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Survey on some of the works done by Roger Howe and his collab-
orators (Jackson, Kim, Lee, Tan, Wang, Willenbring) on branch-
ing algebras.
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Setting:
G : complex classical group
H : certain subgroup of G (mostly symmetric subgroup)

Examples of (G,H): (GLn,On), (Sp2n,GLn), (GLn × GLn,GLn)
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Setting:
G : complex classical group
H : certain subgroup of G (mostly symmetric subgroup)

Examples of (G,H): (GLn,On), (Sp2n,GLn), (GLn × GLn,GLn)

Branching problem for (G,H)

If V be an irreducible rational G module, what is V |H?

(1) We have
V |H =

⊕
U

mU,VU

where the Us are irreducible H modules.

Determine the branching multiplicities m(U,V).

(2) Describe the H submodules of V .
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Use highest weight theory:

Let BH = AHUH be a Borel subgroup of H, and consider

VUH = {v : g.v = v ∀g ∈ UH}.

This is a module for AH, and

VUH =
⊕
λ

(VUH)λ

where

(VUH)λ = {v ∈ VUH : a.v = λ(a)v ∀a ∈ AH}

(H highest weight vectors of weight λ)

Then
V |H '

⊕
λ

(dim(VUH)λ)Uλ

where
Uλ = irreducible H module with highest weight λ.
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Branching rule G ↓ H: V |H '
⊕
λ

(dim(VUH)λ)Uλ

Questions:
1. How to calculate dim(VUH)λ?

2. Can we describe a basis for (VUH)λ?
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Howe’s approach:

(i) Consider a “concrete” algebra RG with an G action such that
RG is decomposed as a multiplicity free sum of irreducible G
submodules as

RG =
⊕

i
Vi.
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Howe’s approach:

(i) Consider a “concrete” algebra RG with an G action such that
RG is decomposed as a multiplicity free sum of irreducible G
submodules as

RG =
⊕

i
Vi.

(ii) Consider the subalgebra of UH invariants:

A(G,H) := RUH
G =

⊕
i

VUH
i .

It is a AH module.
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Howe’s approach:

(i) Consider a “concrete” algebra RG with an G action such that
RG is decomposed as a multiplicity free sum of irreducible G
submodules as

RG =
⊕

i
Vi.

(ii) Consider the subalgebra of UH invariants:

A(G,H) := RUH
G =

⊕
i

VUH
i .

It is a AH module.

(iii) The structure of A(G,H) encodes part of the branching rule
from G to H, so call it a branching algebra for (G,H).
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Howe’s approach:
(i) Consider a “concrete” algebra RG with an G action such that
RG is decomposed as a multiplicity free sum of irreducible G
submodules as

RG =
⊕

i
Vi.

(ii) Consider the subalgebra of UH invariants:

A(G,H) := RUH
G =

⊕
i

VUH
i .

It is a AH module.

(iii) The structure of A(G,H) encodes part of the branching rule
from G to H, so call it a branching algebra for (G,H).

(iv) Study the branching algebraA(G,H).
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Basic example:
G = GLn × GLn, H = ∆(GLn) = {(g, g) : g ∈ GLn}.
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Basic example:
G = GLn × GLn, H = ∆(GLn) = {(g, g) : g ∈ GLn}.

Polynomial representations of GLn are parametrized by Young di-
agrams with at most n rows (i.e. with depth ≤ n).

D (Young diagram) −→ ρD
n (representation of GLn).
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Basic example:
G = GLn × GLn, H = ∆(GLn) = {(g, g) : g ∈ GLn}.

Polynomial representations of GLn are parametrized by Young di-
agrams with at most n rows (i.e. with depth ≤ n).

D (Young diagram) −→ ρD
n (representation of GLn).

Example of a Young diagram:

D = =(6,4,4,2) or (6,4,4,2,0) etc
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Branching problem for (G,H) = (GLn × GLn,GLn):
For Young diagrams D and E, ρD

n ⊗ ρ
E
n is an irreducible module

for GLn × GLn.
Restrict the action to GLn = ∆(GLn), and describe the GLn mod-
ule structure of ρD

n ⊗ ρ
E
n .
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Branching problem for (G,H) = (GLn × GLn,GLn):
For Young diagrams D and E, ρD

n ⊗ ρ
E
n is an irreducible module

for GLn × GLn.
Restrict the action to GLn = ∆(GLn), and describe the GLn mod-
ule structure of ρD

n ⊗ ρ
E
n .

In other wrods, we want to decompose the GLn tensor product
ρD

n ⊗ ρ
E
n .
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Branching problem for (G,H) = (GLn × GLn,GLn):
For Young diagrams D and E, ρD

n ⊗ ρ
E
n is an irreducible module

for GLn × GLn.
Restrict the action to GLn = ∆(GLn), and describe the GLn mod-
ule structure of ρD

n ⊗ ρ
E
n .

In other wrods, we want to decompose the GLn tensor product
ρD

n ⊗ ρ
E
n .

So the branching rule in this case is the Littlewood-Richardson
(LR) Rule:

ρD
n ⊗ ρ

E
n =

⊕
F

cF
D,Eρ

F
n ,

where cF
D,E is the number of LR tableaux of shape F/D and con-

tent E.
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We want to construct a branching algebra A(G,H) which encodes
the LR rule.
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We want to construct a branching algebra A(G,H) which encodes
the LR rule.

First we need an algebra RG =
⊕
D,E

ρD
n ⊗ ρ

E
n .
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We want to construct a branching algebra A(G,H) which encodes
the LR rule.

First we need an algebra RG =
⊕
D,E

ρD
n ⊗ ρ

E
n .

Then

A(G,H) := RUH
G where UH = Un =




1
1 ∗
. . .

0 1

 ∈ GLn

 .
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The construction of RG:

GLn × GLk acts on the algebra P(Mnk) of polynomial functions
on Mnk(C):

P(Mnk) �
⊕

D
ρD

n ⊗ ρ
D
k (GLn,GLk) duality)
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The construction of RG:

GLn × GLk acts on the algebra P(Mnk) of polynomial functions
on Mnk(C):

P(Mnk) �
⊕

D
ρD

n ⊗ ρ
D
k (GLn,GLk) duality)

Extracting Uk invariants:

P(Mnk)Uk '
⊕

D
ρD

n ⊗
(
ρD

k

)Uk
'

⊕
D

ρD
n .
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The construction of RG:

GLn × GLk acts on the algebra P(Mnk) of polynomial functions
on Mnk(C):

P(Mnk) �
⊕

D
ρD

n ⊗ ρ
D
k (GLn,GLk) duality)

Extracting Uk invariants:

P(Mnk)Uk '
⊕

D
ρD

n ⊗
(
ρD

k

)Uk
'

⊕
D

ρD
n .

Take another copy:

P(Mn`)
U` '

⊕
E

ρE
n ⊗

(
ρE
`

)U`
'

⊕
E

ρE
n .
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Form the tensor product:

RG := P(Mnk)Uk ⊗ P(Mn`)U` '

⊕
D

ρD
n

 ⊗ ⊕
E

ρE
n

 '⊕
D,E

ρD
n ⊗ ρ

E
n
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Form the tensor product:

RG := P(Mnk)Uk ⊗ P(Mn`)U` '

⊕
D

ρD
n

 ⊗ ⊕
E

ρE
n

 '⊕
D,E

ρD
n ⊗ ρ

E
n

Extract the Un = ∆(Un) invariants:

A(G,H) := RUH
G =

(
P(Mnk)Uk ⊗ P(Mn`)U`

)Un
'

⊕
D,E

(
ρD

n ⊗ ρ
E
n

)Un
.
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Form the tensor product:

RG := P(Mnk)Uk ⊗ P(Mn`)U` '

⊕
D

ρD
n

 ⊗ ⊕
E

ρE
n

 '⊕
D,E

ρD
n ⊗ ρ

E
n

Extract the Un = ∆(Un) invariants:

A(G,H) := RUH
G =

(
P(Mnk)Uk ⊗ P(Mn`)U`

)Un
'

⊕
D,E

(
ρD

n ⊗ ρ
E
n

)Un
.

It can be further decomposed as

A(G,H) '
⊕
D,E

⊕
F

(
ρD

n ⊗ ρ
E
n

)Un

F

 =
⊕
D,E,F

A
(D,E,F)
(G,H)

where

A
(D,E,F)
(G,H) =

(
ρD

n ⊗ ρ
E
n

)Un

F
= highest weight vectors of weigth F in ρD

n ⊗ ρ
E
n

dimA(D,E,F)
(G,H) = multiplicity of ρF

n in ρD
n ⊗ ρ

E
n

Howe et al. callA(G,H) a GLn tensor product algebra.
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It turns out thatA(G,H) also encodes another branching rule:

A(G,H) = R
UH
G =

(
P(Mnk)Uk ⊗ P(Mn`)

U`
)Un
' P(Mnk ⊕Mn`)

Un×Uk×U`

' P(Mn(k+`))
Un×Uk×U` '

⊕
F

ρF
n ⊗ ρ

F
k+`

Un×Uk×U`

'
⊕

F

(
ρF

n
)Un
⊗

(
ρF

k+`

)Uk×U`
'

⊕
F

(
ρF

k+`

)Uk×U` .
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It turns out thatA(G,H) also encodes another branching rule:

A(G,H) = R
UH
G =

(
P(Mnk)Uk ⊗ P(Mn`)

U`
)Un
' P(Mnk ⊕Mn`)

Un×Uk×U`

' P(Mn(k+`))
Un×Uk×U` '

⊕
F

ρF
n ⊗ ρ

F
k+`

Un×Uk×U`

'
⊕

F

(
ρF

n
)Un
⊗

(
ρF

k+`

)Uk×U`
'

⊕
F

(
ρF

k+`

)Uk×U` .

A(G,H) encodes the branching rule for GLk+` ↓ GLk × GL`.

So the algebraA(G,H) encodes two branching rules.
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It turns out thatA(G,H) also encodes another branching rule:

A(G,H) = R
UH
G =

(
P(Mnk)Uk ⊗ P(Mn`)

U`
)Un
' P(Mnk ⊕Mn`)

Un×Uk×U`

' P(Mn(k+`))
Un×Uk×U` '

⊕
F

ρF
n ⊗ ρ

F
k+`

Un×Uk×U`

'
⊕

F

(
ρF

n
)Un
⊗

(
ρF

k+`

)Uk×U`
'

⊕
F

(
ρF

k+`

)Uk×U` .

A(G,H) encodes the branching rule for GLk+` ↓ GLk × GL`.

So the algebraA(G,H) encodes two branching rules.

From this, we obtain the reciprocity law:

dimA(D,E,F)
(G,H) = multiplicity of ρD

k ⊗ ρ
E
` in ρF

n = multiplicity of ρF
n in ρD

n ⊗ ρ
E
n
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Problem: Find a basis forA(G,H).

SinceA(G,H) =
⊕

D,E,F
A

(D,E,F)
(G,H) , it suffices to find a basis for each

subspaceA(D,E,F)
(G,H) .
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Problem: Find a basis forA(G,H).

SinceA(G,H) =
⊕

D,E,F
A

(D,E,F)
(G,H) , it suffices to find a basis for each

subspaceA(D,E,F)
(G,H) .

By the Littlewood-Richardson Rule,

dimA(D,E,F)
(G,H) = cF

D,E
= number of LR tableaux T of shape F/D and content E.
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Problem: Find a basis forA(G,H).

SinceA(G,H) =
⊕

D,E,F
A

(D,E,F)
(G,H) , it suffices to find a basis for each

subspaceA(D,E,F)
(G,H) .

By the Littlewood-Richardson Rule,

dimA(D,E,F)
(G,H) = cF

D,E
= number of LR tableaux T of shape F/D and content E.

Plan: LR tableau T −→ construct a basis vector ∆T inA(D,E,F)
(G,H)
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Now

A(G,H) =
(
P(Mnk)Uk ⊗ P(Mn`)

U`
)Un

= P(Mn,k ⊕Mn,`)
Un×Uk×U`,

it is a subalgebra of P(Mn,k ⊕Mn,`).
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Now

A(G,H) =
(
P(Mnk)Uk ⊗ P(Mn`)

U`
)Un

= P(Mn,k ⊕Mn,`)
Un×Uk×U`,

it is a subalgebra of P(Mn,k ⊕Mn,`).

Write the coordinates of Mn,k ⊕Mn,` as
x11 x12 · · · x1k y11 y12 · · · y1`
x21 x22 · · · x2k y21 y22 · · · y2`
... ... ... ... ... ...

xn1 xn2 · · · xnk yn1 yn2 · · · yn`


Then each ∆T is a polynomial on these variables.
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Associate each skew tableau T with a monomial mT .

Example: T =

1
1

2
−→

x11 x11 y11

x22 y21

y32

−→ mT = (x11x22y11y32)(x11y21)
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Associate each skew tableau T with a monomial mT .

Example: T =

1
1

2
−→

x11 x11 y11

x22 y21

y32

−→ mT = (x11x22y11y32)(x11y21)

Introduce a monomial ordering: the graded lexicographic order with

x11 > x21 > · · · > xn1 > x12 > · · · > xnk > y11 > y21 > · · · > yn`.

LM( f ) = leading monomial of f .
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Associate each skew tableau T with a monomial mT .

Example: T =

1
1

2
−→

x11 x11 y11

x22 y21

y32

−→ mT = (x11x22y11y32)(x11y21)

Introduce a monomial ordering: the graded lexicographic order with

x11 > x21 > · · · > xn1 > x12 > · · · > xnk > y11 > y21 > · · · > yn`.

LM( f ) = leading monomial of f .

Theorem (Howe-Tan-Willenbring, Advances 2005)
A

(D,E,F)
(G,H) has a basis {∆T } with the property that for each T ,

LM(∆T ) = mT .
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Example. Let D = E = F = .

Then ρF
n occurs in ρD

n ⊗ ρ
E
n with multiplicity 2.
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Example. Let D = E = F = .

Then ρF
n occurs in ρD

n ⊗ ρ
E
n with multiplicity 2.

T1 =

1
1

2
∆T1 =

∣∣∣∣∣∣∣∣∣∣∣
x11 x12 y11 y12

x21 x22 y21 y22

x31 x32 y31 y32

0 0 y11 y12

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣ x11 y11

x21 y21

∣∣∣∣∣∣
LM(∆T1) = (x11x22y11y32)(x11y21) = mT1
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Example. Let D = E = F = .

Then ρF
n occurs in ρD

n ⊗ ρ
E
n with multiplicity 2.

T1 =

1
1

2
∆T1 =

∣∣∣∣∣∣∣∣∣∣∣
x11 x12 y11 y12

x21 x22 y21 y22

x31 x32 y31 y32

0 0 y11 y12

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣ x11 y11

x21 y21

∣∣∣∣∣∣
LM(∆T1) = (x11x22y11y32)(x11y21) = mT1

T2 =

1
2

1
∆T2 =

∣∣∣∣∣∣∣∣∣
x11 x12 y11

x21 x22 y21

x31 x32 y31

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

x11 y11 y12

x21 y21 y22

0 y11 y12

∣∣∣∣∣∣∣∣∣
LM(∆T2) = (x11x22y31)(x11y11y22) = mT2
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Let
S (G,H) = {LM( f ) : f ∈ A(G,H), f , 0} = {mT }.

Then S (G,H) is a semigroup becauseA(G,H) is an algebra and

LM( f1 f2) = LM( f1)LM( f2).
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Let
S (G,H) = {LM( f ) : f ∈ A(G,H), f , 0} = {mT }.

Then S (G,H) is a semigroup becauseA(G,H) is an algebra and

LM( f1 f2) = LM( f1)LM( f2).

What we can we say about this semigroup S (G,H)?
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Let
S (G,H) = {LM( f ) : f ∈ A(G,H), f , 0} = {mT }.

Then S (G,H) is a semigroup becauseA(G,H) is an algebra and

LM( f1 f2) = LM( f1)LM( f2).

What we can we say about this semigroup S (G,H)?
There is a rational polyhedral cone C in some RN such that

S (G,H) ' C ∩ Z
N.

It is finitely generated.
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Let
S (G,H) = {LM( f ) : f ∈ A(G,H), f , 0} = {mT }.

Then S (G,H) is a semigroup becauseA(G,H) is an algebra and

LM( f1 f2) = LM( f1)LM( f2).

What we can we say about this semigroup S (G,H)?
There is a rational polyhedral cone C in some RN such that

S (G,H) ' C ∩ Z
N.

It is finitely generated.

The polyhedral cone C is called the Littlewood-Richardson cone
by Igor Pak, and

cF
D,E = number of integral points in a polytope contained in C.
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The initial algebra in(A(G,H)) of A(G,H) is the subalgebra of
P(Mnk ⊕Mnl) generated by S (G,H).
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The initial algebra in(A(G,H)) of A(G,H) is the subalgebra of
P(Mnk ⊕Mnl) generated by S (G,H).

So
in(AG,H) ' C[S (G,H)]

is the semigroup algebra on S (G,H), and it is finitely generated.
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The initial algebra in(A(G,H)) of A(G,H) is the subalgebra of
P(Mnk ⊕Mnl) generated by S (G,H).

So
in(AG,H) ' C[S (G,H)]

is the semigroup algebra on S (G,H), and it is finitely generated.

By a general results of Conca, Herzog, and Valla, we have:

Theorem ([HJLTW]). The semigroup algebra C[S (G,H)] is a flat
deformation ofA(G,H).
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Similar results also hold for the following symmetric pairs (under
a stable range condition):

(GLn,On), (On+m,On × Om), (Sp2n,GLn), (GL2n,Sp2n),

(Sp2(n+m),Sp2n × Sp2m), (O2n,GLn)

Branching multiplicities in these cases can be deduced from the
algebra structure and the LR rule.
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m-fold tensor product algebra
This is a branching algebraA(G,H) which describes the decompo-
sition of m-fold tensor products of GLn modules:

ρ
D1
n ⊗ ρ

D2
n ⊗ · · · ⊗ ρ

Dm
n

where
G = GLm

n , H = ∆(GLn).
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m-fold tensor product algebra
This is a branching algebraA(G,H) which describes the decompo-
sition of m-fold tensor products of GLn modules:

ρ
D1
n ⊗ ρ

D2
n ⊗ · · · ⊗ ρ

Dm
n

where
G = GLm

n , H = ∆(GLn).

A Special case: tensor product of the form

ρD
n ⊗ρ

(α1)
n ⊗ρ

(α2)
n ⊗· · ·⊗ρ

(α`)
n ' ρD

n ⊗S α1(Cn)⊗S α2(Cn)⊗· · ·⊗S α`(Cn).

We call a description of this tensor product an iterated Pieri rule.
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An algebra which encodes the iterated Pieri rule:
P(Mn(k+`)) = P(Mnk ⊕ C

n ⊕ Cn ⊕ · · · ⊕ Cn)
= P(Mnk) ⊗ P(Cn) ⊗ P(Cn) ⊗ · · · ⊗ P(Cn)

'

⊕
D

ρD
n ⊗ ρ

D
k

 ⊗
⊕

α1

ρ
(α1)
n

 ⊗ · · · ⊗
⊕

α`

ρ
(α`)
n


'

⊕
D,α

(
ρD

n ⊗ ρ
(α1)
n ⊗ ρ

(α2)
n ⊗ · · · ⊗ ρ

(α`)
n

)
⊗ ρD

k
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An algebra which encodes the iterated Pieri rule:
P(Mn(k+`)) = P(Mnk ⊕ C

n ⊕ Cn ⊕ · · · ⊕ Cn)
= P(Mnk) ⊗ P(Cn) ⊗ P(Cn) ⊗ · · · ⊗ P(Cn)

'

⊕
D

ρD
n ⊗ ρ

D
k

 ⊗
⊕

α1

ρ
(α1)
n

 ⊗ · · · ⊗
⊕

α`

ρ
(α`)
n


'

⊕
D,α

(
ρD

n ⊗ ρ
(α1)
n ⊗ ρ

(α2)
n ⊗ · · · ⊗ ρ

(α`)
n

)
⊗ ρD

k

Extract Un × Uk invariants:

P(Mn(k+`))Un×Uk '
⊕
D,α

(
ρD

n ⊗ ρ
(α1)
n ⊗ ρ

(α2)
n ⊗ · · · ⊗ ρ

(α`)
n

)Un
⊗

(
ρD

k

)Uk

We call P(Mn(k+`))
Un×Uk an iterated Pieri algebra for GLn.
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The iterated Pieri algebraP(Mn(k+`))
Un×Uk also encodes the branch-

ing rule for

GLk+` ↓ GLk × GL`1 = GLk × (GL1 × · · · × GL1) .
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The iterated Pieri algebraP(Mn(k+`))
Un×Uk also encodes the branch-

ing rule for

GLk+` ↓ GLk × GL`1 = GLk × (GL1 × · · · × GL1) .

Special case: If k = 1, then this is branching for

GL`+1 ↓= GL`+1
1 =

`+1︷               ︸︸               ︷
GL1 × · · · × GL1 .

That is, decompose ρD
`+1 into weight spaces, and find a basis of

each weight space.
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Comparing tensor product algebra with iterated Pieri algebra

GLn tensor product algebra:

P(Mn(k+`))
Un×Uk×U` describes general tensor products ρD

n ⊗ ρ
E
n .
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Comparing tensor product algebra with iterated Pieri algebra

GLn tensor product algebra:

P(Mn(k+`))
Un×Uk×U` describes general tensor products ρD

n ⊗ ρ
E
n .

Iterated Pieri algebra for GLn :

P(Mn(k+`))
Un×Uk describes tensor products of the form

ρD
n ⊗ ρ

(α1)
n ⊗ ρ

(α2)
n ⊗ · · · ⊗ ρ

(α`)
n .
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Comparing tensor product algebra with iterated Pieri algebra

GLn tensor product algebra:

P(Mn(k+`))
Un×Uk×U` describes general tensor products ρD

n ⊗ ρ
E
n .

Iterated Pieri algebra for GLn :

P(Mn(k+`))
Un×Uk describes tensor products of the form

ρD
n ⊗ ρ

(α1)
n ⊗ ρ

(α2)
n ⊗ · · · ⊗ ρ

(α`)
n .

We have

P(Mn(k+`))
Un×Uk×U` ⊆ P(Mn(k+`))

Un×Uk

By analyzing how the tensor product algebra sits inside the iter-
ated Pieri algebra, we can give a proof of the Littlewood-Richardson
Rule ([Howe-Lee], BAMS 2012).

55



What is the semigroup S associated with the iterated Pieri algebraP(Mn(k+`))Un×Uk?

The elements of S should count the multiplicity in the tensor product
ρD

n ⊗ ρ
(α1)
n ⊗ ρ

(α2)
n ⊗ · · · ⊗ ρ

(α`)
n .
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What is the semigroup S associated with the iterated Pieri algebraP(Mn(k+`))Un×Uk?

The elements of S should count the multiplicity in the tensor product
ρD

n ⊗ ρ
(α1)
n ⊗ ρ

(α2)
n ⊗ · · · ⊗ ρ

(α`)
n .

By the Pieri Rule,

ρD
p ⊗ ρ

(α1)
p =

⊕
F

ρF
p (multiplicity free)

where F satisfies the interlacing condition: If D = (d1, ..., dp) and F = ( f1, ..., fp),
then

f1 ≥ d1 ≥ f2 ≥ d2 ≥ · · · ≥ fp ≥ dp.
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What is the semigroup S associated with the iterated Pieri algebraP(Mn(k+`))Un×Uk?

The elements of S should count the multiplicity in the tensor product
ρD

n ⊗ ρ
(α1)
n ⊗ ρ

(α2)
n ⊗ · · · ⊗ ρ

(α`)
n .

By the Pieri Rule,

ρD
p ⊗ ρ

(α1)
p =

⊕
F

ρF
p (multiplicity free)

where F satisfies the interlacing condition: If D = (d1, ..., dp) and F = ( f1, ..., fp),
then

f1 ≥ d1 ≥ f2 ≥ d2 ≥ · · · ≥ fp ≥ dp.

We indicate these inequalities by writing

d1 d2 · · · dp

f1 f2 · · · fp
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By iterating the Pieri Rule,

ρD
n ⊗ ρ

(α1)
n ⊗ ρ

(α2)
n ⊗ · · · ⊗ ρ

(α`)
n =

⊕
F

mFρ
F
n

where mF is the number of “Gelfand-Zeltlin” of the form

λ =

λ10 λ20 · · · λn0
λ11 λ21 · · · λn1

. .
.

. .
.

· · · . .
.

λ1` λ2` · · · λn`

where D = (λ10, λ20, · · · , λp0) and F = (λ1`, λ2`, · · · , λn`).
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By iterating the Pieri Rule,

ρD
n ⊗ ρ

(α1)
n ⊗ ρ

(α2)
n ⊗ · · · ⊗ ρ

(α`)
n =

⊕
F

mFρ
F
n

where mF is the number of “Gelfand-Zeltlin” of the form

λ =

λ10 λ20 · · · λn0
λ11 λ21 · · · λn1

. .
.

. .
.

· · · . .
.

λ1` λ2` · · · λn`

where D = (λ10, λ20, · · · , λp0) and F = (λ1`, λ2`, · · · , λn`).

These patterns can be viewed as order preserving functions on
a poset Γ

λ : Γ→ Z+.
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The set

(Z+)Γ,≥ = { f : Γ→ Z+| f is order preserving}

forms a semigroup, and is called a Hibi cone. It has a very simple
semigroup structure.

(More genearlly, we can replace Γ by a finite poset)
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The set

(Z+)Γ,≥ = { f : Γ→ Z+| f is order preserving}

forms a semigroup, and is called a Hibi cone. It has a very simple
semigroup structure.

(More genearlly, we can replace Γ by a finite poset)

Call a subset A of Γ increasing if

a ∈ A, x ∈ Γ, x ≥ a =⇒ x ∈ A.

Denote by J∗(Γ) the collection of all increasing subsets of Γ.

62



For each A ∈ J∗(Γ), let

χA(x) =

{
1 x ∈ A
0 x < A.

Then clearly χA ∈ (Z+)Γ,≥.
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For each A ∈ J∗(Γ), let

χA(x) =

{
1 x ∈ A
0 x < A.

Then clearly χA ∈ (Z+)Γ,≥.

Theorem. The semigroup (Z+)Γ,≥ is generated by {χA : A ∈
J∗(Γ)} and it has relations

χA + χB = χA∪B + χA∩B, A, B ∈ J∗(Γ).
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For each A ∈ J∗(Γ), let

χA(x) =

{
1 x ∈ A
0 x < A.

Then clearly χA ∈ ΩΓ.

Theorem. The semigroup (Z+)Γ,≥ is generated by {χA : A ∈
J∗(Γ)} and it has relations

χA + χB = χA∪B + χA∩B, A, B ∈ J∗(Γ).

It follows that every f ∈ (Z+)Γ,≥ can be expressed as

f =
∑

j
c jχA j

where c j ∈ N and A1 ⊂ A2 ⊂ · · · ⊂ AN = Γ is a chain in J∗(Γ).
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In the case when n = 3, k = ` = 2, (Z+)Γ,≥ consists of patterns of the form

λ =

λ10 λ20 0
λ11 λ21 λ31

λ12 λ22 λ32
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In the case when n = 3, k = ` = 2, (Z+)Γ,≥ consists of patterns of the form

λ =

λ10 λ20 0
λ11 λ21 λ31

λ12 λ22 λ32

The generators χA of (Z+)Γ,≥ are:

1 0 0
1 0 0

1 0 0

0 0 0
1 0 0

1 0 0

0 0 0
0 0 0

1 0 0

1 1 0
1 1 0

1 1 0

1 0 0
1 1 0

1 1 0

1 0 0
1 0 0

1 1 0

0 0 0
1 0 0

1 1 0

1 1 0
1 1 1

1 1 1

1 1 0
1 1 0

1 1 1

1 0 0
1 1 0

1 1 1
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For general n, k, `, each generator χA of (Z+)Γ,≥ corresponds to an element in
P(Mn(k+`))Un×Uk of the form

δA =

∣∣∣∣∣∣∣∣∣∣∣∣
x11 x12 · · · x1p y1s1 y1s2 · · · y1sq

x21 x22 · · · x2p y2s1 y2s2 · · · y2sq
... ... ... ... ... ...

x(p+q)1 x(p+q)2 · · · x(p+q)p y(p+q)s1 y(p+q)s2 · · · y(p+q)sq

∣∣∣∣∣∣∣∣∣∣∣∣ .
Let Q be the set of all δA.
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For general n, k, `, each generator χA of (Z+)Γ,≥ corresponds to an element in
P(Mn(k+`))Un×Uk of the form

δA =

∣∣∣∣∣∣∣∣∣∣∣∣
x11 x12 · · · x1p y1s1 y1s2 · · · y1sq

x21 x22 · · · x2p y2s1 y2s2 · · · y2sq
... ... ... ... ... ...

x(p+q)1 x(p+q)2 · · · x(p+q)p y(p+q)s1 y(p+q)s2 · · · y(p+q)sq

∣∣∣∣∣∣∣∣∣∣∣∣ .
Let Q be the set of all δA.

If A1 ⊆ A2 ⊆ · · · ⊆ Ar, then we call the product

δA1δA2 · · · δAr

a standard monomial on Q.
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For general n, k, `, each generator χA of (Z+)Γ,≥ corresponds to an element in
P(Mn(k+`))Un×Uk of the form

δA =

∣∣∣∣∣∣∣∣∣∣∣∣
x11 x12 · · · x1p y1s1 y1s2 · · · y1sq

x21 x22 · · · x2p y2s1 y2s2 · · · y2sq
... ... ... ... ... ...

x(p+q)1 x(p+q)2 · · · x(p+q)p y(p+q)s1 y(p+q)s2 · · · y(p+q)sq

∣∣∣∣∣∣∣∣∣∣∣∣ .
Let Q be the set of all δA.

If A1 ⊆ A2 ⊆ · · · ⊆ Ar, then we call the product

δA1δA2 · · · δAr

a standard monomial on Q.

It turns out that the set of all standard monomials on Q forms a vector space
basis forP(Mn(k+`))Un×Uk. We say thatP(Mn(k+`))Un×Uk has a standard monomial
theory for Q.

This treatment was given by Sangjib Kim in his thesis.
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What other branching algebras are associated with Hibi cones?

The double Pieri algebra L(n,p),(k,q) for GLn × GLk
It describes {

ρD
n ⊗

(
⊗

p
i=1ρ

(αi)
n

)}
⊗

{
ρD

k ⊗
(
⊗

q
j=1ρ

(α j)
k

)}
with depth(D) ≤ k ≤ n.
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What other branching algebras are associated with Hibi cones?

The double Pieri algebra L(n,p),(k,q) for GLn × GLk
It describes {

ρD
n ⊗

(
⊗

p
i=1ρ

(αi)
n

)}
⊗

{
ρD

k ⊗
(
⊗

q
j=1ρ

(α j)
k

)}
with depth(D) ≤ k ≤ n.

The iterated Pieri algebraAn,k,p for On where 2(k + p) < n.
It describes

σD
n ⊗

(
⊗`i=1σ

(αi)
n

)
where σD

n is the irreducible representation of On labelled by D
and depth(D) ≤ k.
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The iterated Pieri algebra Qn,k,p for Sp2n where k + p < n.
It describes

τD
2n ⊗

(
⊗`i=1τ

(αi)
2n

)
where τD

2n is the irreducible representation of Sp2n labelled by D
and depth(D) ≤ k.
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The iterated Pieri algebra Qn,k,p for Sp2n where k + p < n.
It describes

τD
2n ⊗

(
⊗`i=1τ

(αi)
2n

)
where τD

2n is the irreducible representation of Sp2n labelled by D
and depth(D) ≤ k.

It turns out that Qn,k,p ' A2n,k,p for k + p < n .
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The (more general) iterated Pieri algebra An,k,`,p,q for GLn
where k + p + ` + q) ≤ n.
It describes

ρD,E
n ⊗

 p⊗
i=1

ρ
(αi)
n

 ⊗


q⊗
j=1

ρ
(αi)∗
n


where depth(D) ≤ k and depth(E) ≤ `.
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The (more general) iterated Pieri algebra An,k,`,p,q for GLn
where k + p + ` + q) ≤ n.
It describes

ρD,E
n ⊗

 p⊗
i=1

ρ
(αi)
n

 ⊗


q⊗
j=1

ρ
(αi)∗
n


where depth(D) ≤ k and depth(E) ≤ `.

It turns out that double Pieri algebras can be regarded as a com-
mon structure shared by the iterated Pieri algebras.

Theorem. We have the isomorphism of graded algebras

An,k,p ' L(n,p),(k,p) ⊗ P(∧2(Cp)),

An,k,`,p,q ' L(n,p),(k,q) ⊗ L(n,q),(`,p) ⊗ P(Mpq).
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Can the stable range condition be removed?
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Can the stable range condition be removed?
Antirow Pieri algebra for GLn (without stable range condition)

Rn,p,q := P(Mnp) ⊗

 q⊗
i=1

P(Cn∗
i )

 '
⊕

D

ρD
n ⊗ ρ

D
p

 ⊗
 q⊗

i=1

ρ
(βi)∗
n


'

⊕
F,α

ρD
n ⊗

 q⊗
i=1

ρ
(βi)∗
n


 ⊗ ρF

p .
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Can the stable range condition be removed?
Antirow Pieri algebra for GLn (without stable range condition)

Rn,p,q := P(Mnp) ⊗

 q⊗
i=1

P(Cn∗
i )

 '
⊕

D

ρD
n ⊗ ρ

D
p

 ⊗
 q⊗

i=1

ρ
(βi)∗
n


'

⊕
F,α

ρD
n ⊗

 q⊗
i=1

ρ
(βi)∗
n


 ⊗ ρF

p .

Extract GLn × GLp highest weight vectors:

R
Un×Up
n,p,q '

⊕
F,α

ρD
n ⊗

 q⊗
i=1

ρ
(βi)∗
n




Un

⊗
(
ρF

p
)Up

.
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Can the stable range condition be removed?
Antirow Pieri algebra for GLn (without stable range condition)

Rn,p,q := P(Mnp) ⊗

 q⊗
i=1

P(Cn∗
i )

 '
⊕

D

ρD
n ⊗ ρ

D
p

 ⊗
 q⊗

i=1

ρ
(βi)∗
n


'

⊕
F,α

ρD
n ⊗

 q⊗
i=1

ρ
(βi)∗
n


 ⊗ ρF

p .

Extract GLn × GLp × Aq highest weight vectors:

R
Un×Up
n,p,q '

⊕
F,α

ρD
n ⊗

 q⊗
i=1

ρ
(βi)∗
n




Un

⊗
(
ρF

p
)Up

.

So the algebra R
Un×Up
n,p,q describes ρD

n ⊗

 q⊗
i=1

ρ
(βi)∗
n

.
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Multiplicities in ρD
n ⊗

 q⊗
i=1

ρ
(βi)∗
n

 are counted by patterns of the

form

ν =

ν10 ν20 · · · νn0

ν11 ν21 νn1

· · ·

· · ·

ν1q ν2q · · · νnq

with D = (ν10, ν20, · · · , νn0).
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Multiplicities in ρD
n ⊗

 q⊗
i=1

ρ
(βi)∗
n

 are counted by patterns of the

form

ν =

ν10 ν20 · · · νn0

ν11 ν21 νn1

· · ·

· · ·

ν1q ν2q · · · νnq

with D = (ν10, ν20, · · · , νn0).

Some of the entries νi j can be negative. The associated semigroup
can be identified with a set of order preserving functions f : Γ →

Z, and is called a signed Hibi cone.
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Multiplicities in ρD
n ⊗

 q⊗
i=1

ρ
(βi)∗
n

 are counted by patterns of the

form

ν =

ν10 ν20 · · · νn0

ν11 ν21 νn1

· · ·

· · ·

ν1q ν2q · · · νnq

with D = (ν10, ν20, · · · , νn0).

Some of the entries νi j can be negative. The associated semigroup
can be identified with a set of order preserving functions f : Γ →

Z, and is called a signed Hibi cone.

The structure of the signed Hibi cone and the algebra were deter-
mined in Yi Wang’s thesis (2013).
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Thank you.
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