \ddots & \\ & 0 & & 1 \end{pmatrix} \in \mathrm{GL}_{n} \right\}.$$

The construction of \mathcal{R}_G **:**

 $GL_n \times GL_k$ acts on the algebra $\mathcal{P}(M_{nk})$ of polynomial functions on $M_{nk}(\mathbb{C})$:

$$\mathcal{P}(\mathbf{M}_{nk}) \cong \bigoplus_{D} \rho_n^D \otimes \rho_k^D$$

 (GL_n, GL_k) duality)

The construction of \mathcal{R}_G **:**

 $GL_n \times GL_k$ acts on the algebra $\mathcal{P}(M_{nk})$ of polynomial functions on $M_{nk}(\mathbb{C})$:

$$\mathcal{P}(\mathbf{M}_{nk}) \cong \bigoplus_{D} \rho_n^D \otimes \rho_k^D \qquad (\mathbf{GL}_n, \mathbf{GL}_k) \text{ duality})$$

Extracting U_k invariants:

$$\mathcal{P}(\mathbf{M}_{nk})^{U_k} \simeq \bigoplus_D \rho_n^D \otimes \left(\rho_k^D\right)^{U_k} \simeq \bigoplus_D \rho_n^D.$$

The construction of \mathcal{R}_G :

 $GL_n \times GL_k$ acts on the algebra $\mathcal{P}(M_{nk})$ of polynomial functions on $M_{nk}(\mathbb{C})$:

$$\mathcal{P}(\mathbf{M}_{nk}) \cong \bigoplus_{D} \rho_n^D \otimes \rho_k^D$$
 (GL_n, GL_k) duality)

Extracting U_k invariants:

$$\mathcal{P}(\mathbf{M}_{nk})^{U_k} \simeq \bigoplus_D \rho_n^D \otimes \left(\rho_k^D\right)^{U_k} \simeq \bigoplus_D \rho_n^D.$$

Take another copy:

$$\mathcal{P}(\mathbf{M}_{n\ell})^{U_{\ell}} \simeq \bigoplus_{E} \rho_n^E \otimes \left(\rho_{\ell}^E\right)^{U_{\ell}} \simeq \bigoplus_{E} \rho_n^E.$$

Form the tensor product:

$$\mathcal{R}_G := \mathcal{P}(\mathbf{M}_{nk})^{U_k} \otimes \mathcal{P}(\mathbf{M}_{n\ell})^{U_\ell} \simeq \left(\bigoplus_D \rho_n^D\right) \otimes \left(\bigoplus_E \rho_n^E\right) \simeq \bigoplus_{D,E} \rho_n^D \otimes \rho_n^E$$

Form the tensor product:

$$\mathcal{R}_G := \mathcal{P}(\mathbf{M}_{nk})^{U_k} \otimes \mathcal{P}(\mathbf{M}_{n\ell})^{U_\ell} \simeq \left(\bigoplus_D \rho_n^D\right) \otimes \left(\bigoplus_E \rho_n^E\right) \simeq \bigoplus_{D,E} \rho_n^D \otimes \rho_n^E$$

Extract the $U_n = \Delta(U_n)$ invariants:

$$\mathcal{A}_{(G,H)} := \mathcal{R}_{G}^{U_{H}} = \left(\mathcal{P}(\mathbf{M}_{nk})^{U_{k}} \otimes \mathcal{P}(\mathbf{M}_{n\ell})^{U_{\ell}} \right)^{U_{n}} \simeq \bigoplus_{D,E} \left(\rho_{n}^{D} \otimes \rho_{n}^{E} \right)^{U_{n}}.$$

Form the tensor product:

$$\mathcal{R}_G := \mathcal{P}(\mathbf{M}_{nk})^{U_k} \otimes \mathcal{P}(\mathbf{M}_{n\ell})^{U_\ell} \simeq \left(\bigoplus_D \rho_n^D\right) \otimes \left(\bigoplus_E \rho_n^E\right) \simeq \bigoplus_{D,E} \rho_n^D \otimes \rho_n^E$$

Extract the $U_n = \Delta(U_n)$ invariants:

$$\mathcal{A}_{(G,H)} := \mathcal{R}_{G}^{U_{H}} = \left(\mathcal{P}(\mathbf{M}_{nk})^{U_{k}} \otimes \mathcal{P}(\mathbf{M}_{n\ell})^{U_{\ell}} \right)^{U_{n}} \simeq \bigoplus_{D,E} \left(\rho_{n}^{D} \otimes \rho_{n}^{E} \right)^{U_{n}}.$$

It can be further decomposed as

$$\mathcal{A}_{(G,H)} \simeq \bigoplus_{D,E} \left\{ \bigoplus_{F} \left(\rho_n^D \otimes \rho_n^E \right)_F^{U_n} \right\} = \bigoplus_{D,E,F} \mathcal{A}_{(G,H)}^{(D,E,F)}$$

where

$$\mathcal{A}_{(G,H)}^{(D,E,F)} = \left(\rho_n^D \otimes \rho_n^E\right)_F^{U_n} = \text{highest weight vectors of weigh } F \text{ in } \rho_n^D \otimes \rho_n^E$$
$$\dim \mathcal{A}_{(G,H)}^{(D,E,F)} = \text{multiplicity of } \rho_n^F \text{ in } \rho_n^D \otimes \rho_n^E$$

Howe et al. call $\mathcal{A}_{(G,H)}$ a GL_n tensor product algebra.

It turns out that $\mathcal{A}_{(G,H)}$ also encodes another branching rule:

$$\begin{aligned} \mathcal{A}_{(G,H)} &= \mathcal{R}_{G}^{U_{H}} = \left(\mathcal{P}(\mathbf{M}_{nk})^{U_{k}} \otimes \mathcal{P}(\mathbf{M}_{n\ell})^{U_{\ell}} \right)^{U_{n}} \simeq \mathcal{P}(\mathbf{M}_{nk} \oplus \mathbf{M}_{n\ell})^{U_{n} \times U_{k} \times U_{\ell}} \\ &\simeq \mathcal{P}(\mathbf{M}_{n(k+\ell)})^{U_{n} \times U_{k} \times U_{\ell}} \simeq \left(\bigoplus_{F} \rho_{n}^{F} \otimes \rho_{k+\ell}^{F} \right)^{U_{n} \times U_{k} \times U_{\ell}} \\ &\simeq \bigoplus_{F} \left(\rho_{n}^{F} \right)^{U_{n}} \otimes \left(\rho_{k+\ell}^{F} \right)^{U_{k} \times U_{\ell}} \simeq \bigoplus_{F} \left(\rho_{k+\ell}^{F} \right)^{U_{k} \times U_{\ell}}. \end{aligned}$$

It turns out that $\mathcal{A}_{(G,H)}$ also encodes another branching rule:

$$\begin{aligned} \mathcal{A}_{(G,H)} &= \mathcal{R}_{G}^{U_{H}} = \left(\mathcal{P}(\mathbf{M}_{nk})^{U_{k}} \otimes \mathcal{P}(\mathbf{M}_{n\ell})^{U_{\ell}} \right)^{U_{n}} \simeq \mathcal{P}(\mathbf{M}_{nk} \oplus \mathbf{M}_{n\ell})^{U_{n} \times U_{k} \times U_{\ell}} \\ &\simeq \mathcal{P}(\mathbf{M}_{n(k+\ell)})^{U_{n} \times U_{k} \times U_{\ell}} \simeq \left(\bigoplus_{F} \rho_{n}^{F} \otimes \rho_{k+\ell}^{F} \right)^{U_{n} \times U_{k} \times U_{\ell}} \\ &\simeq \bigoplus_{F} \left(\rho_{n}^{F} \right)^{U_{n}} \otimes \left(\rho_{k+\ell}^{F} \right)^{U_{k} \times U_{\ell}} \simeq \bigoplus_{F} \left(\rho_{k+\ell}^{F} \right)^{U_{k} \times U_{\ell}}. \end{aligned}$$

 $\mathcal{A}_{(G,H)}$ encodes the branching rule for $\operatorname{GL}_{k+\ell} \downarrow \operatorname{GL}_k \times \operatorname{GL}_\ell$. So the algebra $\mathcal{A}_{(G,H)}$ encodes two branching rules. It turns out that $\mathcal{A}_{(G,H)}$ also encodes another branching rule:

$$\begin{aligned} \mathcal{A}_{(G,H)} &= \mathcal{R}_{G}^{U_{H}} = \left(\mathcal{P}(\mathbf{M}_{nk})^{U_{k}} \otimes \mathcal{P}(\mathbf{M}_{n\ell})^{U_{\ell}} \right)^{U_{n}} \simeq \mathcal{P}(\mathbf{M}_{nk} \oplus \mathbf{M}_{n\ell})^{U_{n} \times U_{k} \times U_{\ell}} \\ &\simeq \mathcal{P}(\mathbf{M}_{n(k+\ell)})^{U_{n} \times U_{k} \times U_{\ell}} \simeq \left(\bigoplus_{F} \rho_{n}^{F} \otimes \rho_{k+\ell}^{F} \right)^{U_{n} \times U_{k} \times U_{\ell}} \\ &\simeq \bigoplus_{F} \left(\rho_{n}^{F} \right)^{U_{n}} \otimes \left(\rho_{k+\ell}^{F} \right)^{U_{k} \times U_{\ell}} \simeq \bigoplus_{F} \left(\rho_{k+\ell}^{F} \right)^{U_{k} \times U_{\ell}}. \end{aligned}$$

 $\mathcal{A}_{(G,H)}$ encodes the branching rule for $\operatorname{GL}_{k+\ell} \downarrow \operatorname{GL}_k \times \operatorname{GL}_\ell$. So the algebra $\mathcal{A}_{(G,H)}$ encodes two branching rules.

From this, we obtain the reciprocity law: $\dim \mathcal{A}_{(G,H)}^{(D,E,F)} = \text{multiplicity of } \rho_k^D \otimes \rho_\ell^E \text{ in } \rho_n^F = \text{multiplicity of } \rho_n^F \text{ in } \rho_n^D \otimes \rho_n^E$

Problem: Find a basis for $\mathcal{A}_{(G,H)}$.

Since $\mathcal{A}_{(G,H)} = \bigoplus_{\substack{D,E,F}} \mathcal{A}_{(G,H)}^{(D,E,F)}$, it suffices to find a basis for each subspace $\mathcal{A}_{(G,H)}^{(D,E,F)}$.

Problem: Find a basis for $\mathcal{A}_{(G,H)}$.

Since $\mathcal{A}_{(G,H)} = \bigoplus_{\substack{D,E,F}} \mathcal{A}_{(G,H)}^{(D,E,F)}$, it suffices to find a basis for each subspace $\mathcal{A}_{(G,H)}^{(D,E,F)}$.

By the Littlewood-Richardson Rule,

$$\dim \mathcal{R}_{(G,H)}^{(D,E,F)} = c_{D,E}^{F}$$

= number of LR tableaux T of shape F/D and content E.

Problem: Find a basis for $\mathcal{A}_{(G,H)}$.

Since $\mathcal{A}_{(G,H)} = \bigoplus_{\substack{D,E,F}} \mathcal{A}_{(G,H)}^{(D,E,F)}$, it suffices to find a basis for each subspace $\mathcal{A}_{(G,H)}^{(D,E,F)}$.

By the Littlewood-Richardson Rule,

$$\dim \mathcal{A}_{(G,H)}^{(D,E,F)} = c_{D,E}^{F}$$

= number of LR tableaux T of shape F/D and content E.

Plan: LR tableau $T \longrightarrow$ construct a basis vector Δ_T in $\mathcal{R}^{(D,E,F)}_{(G,H)}$

Now

$$\mathcal{A}_{(G,H)} = \left(\mathcal{P}(\mathbf{M}_{nk})^{U_k} \otimes \mathcal{P}(\mathbf{M}_{n\ell})^{U_\ell} \right)^{U_n} \\ = \mathcal{P}(\mathbf{M}_{n,k} \oplus \mathbf{M}_{n,\ell})^{U_n \times U_k \times U_\ell},$$

it is a subalgebra of $\mathcal{P}(\mathbf{M}_{n,k} \oplus \mathbf{M}_{n,\ell})$.

Now

$$\mathcal{A}_{(G,H)} = \left(\mathcal{P}(\mathbf{M}_{nk})^{U_k} \otimes \mathcal{P}(\mathbf{M}_{n\ell})^{U_\ell} \right)^{U_n} \\ = \mathcal{P}(\mathbf{M}_{n,k} \oplus \mathbf{M}_{n,\ell})^{U_n \times U_k \times U_\ell},$$

it is a subalgebra of $\mathcal{P}(\mathbf{M}_{n,k} \oplus \mathbf{M}_{n,\ell})$.

Write the coordinates of $M_{n,k} \oplus M_{n,\ell}$ as

(x_{11})	<i>x</i> ₁₂	•••	x_{1k}	y11	<i>y</i> ₁₂	•••	<i>Y</i> 1 <i>ℓ</i>
<i>x</i> ₂₁	<i>x</i> ₂₂	•••	x_{2k}	<i>y</i> 21	<i>У</i> 22	• • •	У2ℓ
	:		:	:	•		•
(x_{n1})	x_{n2}	•••	x_{nk}	<i>Yn</i> 1	<i>Уn</i> 2	• • •	Ynl ,

Then each Δ_T is a polynomial on these variables.

Associate each skew tableau T with a monomial m_T .

Associate each skew tableau T with a monomial m_T .

Introduce a monomial ordering: the graded lexicographic order with

$$x_{11} > x_{21} > \cdots > x_{n1} > x_{12} > \cdots > x_{nk} > y_{11} > y_{21} > \cdots > y_{n\ell}$$

LM(f) = leading monomial of f.

Associate each skew tableau T with a monomial m_T .

Introduce a monomial ordering: the graded lexicographic order with

$$x_{11} > x_{21} > \cdots > x_{n1} > x_{12} > \cdots > x_{nk} > y_{11} > y_{21} > \cdots > y_{n\ell}.$$

LM(f) = leading monomial of f.

Theorem (Howe-Tan-Willenbring, Advances 2005) $\mathcal{A}_{(G,H)}^{(D,E,F)}$ has a basis $\{\Delta_T\}$ with the property that for each T,

 $LM(\Delta_T) = m_T.$

Example. Let $D = \square E = \square F = \square$. Then ρ_n^F occurs in $\rho_n^D \otimes \rho_n^E$ with multiplicity 2.

$$T_{1} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \quad \Delta_{T_{1}} = \begin{vmatrix} x_{11} & x_{12} & y_{11} & y_{12} \\ x_{21} & x_{22} & y_{21} & y_{22} \\ x_{31} & x_{32} & y_{31} & y_{32} \\ 0 & 0 & y_{11} & y_{12} \end{vmatrix} \begin{vmatrix} x_{11} & y_{11} \\ x_{21} & y_{21} \end{vmatrix}$$
$$LM(\Delta_{T_{1}}) = (x_{11}x_{22}y_{11}y_{32})(x_{11}y_{21}) = m_{T_{1}}$$

Example. Let $D = \square E = \square F = \square$ Then ρ_n^F occurs in $\rho_n^D \otimes \rho_n^E$ with multiplicity 2.

$$T_{1} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \quad \Delta_{T_{1}} = \begin{vmatrix} x_{11} & x_{12} & y_{11} & y_{12} \\ x_{21} & x_{22} & y_{21} & y_{22} \\ x_{31} & x_{32} & y_{31} & y_{32} \\ 0 & 0 & y_{11} & y_{12} \end{vmatrix} \begin{vmatrix} x_{11} & y_{11} \\ x_{21} & y_{21} \end{vmatrix}$$
$$LM(\Delta_{T_{1}}) = (x_{11}x_{22}y_{11}y_{32})(x_{11}y_{21}) = m_{T_{1}}$$

•

$$T_{2} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \Delta_{T_{2}} = \begin{vmatrix} x_{11} & x_{12} & y_{11} \\ x_{21} & x_{22} & y_{21} \\ x_{31} & x_{32} & y_{31} \end{vmatrix} \begin{vmatrix} x_{11} & y_{11} & y_{12} \\ x_{21} & y_{21} & y_{22} \\ 0 & y_{11} & y_{12} \end{vmatrix}$$
$$LM(\Delta_{T_{2}}) = (x_{11}x_{22}y_{31})(x_{11}y_{11}y_{22}) = m_{T_{2}}$$

 $S_{(G,H)} = \{ LM(f) : f \in \mathcal{A}_{(G,H)}, f \neq 0 \} = \{ m_T \}.$ Then $S_{(G,H)}$ is a semigroup because $\mathcal{A}_{(G,H)}$ is an algebra and $LM(f_1f_2) = LM(f_1)LM(f_2).$

 $S_{(G,H)} = \{ LM(f) : f \in \mathcal{A}_{(G,H)}, f \neq 0 \} = \{ m_T \}.$ Then $S_{(G,H)}$ is a semigroup because $\mathcal{A}_{(G,H)}$ is an algebra and $LM(f_1f_2) = LM(f_1)LM(f_2).$

What we can we say about this semigroup $S_{(G,H)}$?

 $S_{(G,H)} = \{ LM(f) : f \in \mathcal{A}_{(G,H)}, f \neq 0 \} = \{ m_T \}.$ Then $S_{(G,H)}$ is a semigroup because $\mathcal{A}_{(G,H)}$ is an algebra and $LM(f_1f_2) = LM(f_1)LM(f_2).$

What we can we say about this semigroup $S_{(G,H)}$? There is a rational polyhedral cone *C* in some \mathbb{R}^N such that $S_{(G,H)} \simeq C \cap \mathbb{Z}^N$.

It is finitely generated.

 $S_{(G,H)} = \{ LM(f) : f \in \mathcal{A}_{(G,H)}, f \neq 0 \} = \{ m_T \}.$ Then $S_{(G,H)}$ is a semigroup because $\mathcal{A}_{(G,H)}$ is an algebra and $LM(f_1f_2) = LM(f_1)LM(f_2).$

What we can we say about this semigroup $S_{(G,H)}$? There is a rational polyhedral cone *C* in some \mathbb{R}^N such that $S_{(G,H)} \simeq C \cap \mathbb{Z}^N$.

It is finitely generated.

The polyhedral cone *C* is called the **Littlewood-Richardson cone** by Igor Pak, and

 $c_{D,E}^F$ = number of integral points in a polytope contained in *C*.

The **initial algebra** in($\mathcal{A}_{(G,H)}$) of $\mathcal{A}_{(G,H)}$ is the subalgebra of $\mathcal{P}(M_{nk} \oplus M_{nl})$ generated by $S_{(G,H)}$.

The **initial algebra** in($\mathcal{A}_{(G,H)}$) of $\mathcal{A}_{(G,H)}$ is the subalgebra of $\mathcal{P}(M_{nk} \oplus M_{nl})$ generated by $S_{(G,H)}$.

So

 $\operatorname{in}(\mathcal{A}_{G,H}) \simeq \mathbb{C}[S_{(G,H)}]$

is the **semigroup algebra** on $S_{(G,H)}$, and it is finitely generated.

The **initial algebra** in($\mathcal{A}_{(G,H)}$) of $\mathcal{A}_{(G,H)}$ is the subalgebra of $\mathcal{P}(M_{nk} \oplus M_{nl})$ generated by $S_{(G,H)}$.

So

 $\operatorname{in}(\mathcal{A}_{G,H}) \simeq \mathbb{C}[S_{(G,H)}]$

is the **semigroup algebra** on $S_{(G,H)}$, and it is finitely generated.

By a general results of Conca, Herzog, and Valla, we have:

Theorem ([HJLTW]). The semigroup algebra $\mathbb{C}[S_{(G,H)}]$ is a flat deformation of $\mathcal{A}_{(G,H)}$.

Similar results also hold for the following symmetric pairs (under a stable range condition):

(GL_n, O_n), (O_{n+m}, O_n × O_m), (Sp_{2n}, GL_n), (GL_{2n}, Sp_{2n}), (Sp_{2(n+m)}, Sp_{2n} × Sp_{2m}), (O_{2n}, GL_n)

Branching multiplicities in these cases can be deduced from the algebra structure and the LR rule.

m-fold tensor product algebra

This is a branching algebra $\mathcal{A}_{(G,H)}$ which describes the decomposition of *m*-fold tensor products of GL_n modules:

$$\rho_n^{D_1} \otimes \rho_n^{D_2} \otimes \cdots \otimes \rho_n^{D_m}$$

where

$$G = \operatorname{GL}_n^m, \quad H = \Delta(\operatorname{GL}_n).$$

m-fold tensor product algebra

This is a branching algebra $\mathcal{A}_{(G,H)}$ which describes the decomposition of *m*-fold tensor products of GL_n modules:

$$\rho_n^{D_1} \otimes \rho_n^{D_2} \otimes \cdots \otimes \rho_n^{D_m}$$

where

$$G = \operatorname{GL}_n^m, \quad H = \Delta(\operatorname{GL}_n).$$

A Special case: tensor product of the form

 $\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)} \simeq \rho_n^D \otimes S^{\alpha_1}(\mathbb{C}^n) \otimes S^{\alpha_2}(\mathbb{C}^n) \otimes \cdots \otimes S^{\alpha_\ell}(\mathbb{C}^n).$ We call a description of this tensor product **an iterated Pieri rule**.

An algebra which encodes the iterated Pieri rule:

$$\begin{aligned} \mathcal{P}(\mathbf{M}_{n(k+\ell)}) &= \mathcal{P}(\mathbf{M}_{nk} \oplus \mathbb{C}^n \oplus \mathbb{C}^n \oplus \cdots \oplus \mathbb{C}^n) \\ &= \mathcal{P}(\mathbf{M}_{nk}) \otimes \mathcal{P}(\mathbb{C}^n) \otimes \mathcal{P}(\mathbb{C}^n) \otimes \cdots \otimes \mathcal{P}(\mathbb{C}^n) \\ &\simeq \left(\bigoplus_{D} \rho_n^D \otimes \rho_k^D \right) \otimes \left(\bigoplus_{\alpha_1} \rho_n^{(\alpha_1)} \right) \otimes \cdots \otimes \left(\bigoplus_{\alpha_\ell} \rho_n^{(\alpha_\ell)} \right) \\ &\simeq \bigoplus_{D,\alpha} \left(\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)} \right) \otimes \rho_k^D \end{aligned}$$

An algebra which encodes the iterated Pieri rule:

$$\mathcal{P}(\mathbf{M}_{n(k+\ell)}) = \mathcal{P}(\mathbf{M}_{nk} \oplus \mathbb{C}^{n} \oplus \mathbb{C}^{n} \oplus \cdots \oplus \mathbb{C}^{n}) \\ = \mathcal{P}(\mathbf{M}_{nk}) \otimes \mathcal{P}(\mathbb{C}^{n}) \otimes \mathcal{P}(\mathbb{C}^{n}) \otimes \cdots \otimes \mathcal{P}(\mathbb{C}^{n}) \\ \simeq \left(\bigoplus_{D} \rho_{n}^{D} \otimes \rho_{k}^{D}\right) \otimes \left(\bigoplus_{\alpha_{1}} \rho_{n}^{(\alpha_{1})}\right) \otimes \cdots \otimes \left(\bigoplus_{\alpha_{\ell}} \rho_{n}^{(\alpha_{\ell})}\right) \\ \simeq \bigoplus_{D,\alpha} \left(\rho_{n}^{D} \otimes \rho_{n}^{(\alpha_{1})} \otimes \rho_{n}^{(\alpha_{2})} \otimes \cdots \otimes \rho_{n}^{(\alpha_{\ell})}\right) \otimes \rho_{k}^{D}$$

Extract $U_n \times U_k$ invariants:

$$\mathcal{P}(\mathbf{M}_{n(k+\ell)})^{U_n \times U_k} \simeq \bigoplus_{D,\alpha} \left(\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)} \right)^{U_n} \otimes \left(\rho_k^D \right)^{U_k}$$

We call $\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k}$ an **iterated Pieri algebra** for GL_n .

The iterated Pieri algebra $\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k}$ also encodes the branching rule for

 $\operatorname{GL}_{k+\ell} \downarrow \operatorname{GL}_k \times \operatorname{GL}_1^{\ell} = \operatorname{GL}_k \times (\operatorname{GL}_1 \times \cdots \times \operatorname{GL}_1).$

The iterated Pieri algebra $\mathcal{P}(\mathbf{M}_{n(k+\ell)})^{U_n \times U_k}$ also encodes the branching rule for

$$\operatorname{GL}_{k+\ell} \downarrow \operatorname{GL}_k \times \operatorname{GL}_1^{\ell} = \operatorname{GL}_k \times (\operatorname{GL}_1 \times \cdots \times \operatorname{GL}_1).$$

Special case: If k = 1, then this is branching for

$$\operatorname{GL}_{\ell+1} \downarrow = \operatorname{GL}_{1}^{\ell+1} = \operatorname{\widetilde{GL}_{1} \times \cdots \times \operatorname{GL}_{1}}.$$

That is, decompose $\rho_{\ell+1}^D$ into weight spaces, and find a basis of each weight space.

Comparing tensor product algebra with iterated Pieri algebra GL_n **tensor product algebra:**

 $\mathcal{P}(\mathcal{M}_{n(k+\ell)})^{U_n \times U_k \times U_\ell}$ describes general tensor products $\rho_n^D \otimes \rho_n^E$.

Comparing tensor product algebra with iterated Pieri algebra GL_n **tensor product algebra:**

 $\mathcal{P}(\mathbf{M}_{n(k+\ell)})^{U_n \times U_k \times U_\ell}$ describes general tensor products $\rho_n^D \otimes \rho_n^E$. **Iterated Pieri algebra for** GL_n :

 $\mathcal{P}(\mathbf{M}_{n(k+\ell)})^{U_n \times U_k}$ describes tensor products of the form $\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)}.$

Comparing tensor product algebra with iterated Pieri algebra GL_n **tensor product algebra:**

 $\mathcal{P}(\mathbf{M}_{n(k+\ell)})^{U_n \times U_k \times U_\ell}$ describes general tensor products $\rho_n^D \otimes \rho_n^E$. **Iterated Pieri algebra for** GL_n :

$$\mathcal{P}(\mathcal{M}_{n(k+\ell)})^{U_n \times U_k}$$
 describes tensor products of the form
 $\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)}.$

We have

$$\mathcal{P}(\mathbf{M}_{n(k+\ell)})^{U_n \times U_k \times U_\ell} \subseteq \mathcal{P}(\mathbf{M}_{n(k+\ell)})^{U_n \times U_k}$$

By analyzing how the tensor product algebra sits inside the iterated Pieri algebra, we can give a proof of the Littlewood-Richardson Rule ([Howe-Lee], BAMS 2012).

What is the semigroup *S* associated with the iterated Pieri algebra $\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k}$?

The elements of *S* should count the multiplicity in the tensor product $\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)}$.

What is the semigroup *S* associated with the iterated Pieri algebra $\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k}$?

The elements of *S* should count the multiplicity in the tensor product $\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)}$.

By the Pieri Rule,

$$\rho_p^D \otimes \rho_p^{(\alpha_1)} = \bigoplus_F \rho_p^F \quad (\text{multiplicity free})$$

where *F* satisfies the interlacing condition: If $D = (d_1, ..., d_p)$ and $F = (f_1, ..., f_p)$, then

$$f_1 \ge d_1 \ge f_2 \ge d_2 \ge \cdots \ge f_p \ge d_p.$$

What is the semigroup *S* associated with the iterated Pieri algebra $\mathcal{P}(M_{n(k+\ell)})^{U_n \times U_k}$?

The elements of *S* should count the multiplicity in the tensor product $\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)}$.

By the Pieri Rule,

$$\rho_p^D \otimes \rho_p^{(\alpha_1)} = \bigoplus_F \rho_p^F \quad (\text{multiplicity free})$$

where *F* satisfies the interlacing condition: If $D = (d_1, ..., d_p)$ and $F = (f_1, ..., f_p)$, then

$$f_1 \ge d_1 \ge f_2 \ge d_2 \ge \cdots \ge f_p \ge d_p.$$

We indicate these inequalities by writing

By iterating the Pieri Rule,

$$\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)} = \bigoplus_F m_F \rho_n^F$$

where m_F is the number of "Gelfand-Zeltlin" of the form

where $D = (\lambda_{10}, \lambda_{20}, \cdots, \lambda_{p0})$ and $F = (\lambda_{1\ell}, \lambda_{2\ell}, \cdots, \lambda_{n\ell})$.

By iterating the Pieri Rule,

$$\rho_n^D \otimes \rho_n^{(\alpha_1)} \otimes \rho_n^{(\alpha_2)} \otimes \cdots \otimes \rho_n^{(\alpha_\ell)} = \bigoplus_F m_F \rho_n^F$$

where m_F is the number of "Gelfand-Zeltlin" of the form

$$\lambda_{10} \qquad \lambda_{20} \qquad \cdots \qquad \lambda_{n0}$$

$$\lambda = \qquad \lambda_{11} \qquad \lambda_{21} \qquad \cdots \qquad \lambda_{n1}$$

$$\lambda = \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\lambda_{1\ell} \qquad \lambda_{2\ell} \qquad \cdots \qquad \lambda_{n\ell}$$

where $D = (\lambda_{10}, \lambda_{20}, \cdots, \lambda_{p0})$ and $F = (\lambda_{1\ell}, \lambda_{2\ell}, \cdots, \lambda_{n\ell})$.

These patterns can be viewed as order preserving functions on a poset Γ

$$\lambda:\Gamma\to\mathbb{Z}^+.$$

The set

$$(\mathbb{Z}^+)^{\Gamma,\geq} = \{f : \Gamma \to \mathbb{Z}^+ | f \text{ is order preserving}\}$$

forms a semigroup, and is called a **Hibi cone**. It has a very simple semigroup structure.

(More genearly, we can replace Γ by a finite poset)

The set

$$(\mathbb{Z}^+)^{\Gamma,\geq} = \{f : \Gamma \to \mathbb{Z}^+ | f \text{ is order preserving}\}$$

forms a semigroup, and is called a **Hibi cone**. It has a very simple semigroup structure.

(More genearly, we can replace Γ by a finite poset)

```
Call a subset A of \Gamma increasing if
```

 $a \in A, x \in \Gamma, x \ge a \Longrightarrow x \in A.$

Denote by $J^*(\Gamma)$ the collection of all increasing subsets of Γ .

For each $A \in J^*(\Gamma)$, let

$$\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A. \end{cases}$$

Then clearly $\chi_A \in (\mathbb{Z}^+)^{\Gamma,\geq}$.

For each $A \in J^*(\Gamma)$, let

$$\chi_A(x) = \begin{cases} 1 \ x \in A \\ 0 \ x \notin A. \end{cases}$$

Then clearly $\chi_A \in (\mathbb{Z}^+)^{\Gamma,\geq}$.

Theorem. The semigroup $(\mathbb{Z}^+)^{\Gamma,\geq}$ is generated by $\{\chi_A : A \in J^*(\Gamma)\}$ and it has relations

 $\chi_A + \chi_B = \chi_{A \cup B} + \chi_{A \cap B}, \quad A, B \in J^*(\Gamma).$

For each $A \in J^*(\Gamma)$, let

$$\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A. \end{cases}$$

Then clearly $\chi_A \in \Omega_{\Gamma}$.

Theorem. The semigroup $(\mathbb{Z}^+)^{\Gamma,\geq}$ is generated by $\{\chi_A : A \in J^*(\Gamma)\}$ and it has relations

$$\chi_A + \chi_B = \chi_{A \cup B} + \chi_{A \cap B}, \quad A, B \in J^*(\Gamma).$$

It follows that every $f \in (\mathbb{Z}^+)^{\Gamma, \geq}$ can be expressed as

$$f = \sum_{j} c_{j} \chi_{A_{j}}$$

where $c_j \in \mathbb{N}$ and $A_1 \subset A_2 \subset \cdots \subset A_N = \Gamma$ is a chain in $J^*(\Gamma)$.

In the case when n = 3, $k = \ell = 2$, $(\mathbb{Z}^+)^{\Gamma, \geq}$ consists of patterns of the form

$$\lambda = \begin{array}{ccc} \lambda_{10} & \lambda_{20} & 0 \\ \lambda = & \lambda_{11} & \lambda_{21} & \lambda_{31} \\ \lambda_{12} & \lambda_{22} & \lambda_{32} \end{array}$$

In the case when n = 3, $k = \ell = 2$, $(\mathbb{Z}^+)^{\Gamma, \geq}$ consists of patterns of the form

$$\lambda = \begin{array}{ccc} \lambda_{10} & \lambda_{20} & 0 \\ \lambda_{11} & \lambda_{21} & \lambda_{31} \\ \lambda_{12} & \lambda_{22} & \lambda_{32} \end{array}$$

The generators χ_A of $(\mathbb{Z}^+)^{\Gamma,\geq}$ are:

For general n, k, ℓ , each generator χ_A of $(\mathbb{Z}^+)^{\Gamma,\geq}$ corresponds to an element in $\mathcal{P}(\mathcal{M}_{n(k+\ell)})^{U_n \times U_k}$ of the form

$$\delta_A = \begin{vmatrix} x_{11} & x_{12} & \cdots & x_{1p} & y_{1s_1} & y_{1s_2} & \cdots & y_{1s_q} \\ x_{21} & x_{22} & \cdots & x_{2p} & y_{2s_1} & y_{2s_2} & \cdots & y_{2s_q} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{(p+q)1} & x_{(p+q)2} & \cdots & x_{(p+q)p} & y_{(p+q)s_1} & y_{(p+q)s_2} & \cdots & y_{(p+q)s_q} \end{vmatrix}.$$

Let *Q* be the set of all δ_A .

For general *n*, *k*, ℓ , each generator χ_A of $(\mathbb{Z}^+)^{\Gamma,\geq}$ corresponds to an element in $\mathcal{P}(\mathcal{M}_{n(k+\ell)})^{U_n \times U_k}$ of the form

$$\delta_A = \begin{vmatrix} x_{11} & x_{12} & \cdots & x_{1p} & y_{1s_1} & y_{1s_2} & \cdots & y_{1s_q} \\ x_{21} & x_{22} & \cdots & x_{2p} & y_{2s_1} & y_{2s_2} & \cdots & y_{2s_q} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{(p+q)1} & x_{(p+q)2} & \cdots & x_{(p+q)p} & y_{(p+q)s_1} & y_{(p+q)s_2} & \cdots & y_{(p+q)s_q} \end{vmatrix}$$

Let *Q* be the set of all δ_A .

If $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_r$, then we call the product

 $\delta_{A_1}\delta_{A_2}\cdots\delta_{A_r}$

a standard monomial on Q.

For general n, k, ℓ , each generator χ_A of $(\mathbb{Z}^+)^{\Gamma,\geq}$ corresponds to an element in $\mathcal{P}(\mathcal{M}_{n(k+\ell)})^{U_n \times U_k}$ of the form

$$\delta_A = \begin{vmatrix} x_{11} & x_{12} & \cdots & x_{1p} & y_{1s_1} & y_{1s_2} & \cdots & y_{1s_q} \\ x_{21} & x_{22} & \cdots & x_{2p} & y_{2s_1} & y_{2s_2} & \cdots & y_{2s_q} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{(p+q)1} & x_{(p+q)2} & \cdots & x_{(p+q)p} & y_{(p+q)s_1} & y_{(p+q)s_2} & \cdots & y_{(p+q)s_q} \end{vmatrix}$$

Let Q be the set of all δ_A .

If $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_r$, then we call the product

$$\delta_{A_1}\delta_{A_2}\cdots\delta_{A_r}$$

a *standard monomial* on *Q*.

It turns out that the set of all standard monomials on Q forms a vector space basis for $\mathcal{P}(\mathcal{M}_{n(k+\ell)})^{U_n \times U_k}$. We say that $\mathcal{P}(\mathcal{M}_{n(k+\ell)})^{U_n \times U_k}$ has a standard monomial theory for Q.

This treatment was given by **Sangjib Kim** in his thesis.

What other branching algebras are associated with Hibi cones?

The double Pieri algebra $\mathcal{L}_{(n,p),(k,q)}$ **for** $\operatorname{GL}_n \times \operatorname{GL}_k$ It describes

$$\left\{\rho_n^D \otimes \left(\otimes_{i=1}^p \rho_n^{(\alpha_i)}\right)\right\} \otimes \left\{\rho_k^D \otimes \left(\otimes_{j=1}^q \rho_k^{(\alpha_j)}\right)\right\}$$

with depth(D) $\leq k \leq n$.

What other branching algebras are associated with Hibi cones?

The double Pieri algebra $\mathcal{L}_{(n,p),(k,q)}$ **for** $\operatorname{GL}_n \times \operatorname{GL}_k$ It describes

$$\left\{\rho_n^D \otimes \left(\otimes_{i=1}^p \rho_n^{(\alpha_i)}\right)\right\} \otimes \left\{\rho_k^D \otimes \left(\otimes_{j=1}^q \rho_k^{(\alpha_j)}\right)\right\}$$

with depth(D) $\leq k \leq n$.

The iterated Pieri algebra $\mathcal{A}_{n,k,p}$ for O_n where 2(k + p) < n. It describes

$$\sigma_n^D \otimes \left(\otimes_{i=1}^{\ell} \sigma_n^{(\alpha_i)} \right)$$

where σ_n^D is the irreducible representation of O_n labelled by D and depth(D) $\leq k$.
The iterated Pieri algebra $Q_{n,k,p}$ for Sp_{2n} where k + p < n. It describes

$$\tau_{2n}^D \otimes \left(\otimes_{i=1}^{\ell} \tau_{2n}^{(\alpha_i)} \right)$$

where τ_{2n}^D is the irreducible representation of Sp_{2n} labelled by D and depth(D) $\leq k$.

The iterated Pieri algebra $Q_{n,k,p}$ for Sp_{2n} where k + p < n. It describes

$$\tau_{2n}^D \otimes \left(\otimes_{i=1}^{\ell} \tau_{2n}^{(\alpha_i)} \right)$$

where τ_{2n}^D is the irreducible representation of Sp_{2n} labelled by D and depth(D) $\leq k$.

It turns out that $Q_{n,k,p} \simeq \mathcal{A}_{2n,k,p}$ for k + p < n.

The (more general) iterated Pieri algebra $\mathfrak{A}_{n,k,\ell,p,q}$ for GL_n where $k + p + \ell + q) \le n$. It describes

$$\rho_n^{D,E} \otimes \left(\bigotimes_{i=1}^p \rho_n^{(\alpha_i)}\right) \otimes \left(\bigotimes_{j=1}^q \rho_n^{(\alpha_i)^*}\right)$$

where depth(D) $\leq k$ and depth(E) $\leq \ell$.

The (more general) iterated Pieri algebra $\mathfrak{A}_{n,k,\ell,p,q}$ for GL_n where $k + p + \ell + q) \le n$. It describes

$$\rho_n^{D,E} \otimes \left(\bigotimes_{i=1}^p \rho_n^{(\alpha_i)}\right) \otimes \left(\bigotimes_{j=1}^q \rho_n^{(\alpha_i)^*}\right)$$

where depth(D) $\leq k$ and depth(E) $\leq \ell$.

It turns out that double Pieri algebras can be regarded as a common structure shared by the iterated Pieri algebras.

Theorem. We have the isomorphism of graded algebras

$$\mathcal{A}_{n,k,p} \simeq \mathcal{L}_{(n,p),(k,p)} \otimes \mathcal{P}(\wedge^2(\mathbb{C}^p)),$$
$$\mathfrak{A}_{n,k,\ell,p,q} \simeq \mathcal{L}_{(n,p),(k,q)} \otimes \mathcal{L}_{(n,q),(\ell,p)} \otimes \mathcal{P}(\mathcal{M}_{pq}).$$

Antirow Pieri algebra for GL_n (without stable range condition)

$$\begin{aligned} \mathcal{R}_{n,p,q} &:= \mathcal{P}(\mathbf{M}_{np}) \otimes \left(\bigotimes_{i=1}^{q} \mathcal{P}(\mathbb{C}_{i}^{n*})\right) \simeq \left(\bigoplus_{D} \rho_{n}^{D} \otimes \rho_{p}^{D}\right) \otimes \left(\bigotimes_{i=1}^{q} \rho_{n}^{(\beta_{i})*}\right) \\ &\simeq \bigoplus_{F,\alpha} \left\{ \rho_{n}^{D} \otimes \left(\bigotimes_{i=1}^{q} \rho_{n}^{(\beta_{i})*}\right) \right\} \otimes \rho_{p}^{F}. \end{aligned}$$

Antirow Pieri algebra for GL_n (without stable range condition)

$$\begin{aligned} \mathcal{R}_{n,p,q} &:= \mathcal{P}(\mathbf{M}_{np}) \otimes \left(\bigotimes_{i=1}^{q} \mathcal{P}(\mathbb{C}_{i}^{n*})\right) \simeq \left(\bigoplus_{D} \rho_{n}^{D} \otimes \rho_{p}^{D}\right) \otimes \left(\bigotimes_{i=1}^{q} \rho_{n}^{(\beta_{i})*}\right) \\ &\simeq \bigoplus_{F,\alpha} \left\{ \rho_{n}^{D} \otimes \left(\bigotimes_{i=1}^{q} \rho_{n}^{(\beta_{i})*}\right) \right\} \otimes \rho_{p}^{F}. \end{aligned}$$

Extract $GL_n \times GL_p$ highest weight vectors:

$$\mathcal{R}_{n,p,q}^{U_n \times U_p} \simeq \bigoplus_{F,\alpha} \left\{ \rho_n^D \otimes \left(\bigotimes_{i=1}^q \rho_n^{(\beta_i)*} \right) \right\}^{U_n} \otimes \left(\rho_p^F \right)^{U_p}$$

Antirow Pieri algebra for GL_n (without stable range condition)

$$\begin{aligned} \mathcal{R}_{n,p,q} &:= \mathcal{P}(\mathbf{M}_{np}) \otimes \left(\bigotimes_{i=1}^{q} \mathcal{P}(\mathbb{C}_{i}^{n*})\right) \simeq \left(\bigoplus_{D} \rho_{n}^{D} \otimes \rho_{p}^{D}\right) \otimes \left(\bigotimes_{i=1}^{q} \rho_{n}^{(\beta_{i})*}\right) \\ &\simeq \bigoplus_{F,\alpha} \left\{ \rho_{n}^{D} \otimes \left(\bigotimes_{i=1}^{q} \rho_{n}^{(\beta_{i})*}\right) \right\} \otimes \rho_{p}^{F}. \end{aligned}$$

Extract $GL_n \times GL_p \times A_q$ highest weight vectors:

$$\mathcal{R}_{n,p,q}^{U_n \times U_p} \simeq \bigoplus_{F,\alpha} \left\{ \rho_n^D \otimes \left(\bigotimes_{i=1}^q \rho_n^{(\beta_i)*} \right) \right\}^{U_n} \otimes \left(\rho_p^F \right)^{U_p}$$

٠

So the algebra
$$\mathcal{R}_{n,p,q}^{U_n \times U_p}$$
 describes $\rho_n^D \otimes \left(\bigotimes_{i=1}^q \rho_n^{(\beta_i)*} \right)$.

Multiplicities in
$$\rho_n^D \otimes \left(\bigotimes_{i=1}^q \rho_n^{(\beta_i)*} \right)$$
 are counted by patterns of the form
 $v_{10} \quad v_{20} \quad \cdots \quad v_{n0}$
 $v_{11} \quad v_{21} \quad v_{n1}$
 $v = \quad \cdot \quad \cdot \quad \cdot$
 $v_{1q} \quad v_{2q} \quad \cdots \quad v_{nq}$
with $D = (v_{10}, v_{20}, \cdots, v_{n0})$.

Multiplicities in
$$\rho_n^D \otimes \left(\bigotimes_{i=1}^q \rho_n^{(\beta_i)*} \right)$$
 are counted by patterns of the form
 $v_{10} \quad v_{20} \quad \cdots \quad v_{n0}$
 $v_{11} \quad v_{21} \quad v_{n1}$
 $v = \quad \ddots \quad \ddots \quad \cdots \quad v_{1q}$
with $D = (v_{10}, v_{20}, \cdots, v_{n0})$.

Some of the entries v_{ij} can be negative. The associated semigroup can be identified with a set of order preserving functions $f : \Gamma \rightarrow \mathbb{Z}$, and is called a **signed Hibi cone**.

Multiplicities in
$$\rho_n^D \otimes \left(\bigotimes_{i=1}^q \rho_n^{(\beta_i)*} \right)$$
 are counted by patterns of the form
 $v_{10} \quad v_{20} \quad \cdots \quad v_{n0}$
 $v_{11} \quad v_{21} \quad v_{n1}$
 $v = \quad \ddots \quad \ddots \quad \cdots \quad v_{1q}$
with $D = (v_{10}, v_{20}, \cdots, v_{n0})$.

Some of the entries v_{ij} can be negative. The associated semigroup can be identified with a set of order preserving functions $f : \Gamma \rightarrow \mathbb{Z}$, and is called a **signed Hibi cone**.

The structure of the signed Hibi cone and the algebra were determined in Yi Wang's thesis (2013).

Thank you.