Branching algebras for classical groups

Soo Teck Lee
National University of Singapore

Survey on some of the works done by Roger Howe and his collaborators (Jackson, Kim, Lee, Tan, Wang, Willenbring) on branching algebras.

Setting:

G : complex classical group
H : certain subgroup of G (mostly symmetric subgroup)
Examples of $(G, H):\left(\mathrm{GL}_{n}, \mathrm{O}_{n}\right),\left(\mathrm{Sp}_{2 n}, \mathrm{GL}_{n}\right),\left(\mathrm{GL}_{n} \times \mathrm{GL}_{n}, \mathrm{GL}_{n}\right)$

Setting:

G : complex classical group
H : certain subgroup of G (mostly symmetric subgroup)
Examples of $(G, H):\left(\mathrm{GL}_{n}, \mathrm{O}_{n}\right),\left(\mathrm{Sp}_{2 n}, \mathrm{GL}_{n}\right),\left(\mathrm{GL}_{n} \times \mathrm{GL}_{n}, \mathrm{GL}_{n}\right)$

Branching problem for (G, H)

If V be an irreducible rational G module, what is $\left.V\right|_{H}$?
(1) We have

$$
\left.V\right|_{H}=\bigoplus_{U} m_{U, V} U
$$

where the U s are irreducible H modules.
Determine the branching multiplicities $m(U, V)$.
(2) Describe the H submodules of V.

Use highest weight theory:

Let $B_{H}=A_{H} U_{H}$ be a Borel subgroup of H, and consider

$$
V^{U_{H}}=\left\{\mathbf{v}: g . \mathbf{v}=\mathbf{v} \forall g \in U_{H}\right\} .
$$

This is a module for A_{H}, and

$$
V^{U_{H}}=\bigoplus_{\lambda}\left(V^{U_{H}}\right)_{\lambda}
$$

where

$$
\begin{aligned}
\left(V^{U_{H}}\right)_{\lambda}= & \left\{\mathbf{v} \in V^{U_{H}}: a \cdot \mathbf{v}=\lambda(a) \mathbf{v} \forall a \in A_{H}\right\} \\
& (H \text { highest weight vectors of weight } \lambda)
\end{aligned}
$$

Then

$$
\left.V\right|_{H} \simeq \bigoplus_{\lambda}\left(\operatorname{dim}\left(V^{U_{H}}\right)_{\lambda}\right) U_{\lambda}
$$

where

$$
U_{\lambda}=\text { irreducible } H \text { module with highest weight } \lambda .
$$

Branching rule $G \downarrow H:\left.\quad V\right|_{H} \simeq \bigoplus_{\lambda}\left(\operatorname{dim}\left(V^{U_{H}}\right)_{\lambda}\right) U_{\lambda}$
Questions:

1. How to calculate $\operatorname{dim}\left(V^{U_{H}}\right)_{\lambda}$?
2. Can we describe a basis for $\left(V^{U_{H}}\right)_{\lambda}$?

Howe's approach:

(i) Consider a "concrete" algebra \mathcal{R}_{G} with an G action such that \mathcal{R}_{G} is decomposed as a multiplicity free sum of irreducible G submodules as

$$
\mathcal{R}_{G}=\bigoplus_{i} V_{i}
$$

Howe's approach:

(i) Consider a "concrete" algebra \mathcal{R}_{G} with an G action such that \mathcal{R}_{G} is decomposed as a multiplicity free sum of irreducible G submodules as

$$
\mathcal{R}_{G}=\bigoplus_{i} V_{i}
$$

(ii) Consider the subalgebra of U_{H} invariants:

$$
\mathcal{A}_{(G, H)}:=\mathcal{R}_{G}^{U_{H}}=\bigoplus_{i} V_{i}^{U_{H}} .
$$

It is a A_{H} module.

Howe's approach:

(i) Consider a "concrete" algebra \mathcal{R}_{G} with an G action such that \mathcal{R}_{G} is decomposed as a multiplicity free sum of irreducible G submodules as

$$
\mathcal{R}_{G}=\bigoplus_{i} V_{i}
$$

(ii) Consider the subalgebra of U_{H} invariants:

$$
\mathcal{A}_{(G, H)}:=\mathcal{R}_{G}^{U_{H}}=\bigoplus_{i} V_{i}^{U_{H}} .
$$

It is a A_{H} module.
(iii) The structure of $\mathcal{A}_{(G, H)}$ encodes part of the branching rule from G to H, so call it a branching algebra for (G, H).

Howe's approach:

(i) Consider a "concrete" algebra \mathcal{R}_{G} with an G action such that \mathcal{R}_{G} is decomposed as a multiplicity free sum of irreducible G submodules as

$$
\mathcal{R}_{G}=\bigoplus_{i} V_{i}
$$

(ii) Consider the subalgebra of U_{H} invariants:

$$
\mathcal{A}_{(G, H)}:=\mathcal{R}_{G}^{U_{H}}=\bigoplus_{i} V_{i}^{U_{H}} .
$$

It is a A_{H} module.
(iii) The structure of $\mathcal{A}_{(G, H)}$ encodes part of the branching rule from G to H, so call it a branching algebra for (G, H).
(iv) Study the branching algebra $\mathcal{A}_{(G, H)}$.

Basic example:

$$
G=\mathrm{GL}_{n} \times \mathrm{GL}_{n}, H=\Delta\left(\mathrm{GL}_{n}\right)=\left\{(g, g): g \in \mathrm{GL}_{n}\right\} .
$$

Basic example:
$G=\mathrm{GL}_{n} \times \mathrm{GL}_{n}, H=\Delta\left(\mathrm{GL}_{n}\right)=\left\{(g, g): g \in \mathrm{GL}_{n}\right\}$.

Polynomial representations of GL_{n} are parametrized by Young diagrams with at most n rows (i.e. with depth $\leq n$).
D (Young diagram) $\longrightarrow \rho_{n}^{D}$ (representation of GL_{n}).

Basic example:
$G=\mathrm{GL}_{n} \times \mathrm{GL}_{n}, H=\Delta\left(\mathrm{GL}_{n}\right)=\left\{(g, g): g \in \mathrm{GL}_{n}\right\}$.

Polynomial representations of GL_{n} are parametrized by Young diagrams with at most n rows (i.e. with depth $\leq n$).
D (Young diagram) $\longrightarrow \rho_{n}^{D}$ (representation of GL_{n}).

Example of a Young diagram:

Branching problem for $(G, H)=\left(\mathrm{GL}_{n} \times \mathrm{GL}_{n}, \mathrm{GL}_{n}\right)$:
For Young diagrams D and $E, \rho_{n}^{D} \otimes \rho_{n}^{E}$ is an irreducible module for $\mathrm{GL}_{n} \times \mathrm{GL}_{n}$.
Restrict the action to $\mathrm{GL}_{n}=\Delta\left(\mathrm{GL}_{n}\right)$, and describe the GL_{n} module structure of $\rho_{n}^{D} \otimes \rho_{n}^{E}$.

Branching problem for $(G, H)=\left(\mathrm{GL}_{n} \times \mathrm{GL}_{n}, \mathrm{GL}_{n}\right)$:
For Young diagrams D and $E, \rho_{n}^{D} \otimes \rho_{n}^{E}$ is an irreducible module for $\mathrm{GL}_{n} \times \mathrm{GL}_{n}$.
Restrict the action to $\mathrm{GL}_{n}=\Delta\left(\mathrm{GL}_{n}\right)$, and describe the GL_{n} module structure of $\rho_{n}^{D} \otimes \rho_{n}^{E}$.

In other wrods, we want to decompose the GL_{n} tensor product $\rho_{n}^{D} \otimes \rho_{n}^{E}$.

Branching problem for $(G, H)=\left(\mathrm{GL}_{n} \times \mathrm{GL}_{n}, \mathrm{GL}_{n}\right)$:
For Young diagrams D and $E, \rho_{n}^{D} \otimes \rho_{n}^{E}$ is an irreducible module for $\mathrm{GL}_{n} \times \mathrm{GL}_{n}$.
Restrict the action to $\mathrm{GL}_{n}=\Delta\left(\mathrm{GL}_{n}\right)$, and describe the GL_{n} module structure of $\rho_{n}^{D} \otimes \rho_{n}^{E}$.
In other wrods, we want to decompose the GL_{n} tensor product $\rho_{n}^{D} \otimes \rho_{n}^{E}$.

So the branching rule in this case is the Littlewood-Richardson (LR) Rule:

$$
\rho_{n}^{D} \otimes \rho_{n}^{E}=\bigoplus_{F} c_{D, E}^{F} \rho_{n}^{F},
$$

where $c_{D, E}^{F}$ is the number of LR tableaux of shape F / D and content E.

We want to construct a branching algebra $\mathcal{A}_{(G, H)}$ which encodes the LR rule.

We want to construct a branching algebra $\mathcal{A}_{(G, H)}$ which encodes the LR rule.
First we need an algebra $\mathcal{R}_{G}=\bigoplus_{D, E} \rho_{n}^{D} \otimes \rho_{n}^{E}$.

We want to construct a branching algebra $\mathcal{A}_{(G, H)}$ which encodes the LR rule.

First we need an algebra $\mathcal{R}_{G}=\bigoplus_{D, E} \rho_{n}^{D} \otimes \rho_{n}^{E}$.
Then

$$
\mathcal{A}_{(G, H)}:=\mathcal{R}_{G}^{U_{H}} \quad \text { where } U_{H}=U_{n}=\left\{\left(\begin{array}{cccc}
1 & & & \\
& 1 & & * \\
& & \ddots & \\
& 0 & & 1
\end{array}\right) \in \mathrm{GL}_{n}\right\} .
$$

The construction of \mathcal{R}_{G} :

$\mathrm{GL}_{n} \times \mathrm{GL}_{k}$ acts on the algebra $\mathcal{P}\left(\mathrm{M}_{n k}\right)$ of polynomial functions on $\mathrm{M}_{n k}(\mathbb{C})$:

$$
\mathcal{P}\left(\mathrm{M}_{n k}\right) \cong \bigoplus_{D} \rho_{n}^{D} \otimes \rho_{k}^{D}
$$

$\left(\mathrm{GL}_{n}, \mathrm{GL}_{k}\right)$ duality)

The construction of \mathcal{R}_{G} :

$\mathrm{GL}_{n} \times \mathrm{GL}_{k}$ acts on the algebra $\mathcal{P}\left(\mathrm{M}_{n k}\right)$ of polynomial functions on $\mathrm{M}_{n k}(\mathbb{C})$:

$$
\mathcal{P}\left(\mathrm{M}_{n k}\right) \cong \bigoplus_{D} \rho_{n}^{D} \otimes \rho_{k}^{D}
$$

($\mathrm{GL}_{n}, \mathrm{GL}_{k}$) duality)

Extracting U_{k} invariants:

$$
\mathcal{P}\left(\mathbf{M}_{n k}\right)^{U_{k}} \simeq \bigoplus_{D} \rho_{n}^{D} \otimes\left(\rho_{k}^{D}\right)^{U_{k}} \simeq \bigoplus_{D} \rho_{n}^{D}
$$

The construction of \mathcal{R}_{G} :

$\mathrm{GL}_{n} \times \mathrm{GL}_{k}$ acts on the algebra $\mathcal{P}\left(\mathrm{M}_{n k}\right)$ of polynomial functions on $\mathrm{M}_{n k}(\mathbb{C})$:

$$
\left.\mathcal{P}\left(\mathrm{M}_{n k}\right) \cong \bigoplus_{D} \rho_{n}^{D} \otimes \rho_{k}^{D} \quad\left(\mathrm{GL}_{n}, \mathrm{GL}_{k}\right) \text { duality }\right)
$$

Extracting U_{k} invariants:

$$
\mathcal{P}\left(\mathbf{M}_{n k}\right)^{U_{k}} \simeq \bigoplus_{D} \rho_{n}^{D} \otimes\left(\rho_{k}^{D}\right)^{U_{k}} \simeq \bigoplus_{D} \rho_{n}^{D} .
$$

Take another copy:

$$
\mathcal{P}\left(\mathbf{M}_{n \ell}\right)^{U_{\ell}} \simeq \bigoplus_{E} \rho_{n}^{E} \otimes\left(\rho_{\ell}^{E}\right)^{U_{\ell}} \simeq \bigoplus_{E} \rho_{n}^{E} .
$$

Form the tensor product:

$$
\mathcal{R}_{G}:=\mathcal{P}\left(\mathbf{M}_{n k}\right)^{U_{k}} \otimes \mathcal{P}\left(\mathbf{M}_{n \ell}\right)^{U_{\ell}} \simeq\left(\bigoplus_{D} \rho_{n}^{D}\right) \otimes\left(\bigoplus_{E} \rho_{n}^{E}\right) \simeq \bigoplus_{D, E} \rho_{n}^{D} \otimes \rho_{n}^{E}
$$

Form the tensor product:

$$
\mathcal{R}_{G}:=\mathcal{P}\left(\mathbf{M}_{n k}\right)^{U_{k}} \otimes \mathcal{P}\left(\mathbf{M}_{n \ell}\right)^{U_{\ell}} \simeq\left(\bigoplus_{D} \rho_{n}^{D}\right) \otimes\left(\bigoplus_{E} \rho_{n}^{E}\right) \simeq \bigoplus_{D, E} \rho_{n}^{D} \otimes \rho_{n}^{E}
$$

Extract the $U_{n}=\Delta\left(U_{n}\right)$ invariants:

$$
\mathcal{A}_{(G, H)}:=\mathcal{R}_{G}^{U_{H}}=\left(\mathcal{P}\left(\mathbf{M}_{n k}\right)^{U_{k}} \otimes \mathcal{P}\left(\mathbf{M}_{n \ell}\right)^{U_{\ell}}\right)^{U_{n}} \simeq \bigoplus_{D, E}\left(\rho_{n}^{D} \otimes \rho_{n}^{E}\right)^{U_{n}} .
$$

Form the tensor product:

$$
\mathcal{R}_{G}:=\mathcal{P}\left(\mathbf{M}_{n k}\right)^{U_{k}} \otimes \mathcal{P}\left(\mathbf{M}_{n \ell}\right)^{U_{\ell}} \simeq\left(\bigoplus_{D} \rho_{n}^{D}\right) \otimes\left(\bigoplus_{E} \rho_{n}^{E}\right) \simeq \bigoplus_{D, E} \rho_{n}^{D} \otimes \rho_{n}^{E}
$$

Extract the $U_{n}=\Delta\left(U_{n}\right)$ invariants:

$$
\mathcal{A}_{(G, H)}:=\mathcal{R}_{G}^{U_{H}}=\left(\mathcal{P}\left(\mathbf{M}_{n k}\right)^{U_{k}} \otimes \mathcal{P}\left(\mathbf{M}_{n \ell}\right)^{U_{\ell}}\right)^{U_{n}} \simeq \bigoplus_{D, E}\left(\rho_{n}^{D} \otimes \rho_{n}^{E}\right)^{U_{n}}
$$

It can be further decomposed as

$$
\mathcal{A}_{(G, H)} \simeq \bigoplus_{D, E}\left\{\bigoplus_{F}\left(\rho_{n}^{D} \otimes \rho_{n}^{E}\right)_{F}^{U_{n}}\right\}=\bigoplus_{D, E, F} \mathcal{A}_{(G, H)}^{(D, E, F)}
$$

where

$$
\begin{gathered}
\mathcal{A}_{(G, H)}^{(D, E, F)}=\left(\rho_{n}^{D} \otimes \rho_{n}^{E}\right)_{F}^{U_{n}}=\text { highest weight vectors of weigth } F \text { in } \rho_{n}^{D} \otimes \rho_{n}^{E} \\
\operatorname{dim} \mathcal{A}_{(G, H)}^{(D, E, F)}=\text { multiplicity of } \rho_{n}^{F} \text { in } \rho_{n}^{D} \otimes \rho_{n}^{E}
\end{gathered}
$$

Howe et al. call $\mathcal{A}_{(G, H)}$ a GL_{n} tensor product algebra.

It turns out that $\mathcal{A}_{(G, H)}$ also encodes another branching rule:

$$
\begin{aligned}
\mathcal{A}_{(G, H)} & =\mathcal{R}_{G}^{U_{H}}=\left(\mathcal{P}\left(\mathbf{M}_{n k}\right)^{U_{k}} \otimes \mathcal{P}\left(\mathbf{M}_{n \ell}\right)^{U_{\ell}}\right)^{U_{n}} \simeq \mathcal{P}\left(\mathbf{M}_{n k} \oplus \mathbf{M}_{n \ell}\right)^{U_{n} \times U_{k} \times U_{\ell}} \\
& \simeq \mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k} \times U_{\ell}} \simeq\left(\bigoplus_{F} \rho_{n}^{F} \otimes \rho_{k+\ell}^{F}\right)^{U_{n} \times U_{k} \times U_{\ell}} \\
& \simeq \bigoplus_{F}\left(\rho_{n}^{F}\right)^{U_{n}} \otimes\left(\rho_{k+\ell}^{F}\right)^{U_{k} \times U_{\ell}} \simeq \bigoplus_{F}\left(\rho_{k+\ell}^{F}\right)^{U_{k} \times U_{\ell}} .
\end{aligned}
$$

It turns out that $\mathcal{A}_{(G, H)}$ also encodes another branching rule:

$$
\begin{aligned}
\mathcal{A}_{(G, H)} & =\mathcal{R}_{G}^{U_{H}}=\left(\mathcal{P}\left(\mathbf{M}_{n k}\right)^{U_{k}} \otimes \mathcal{P}\left(\mathbf{M}_{n \ell}\right)^{U_{\ell}}\right)^{U_{n}} \simeq \mathcal{P}\left(\mathbf{M}_{n k} \oplus \mathbf{M}_{n \ell}\right)^{U_{n} \times U_{k} \times U_{\ell}} \\
& \simeq \mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k} \times U_{\ell}} \simeq\left(\bigoplus_{F} \rho_{n}^{F} \otimes \rho_{k+\ell}^{F}\right)^{U_{n} \times U_{k} \times U_{\ell}} \\
& \simeq \bigoplus_{F}\left(\rho_{n}^{F}\right)^{U_{n}} \otimes\left(\rho_{k+\ell}^{F}\right)^{U_{k} \times U_{\ell}} \simeq \bigoplus_{F}\left(\rho_{k+\ell}^{F}\right)^{U_{k} \times U_{\ell}} .
\end{aligned}
$$

$\mathcal{A}_{(G, H)}$ encodes the branching rule for $\mathrm{GL}_{k+\ell} \downarrow \mathrm{GL}_{k} \times \mathrm{GL}_{\ell}$. So the algebra $\mathcal{A}_{(G, H)}$ encodes two branching rules.

It turns out that $\mathcal{A}_{(G, H)}$ also encodes another branching rule:

$$
\begin{aligned}
\mathcal{A}_{(G, H)} & =\mathcal{R}_{G}^{U_{H}}=\left(\mathcal{P}\left(\mathbf{M}_{n k}\right)^{U_{k}} \otimes \mathcal{P}\left(\mathbf{M}_{n \ell}\right)^{U_{\ell}}\right)^{U_{n}} \simeq \mathcal{P}\left(\mathbf{M}_{n k} \oplus \mathbf{M}_{n \ell}\right)^{U_{n} \times U_{k} \times U_{\ell}} \\
& \simeq \mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k} \times U_{\ell}} \simeq\left(\bigoplus_{F} \rho_{n}^{F} \otimes \rho_{k+\ell}^{F}\right)^{U_{n} \times U_{k} \times U_{\ell}} \\
& \simeq \bigoplus_{F}\left(\rho_{n}^{F}\right)^{U_{n}} \otimes\left(\rho_{k+\ell}^{F}\right)^{U_{k} \times U_{\ell}} \simeq \bigoplus_{F}\left(\rho_{k+\ell}^{F}\right)^{U_{k} \times U_{\ell}} .
\end{aligned}
$$

$\mathcal{A}_{(G, H)}$ encodes the branching rule for $\mathrm{GL}_{k+\ell} \downarrow \mathrm{GL}_{k} \times \mathrm{GL}_{\ell}$. So the algebra $\mathcal{A}_{(G, H)}$ encodes two branching rules.

From this, we obtain the reciprocity law: $\operatorname{dim} \mathcal{A}_{(G, H)}^{(D, E, F)}=$ multiplicity of $\rho_{k}^{D} \otimes \rho_{\ell}^{E}$ in $\rho_{n}^{F}=$ multiplicity of ρ_{n}^{F} in $\rho_{n}^{D} \otimes \rho_{n}^{E}$

Problem: Find a basis for $\mathcal{A}_{(G, H)}$.
Since $\mathcal{A}_{(G, H)}=\bigoplus_{D, E, F} \mathcal{A}_{(G, H)}^{(D, E, F)}$, it suffices to find a basis for each subspace $\mathcal{A}_{(G, H)}^{(D, E, F)}$.

Problem: Find a basis for $\mathcal{A}_{(G, H)}$.
Since $\mathcal{A}_{(G, H)}=\bigoplus_{D, E, F} \mathcal{A}_{(G, H)}^{(D, E, F)}$, it suffices to find a basis for each subspace $\mathcal{A}_{(G, H)}^{(D, E, F)}$.

By the Littlewood-Richardson Rule,
$\operatorname{dim} \mathcal{A}_{(G, H)}^{(D, E, F)}=c_{D, E}^{F}$
$=$ number of LR tableaux T of shape F / D and content E.

Problem: Find a basis for $\mathcal{A}_{(G, H)}$.
Since $\mathcal{A}_{(G, H)}=\bigoplus_{D, E, F} \mathcal{A}_{(G, H)}^{(D, E, F)}$, it suffices to find a basis for each subspace $\mathcal{A}_{(G, H)}^{(D, E, F)}$.

By the Littlewood-Richardson Rule, $\operatorname{dim} \mathcal{A}_{(G, H)}^{(D, E, F)}=c_{D, E}^{F}$
$=$ number of LR tableaux T of shape F / D and content E.

Plan: \quad LR tableau $T \longrightarrow$ construct a basis vector Δ_{T} in $\mathcal{A}_{(G, H)}^{(D, E, F)}$

Now

$$
\begin{aligned}
\mathcal{A}_{(G, H)} & =\left(\mathcal{P}\left(\mathbf{M}_{n k}\right)^{U_{k}} \otimes \mathcal{P}\left(\mathbf{M}_{n \ell}\right)^{U_{\ell}}\right)^{U_{n}} \\
& =\mathcal{P}\left(\mathbf{M}_{n, k} \oplus \mathbf{M}_{n, \ell}\right)^{U_{n} \times U_{k} \times U_{\ell}},
\end{aligned}
$$

it is a subalgebra of $\mathcal{P}\left(\mathrm{M}_{n, k} \oplus \mathrm{M}_{n, \ell}\right)$.

Now

$$
\begin{aligned}
\mathcal{A}_{(G, H)} & =\left(\mathcal{P}\left(\mathbf{M}_{n k}\right)^{U_{k}} \otimes \mathcal{P}\left(\mathbf{M}_{n \ell}\right)^{U_{\ell}}\right)^{U_{n}} \\
& =\mathcal{P}\left(\mathbf{M}_{n, k} \oplus \mathrm{M}_{n, \ell}\right)^{U_{n} \times U_{k} \times U_{\ell}},
\end{aligned}
$$

it is a subalgebra of $\mathcal{P}\left(\mathrm{M}_{n, k} \oplus \mathrm{M}_{n, \ell}\right)$.
Write the coordinates of $\mathrm{M}_{n, k} \oplus \mathrm{M}_{n, \ell}$ as

$$
\left(\begin{array}{cccc|cccc}
x_{11} & x_{12} & \cdots & x_{1 k} & y_{11} & y_{12} & \cdots & y_{1 \ell} \\
x_{21} & x_{22} & \cdots & x_{2 k} & y_{21} & y_{22} & \cdots & y_{2 \ell} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n k} & y_{n 1} & y_{n 2} & \cdots & y_{n \ell}
\end{array}\right)
$$

Then each Δ_{T} is a polynomial on these variables.

Associate each skew tableau T with a monomial m_{T}.

Associate each skew tableau T with a monomial m_{T}.

Introduce a monomial ordering: the graded lexicographic order with

$$
x_{11}>x_{21}>\cdots>x_{n 1}>x_{12}>\cdots>x_{n k}>y_{11}>y_{21}>\cdots>y_{n \ell} .
$$

$\operatorname{LM}(f)=$ leading monomial of f.

Associate each skew tableau T with a monomial m_{T}.

Introduce a monomial ordering: the graded lexicographic order with

$$
x_{11}>x_{21}>\cdots>x_{n 1}>x_{12}>\cdots>x_{n k}>y_{11}>y_{21}>\cdots>y_{n \ell} .
$$

$$
\operatorname{LM}(f)=\text { leading monomial of } f
$$

Theorem (Howe-Tan-Willenbring, Advances 2005)
$\mathcal{A}_{(G, H)}^{(D, E, F)}$ has a basis $\left\{\Delta_{T}\right\}$ with the property that for each T,

$$
\operatorname{LM}\left(\Delta_{T}\right)=m_{T} .
$$

Example. Let $D=\square \quad E=\square \quad F=$| \square |
| :--- |
| \square |\quad.

Then ρ_{n}^{F} occurs in $\rho_{n}^{D} \otimes \rho_{n}^{E}$ with multiplicity 2.

Example. Let $D=\square \quad E=\square \quad F=\square \quad \square$.
Then ρ_{n}^{F} occurs in $\rho_{n}^{D} \otimes \rho_{n}^{E}$ with multiplicity 2.

$$
\begin{aligned}
& T_{1}=\begin{array}{|llll}
\square & & 1 \\
\hline & 1 & & \Delta_{T_{1}}=\left|\begin{array}{cccc}
x_{11} & x_{12} & y_{11} & y_{12} \\
x_{21} & x_{22} & y_{21} & y_{22} \\
x_{31} & x_{32} & y_{31} & y_{32} \\
0 & 0 & y_{11} & y_{12}
\end{array}\right|\left|\begin{array}{ll}
x_{11} & y_{11} \\
x_{21} & y_{21}
\end{array}\right|, ~
\end{array} \\
& \operatorname{LM}\left(\Delta_{T_{1}}\right)=\left(x_{11} x_{22} y_{11} y_{32}\right)\left(x_{11} y_{21}\right)=m_{T_{1}}
\end{aligned}
$$

Example. Let $D=\square \quad E=\square \quad F=\square \quad \square$.
Then ρ_{n}^{F} occurs in $\rho_{n}^{D} \otimes \rho_{n}^{E}$ with multiplicity 2.

$$
\begin{aligned}
& \operatorname{LM}\left(\Delta_{T_{1}}\right)=\left(x_{11} x_{22} y_{11} y_{32}\right)\left(x_{11} y_{21}\right)=m_{T_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{LM}\left(\Delta_{T_{2}}\right)=\left(x_{11} x_{22} y_{31}\right)\left(x_{11} y_{11} y_{22}\right)=m_{T_{2}}
\end{aligned}
$$

Let

$$
S_{(G, H)}=\left\{\operatorname{LM}(f): f \in \mathcal{A}_{(G, H)}, f \neq 0\right\}=\left\{m_{T}\right\} .
$$

Then $S_{(G, H)}$ is a semigroup because $\mathcal{A}_{(G, H)}$ is an algebra and $\operatorname{LM}\left(f_{1} f_{2}\right)=\operatorname{LM}\left(f_{1}\right) \operatorname{LM}\left(f_{2}\right)$.

Let

$$
S_{(G, H)}=\left\{\operatorname{LM}(f): f \in \mathcal{A}_{(G, H)}, f \neq 0\right\}=\left\{m_{T}\right\} .
$$

Then $S_{(G, H)}$ is a semigroup because $\mathcal{A}_{(G, H)}$ is an algebra and

$$
\operatorname{LM}\left(f_{1} f_{2}\right)=\operatorname{LM}\left(f_{1}\right) \operatorname{LM}\left(f_{2}\right)
$$

What we can we say about this semigroup $S_{(G, H)}$?

Let

$$
S_{(G, H)}=\left\{\operatorname{LM}(f): f \in \mathcal{A}_{(G, H)}, f \neq 0\right\}=\left\{m_{T}\right\} .
$$

Then $S_{(G, H)}$ is a semigroup because $\mathcal{A}_{(G, H)}$ is an algebra and

$$
\operatorname{LM}\left(f_{1} f_{2}\right)=\operatorname{LM}\left(f_{1}\right) \operatorname{LM}\left(f_{2}\right)
$$

What we can we say about this semigroup $S_{(G, H)}$?
There is a rational polyhedral cone C in some \mathbb{R}^{N} such that

$$
S_{(G, H)} \simeq C \cap \mathbb{Z}^{N}
$$

It is finitely generated.

Let

$$
S_{(G, H)}=\left\{\operatorname{LM}(f): f \in \mathcal{A}_{(G, H)}, f \neq 0\right\}=\left\{m_{T}\right\} .
$$

Then $S_{(G, H)}$ is a semigroup because $\mathcal{A}_{(G, H)}$ is an algebra and

$$
\operatorname{LM}\left(f_{1} f_{2}\right)=\operatorname{LM}\left(f_{1}\right) \operatorname{LM}\left(f_{2}\right)
$$

What we can we say about this semigroup $S_{(G, H)}$?
There is a rational polyhedral cone C in some \mathbb{R}^{N} such that

$$
S_{(G, H)} \simeq C \cap \mathbb{Z}^{N}
$$

It is finitely generated.
The polyhedral cone C is called the Littlewood-Richardson cone by Igor Pak, and
$c_{D, E}^{F}=$ number of integral points in a polytope contained in C.

The initial algebra $\operatorname{in}\left(\mathcal{A}_{(G, H)}\right)$ of $\mathcal{A}_{(G, H)}$ is the subalgebra of $\mathcal{P}\left(\mathrm{M}_{n k} \oplus \mathrm{M}_{n l}\right)$ generated by $S_{(G, H)}$.

The initial algebra $\operatorname{in}\left(\mathcal{A}_{(G, H)}\right)$ of $\mathcal{A}_{(G, H)}$ is the subalgebra of $\mathcal{P}\left(\mathrm{M}_{n k} \oplus \mathrm{M}_{n l}\right)$ generated by $S_{(G, H)}$.
So

$$
\operatorname{in}\left(\mathcal{A}_{G, H}\right) \simeq \mathbb{C}\left[S_{(G, H)}\right]
$$

is the semigroup algebra on $S_{(G, H)}$, and it is finitely generated.

The initial algebra $\operatorname{in}\left(\mathcal{A}_{(G, H)}\right)$ of $\mathcal{A}_{(G, H)}$ is the subalgebra of $\mathcal{P}\left(\mathrm{M}_{n k} \oplus \mathrm{M}_{n l}\right)$ generated by $S_{(G, H)}$.
So

$$
\operatorname{in}\left(\mathcal{A}_{G, H}\right) \simeq \mathbb{C}\left[S_{(G, H)}\right]
$$

is the semigroup algebra on $S_{(G, H)}$, and it is finitely generated.

By a general results of Conca, Herzog, and Valla, we have:
Theorem ([HJLTW]). The semigroup algebra $\mathbb{C}\left[S_{(G, H)}\right]$ is a flat deformation of $\mathcal{A}_{(G, H)}$.

Similar results also hold for the following symmetric pairs (under a stable range condition):

$$
\begin{gathered}
\left(\mathrm{GL}_{n}, \mathrm{O}_{n}\right), \\
\left(\mathrm{O}_{n+m}, \mathrm{O}_{n} \times \mathrm{O}_{m}\right),\left(\mathrm{Sp}_{2 n}, \mathrm{GL}_{n}\right), \quad\left(\mathrm{GL}_{2 n}, \mathrm{Sp}_{2 n}\right), \\
\left(\mathrm{Sp}_{2(n+m)}, \mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 m}\right),\left(\mathrm{O}_{2 n}, \mathrm{GL}_{n}\right)
\end{gathered}
$$

Branching multiplicities in these cases can be deduced from the algebra structure and the LR rule.
m-fold tensor product algebra
This is a branching algebra $\mathcal{A}_{(G, H)}$ which describes the decomposition of m-fold tensor products of GL_{n} modules:

$$
\rho_{n}^{D_{1}} \otimes \rho_{n}^{D_{2}} \otimes \cdots \otimes \rho_{n}^{D_{m}}
$$

where

$$
G=\mathrm{GL}_{n}^{m}, \quad H=\Delta\left(\mathrm{GL}_{n}\right)
$$

m-fold tensor product algebra
This is a branching algebra $\mathcal{A}_{(G, H)}$ which describes the decomposition of m-fold tensor products of GL_{n} modules:

$$
\rho_{n}^{D_{1}} \otimes \rho_{n}^{D_{2}} \otimes \cdots \otimes \rho_{n}^{D_{m}}
$$

where

$$
G=\mathrm{GL}_{n}^{m}, \quad H=\Delta\left(\mathrm{GL}_{n}\right)
$$

A Special case: tensor product of the form
$\rho_{n}^{D} \otimes \rho_{n}^{\left(\alpha_{1}\right)} \otimes \rho_{n}^{\left(\alpha_{2}\right)} \otimes \cdots \otimes \rho_{n}^{\left(\alpha_{\ell}\right)} \simeq \rho_{n}^{D} \otimes S^{\alpha_{1}}\left(\mathbb{C}^{n}\right) \otimes S^{\alpha_{2}}\left(\mathbb{C}^{n}\right) \otimes \cdots \otimes S^{\alpha_{\ell}}\left(\mathbb{C}^{n}\right)$.
We call a description of this tensor product an iterated Pieri rule.

An algebra which encodes the iterated Pieri rule:

$$
\begin{aligned}
\mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right) & =\mathcal{P}\left(\mathbf{M}_{n k} \oplus \mathbb{C}^{n} \oplus \mathbb{C}^{n} \oplus \cdots \oplus \mathbb{C}^{n}\right) \\
& =\mathcal{P}\left(\mathbf{M}_{n k}\right) \otimes \mathcal{P}\left(\mathbb{C}^{n}\right) \otimes \mathcal{P}\left(\mathbb{C}^{n}\right) \otimes \cdots \otimes \mathcal{P}\left(\mathbb{C}^{n}\right) \\
& \simeq\left(\bigoplus_{D} \rho_{n}^{D} \otimes \rho_{k}^{D}\right) \otimes\left(\bigoplus_{\alpha_{1}} \rho_{n}^{\left(\alpha_{1}\right)}\right) \otimes \cdots \otimes\left(\bigoplus_{\alpha_{\ell}} \rho_{n}^{\left(\alpha_{\ell}\right)}\right) \\
& \simeq \bigoplus_{D, \alpha}\left(\rho_{n}^{D} \otimes \rho_{n}^{\left(\alpha_{1}\right)} \otimes \rho_{n}^{\left(\alpha_{2}\right)} \otimes \cdots \otimes \rho_{n}^{\left(\alpha_{\ell}\right)}\right) \otimes \rho_{k}^{D}
\end{aligned}
$$

An algebra which encodes the iterated Pieri rule:

$$
\begin{aligned}
\mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right) & =\mathcal{P}\left(\mathbf{M}_{n k} \oplus \mathbb{C}^{n} \oplus \mathbb{C}^{n} \oplus \cdots \oplus \mathbb{C}^{n}\right) \\
& =\mathcal{P}\left(\mathbf{M}_{n k}\right) \otimes \mathcal{P}\left(\mathbb{C}^{n}\right) \otimes \mathcal{P}\left(\mathbb{C}^{n}\right) \otimes \cdots \otimes \mathcal{P}\left(\mathbb{C}^{n}\right) \\
& \simeq\left(\bigoplus_{D} \rho_{n}^{D} \otimes \rho_{k}^{D}\right) \otimes\left(\bigoplus_{\alpha_{1}} \rho_{n}^{\left(\alpha_{1}\right)}\right) \otimes \cdots \otimes\left(\bigoplus_{\alpha_{\ell}} \rho_{n}^{\left(\alpha_{\ell}\right)}\right) \\
& \simeq \bigoplus_{D, \alpha}\left(\rho_{n}^{D} \otimes \rho_{n}^{\left(\alpha_{1}\right)} \otimes \rho_{n}^{\left(\alpha_{2}\right)} \otimes \cdots \otimes \rho_{n}^{\left(\alpha_{\ell}\right)}\right) \otimes \rho_{k}^{D}
\end{aligned}
$$

Extract $U_{n} \times U_{k}$ invariants:

$$
\mathcal{P}\left(\mathrm{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}} \simeq \bigoplus_{D, \alpha}\left(\rho_{n}^{D} \otimes \rho_{n}^{\left(\alpha_{1}\right)} \otimes \rho_{n}^{\left(\alpha_{2}\right)} \otimes \cdots \otimes \rho_{n}^{\left(\alpha_{\ell}\right)}\right)^{U_{n}} \otimes\left(\rho_{k}^{D}\right)^{U_{k}}
$$

We call $\mathcal{P}\left(\mathrm{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}$ an iterated Pieri algebra for GL_{n}.

The iterated Pieri algebra $\mathcal{P}\left(\mathrm{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}$ also encodes the branching rule for

$$
\mathrm{GL}_{k+\ell} \downarrow \mathrm{GL}_{k} \times \mathrm{GL}_{1}^{\ell}=\mathrm{GL}_{k} \times\left(\mathrm{GL}_{1} \times \cdots \times \mathrm{GL}_{1}\right)
$$

The iterated Pieri algebra $\mathcal{P}\left(\mathrm{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}$ also encodes the branching rule for

$$
\mathrm{GL}_{k+\ell} \downarrow \mathrm{GL}_{k} \times \mathrm{GL}_{1}^{\ell}=\mathrm{GL}_{k} \times\left(\mathrm{GL}_{1} \times \cdots \times \mathrm{GL}_{1}\right)
$$

Special case: If $k=1$, then this is branching for

$$
\mathrm{GL}_{\ell+1} \downarrow=\mathrm{GL}_{1}^{\ell+1}=\overbrace{\mathrm{GL}_{1} \times \cdots \times \mathrm{GL}_{1}}^{\ell+1}
$$

That is, decompose $\rho_{\ell+1}^{D}$ into weight spaces, and find a basis of each weight space.

Comparing tensor product algebra with iterated Pieri algebra
GL_{n} tensor product algebra:
$\mathcal{P}\left(\mathrm{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k} \times U_{\ell}}$ describes general tensor products $\rho_{n}^{D} \otimes \rho_{n}^{E}$.

Comparing tensor product algebra with iterated Pieri algebra

GL_{n} tensor product algebra:

$\mathcal{P}\left(\mathrm{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k} \times U_{\ell}}$ describes general tensor products $\rho_{n}^{D} \otimes \rho_{n}^{E}$. Iterated Pieri algebra for GL_{n} :
$\mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}$ describes tensor products of the form

$$
\rho_{n}^{D} \otimes \rho_{n}^{\left(\alpha_{1}\right)} \otimes \rho_{n}^{\left(\alpha_{2}\right)} \otimes \cdots \otimes \rho_{n}^{\left(\alpha_{\ell}\right)}
$$

Comparing tensor product algebra with iterated Pieri algebra

GL_{n} tensor product algebra:

$\mathcal{P}\left(\mathrm{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k} \times U_{\ell}}$ describes general tensor products $\rho_{n}^{D} \otimes \rho_{n}^{E}$.
Iterated Pieri algebra for GL_{n} :
$\mathcal{P}\left(\mathrm{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}$ describes tensor products of the form

$$
\rho_{n}^{D} \otimes \rho_{n}^{\left(\alpha_{1}\right)} \otimes \rho_{n}^{\left(\alpha_{2}\right)} \otimes \cdots \otimes \rho_{n}^{\left(\alpha_{\ell}\right)}
$$

We have

$$
\mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k} \times U_{\ell}} \subseteq \mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}
$$

By analyzing how the tensor product algebra sits inside the iterated Pieri algebra, we can give a proof of the Littlewood-Richardson Rule ([Howe-Lee], BAMS 2012).

What is the semigroup S associated with the iterated Pieri algebra $\mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}} \boldsymbol{?}$
The elements of S should count the multiplicity in the tensor product $\rho_{n}^{D} \otimes \rho_{n}^{\left(\alpha_{1}\right)} \otimes \rho_{n}^{\left(\alpha_{2}\right)} \otimes \cdots \otimes \rho_{n}^{\left(\alpha_{\ell}\right)}$.

What is the semigroup S associated with the iterated Pieri algebra $\mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}$?
The elements of S should count the multiplicity in the tensor product $\rho_{n}^{D} \otimes \rho_{n}^{\left(\alpha_{1}\right)} \otimes \rho_{n}^{\left(\alpha_{2}\right)} \otimes \cdots \otimes \rho_{n}^{\left(\alpha_{\ell}\right)}$.

By the Pieri Rule,

$$
\rho_{p}^{D} \otimes \rho_{p}^{\left(\alpha_{1}\right)}=\bigoplus_{F} \rho_{p}^{F} \quad \text { (multiplicity free) }
$$

where F satisfies the interlacing condition: If $D=\left(d_{1}, \ldots, d_{p}\right)$ and $F=\left(f_{1}, \ldots, f_{p}\right)$, then

$$
f_{1} \geq d_{1} \geq f_{2} \geq d_{2} \geq \cdots \geq f_{p} \geq d_{p}
$$

What is the semigroup S associated with the iterated Pieri algebra $\mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}$?

The elements of S should count the multiplicity in the tensor product $\rho_{n}^{D} \otimes \rho_{n}^{\left(\alpha_{1}\right)} \otimes \rho_{n}^{\left(\alpha_{2}\right)} \otimes \cdots \otimes \rho_{n}^{\left(\alpha_{\ell}\right)}$.

By the Pieri Rule,

$$
\rho_{p}^{D} \otimes \rho_{p}^{\left(\alpha_{1}\right)}=\bigoplus_{F} \rho_{p}^{F} \quad \text { (multiplicity free) }
$$

where F satisfies the interlacing condition: If $D=\left(d_{1}, \ldots, d_{p}\right)$ and $F=\left(f_{1}, \ldots, f_{p}\right)$, then

$$
f_{1} \geq d_{1} \geq f_{2} \geq d_{2} \geq \cdots \geq f_{p} \geq d_{p}
$$

We indicate these inequalities by writing

$$
\begin{array}{ccccc}
& d_{1} & d_{2} & \cdots & d_{p} \\
f_{1} & f_{2} & \cdots & f_{p}
\end{array}
$$

By iterating the Pieri Rule,

$$
\rho_{n}^{D} \otimes \rho_{n}^{\left(\alpha_{1}\right)} \otimes \rho_{n}^{\left(\alpha_{2}\right)} \otimes \cdots \otimes \rho_{n}^{\left(\alpha_{\ell}\right)}=\bigoplus_{F} m_{F} \rho_{n}^{F}
$$

where m_{F} is the number of "Gelfand-Zeltlin" of the form

$$
\begin{aligned}
& \begin{array}{llll}
\lambda_{11} & \lambda_{10}{ }^{\lambda_{21}}{ }^{\lambda_{20}} & \cdots & \lambda_{n 1} \lambda_{n 0}
\end{array} \\
& \lambda= \\
& \begin{array}{llll}
\lambda_{1 \ell} & \lambda_{2 \ell} & \cdots & \lambda_{n \ell}
\end{array}
\end{aligned}
$$

where $D=\left(\lambda_{10}, \lambda_{20}, \cdots, \lambda_{p 0}\right)$ and $F=\left(\lambda_{1 \ell}, \lambda_{2 \ell}, \cdots, \lambda_{n \ell}\right)$.

By iterating the Pieri Rule,

$$
\rho_{n}^{D} \otimes \rho_{n}^{\left(\alpha_{1}\right)} \otimes \rho_{n}^{\left(\alpha_{2}\right)} \otimes \cdots \otimes \rho_{n}^{\left(\alpha_{\ell}\right)}=\bigoplus_{F} m_{F} \rho_{n}^{F}
$$

where m_{F} is the number of "Gelfand-Zeltlin" of the form

$$
\begin{aligned}
& \lambda=\quad . \begin{array}{llll}
\lambda_{11}{ }^{\lambda_{10}}{ }^{\lambda_{21}}{ }^{\lambda_{20}} \ldots{ }^{\cdots}{ }^{\lambda_{n 1}} \lambda_{n 0} \\
& . & & .
\end{array} \\
& \begin{array}{llll}
\lambda_{1 \ell} & \lambda_{2 \ell} & \cdots & \lambda_{n \ell}
\end{array}
\end{aligned}
$$

where $D=\left(\lambda_{10}, \lambda_{20}, \cdots, \lambda_{p 0}\right)$ and $F=\left(\lambda_{1 \ell}, \lambda_{2 \ell}, \cdots, \lambda_{n \ell}\right)$.
These patterns can be viewed as order preserving functions on a poset Γ

$$
\lambda: \Gamma \rightarrow \mathbb{Z}^{+} .
$$

The set

$$
\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}=\left\{f: \Gamma \rightarrow \mathbb{Z}^{+} \mid f \text { is order preserving }\right\}
$$

forms a semigroup, and is called a Hibi cone. It has a very simple semigroup structure.
(More genearlly, we can replace Γ by a finite poset)

The set

$$
\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}=\left\{f: \Gamma \rightarrow \mathbb{Z}^{+} \mid f \text { is order preserving }\right\}
$$

forms a semigroup, and is called a Hibi cone. It has a very simple semigroup structure.
(More genearlly, we can replace Γ by a finite poset)

Call a subset A of Γ increasing if

$$
a \in A, x \in \Gamma, x \geq a \Longrightarrow x \in A
$$

Denote by $J^{*}(\Gamma)$ the collection of all increasing subsets of Γ.

For each $A \in J^{*}(\Gamma)$, let

$$
\chi_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A .\end{cases}
$$

Then clearly $\chi_{A} \in\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}$.

For each $A \in J^{*}(\Gamma)$, let

$$
\chi_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A .\end{cases}
$$

Then clearly $\chi_{A} \in\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}$.
Theorem. The semigroup $\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}$ is generated by $\left\{\chi_{A}: A \in\right.$ $\left.J^{*}(\Gamma)\right\}$ and it has relations

$$
\chi_{A}+\chi_{B}=\chi_{A \cup B}+\chi_{A \cap B}, \quad A, B \in J^{*}(\Gamma)
$$

For each $A \in J^{*}(\Gamma)$, let

$$
\chi_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A .\end{cases}
$$

Then clearly $\chi_{A} \in \Omega_{\Gamma}$.
Theorem. The semigroup $\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}$ is generated by $\left\{\chi_{A}: A \in\right.$ $\left.J^{*}(\Gamma)\right\}$ and it has relations

$$
\chi_{A}+\chi_{B}=\chi_{A \cup B}+\chi_{A \cap B}, \quad A, B \in J^{*}(\Gamma)
$$

It follows that every $f \in\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}$ can be expressed as

$$
f=\sum_{j} c_{j} \chi_{A_{j}}
$$

where $c_{j} \in \mathbb{N}$ and $A_{1} \subset A_{2} \subset \cdots \subset A_{N}=\Gamma$ is a chain in $J^{*}(\Gamma)$.

In the case when $n=3, k=\ell=2,\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}$ consists of patterns of the form

$$
\lambda=\begin{array}{lllll}
& & \lambda_{10} & \lambda_{20} & 0 \\
& \lambda_{11} & \lambda_{21} & \lambda_{31}
\end{array}
$$

In the case when $n=3, k=\ell=2,\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}$ consists of patterns of the form

$$
\lambda=\begin{array}{llll}
& & \lambda_{10} & \lambda_{20}
\end{array} 0
$$

The generators χ_{A} of $\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}$ are:

For general n, k, ℓ, each generator χ_{A} of $\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}$ corresponds to an element in $\mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}$ of the form

$$
\delta_{A}=\left|\begin{array}{cccccccc}
x_{11} & x_{12} & \cdots & x_{1 p} & y_{1 s_{1}} & y_{1 s_{2}} & \cdots & y_{1 s_{q}} \\
x_{21} & x_{22} & \cdots & x_{2 p} & y_{2 s_{1}} & y_{2 s_{2}} & \cdots & y_{2 s_{q}} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
x_{(p+q) 1} & x_{(p+q) 2} & \cdots & x_{(p+q) p} & y_{(p+q) s_{1}} & y_{(p+q) s_{2}} & \cdots & y_{(p+q) s_{q}}
\end{array}\right| .
$$

Let Q be the set of all δ_{A}.

For general n, k, ℓ, each generator χ_{A} of $\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}$ corresponds to an element in $\mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}$ of the form

$$
\delta_{A}=\left|\begin{array}{cccccccc}
x_{11} & x_{12} & \cdots & x_{1 p} & y_{1 s_{1}} & y_{1 s_{2}} & \cdots & y_{1 s_{q}} \\
x_{21} & x_{22} & \cdots & x_{2 p} & y_{2 s_{1}} & y_{2 s_{2}} & \cdots & y_{2 s_{q}} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
x_{(p+q) 1} & x_{(p+q) 2} & \cdots & x_{(p+q) p} & y_{(p+q) s_{1}} & y_{(p+q) s_{2}} & \cdots & y_{(p+q) s_{q}}
\end{array}\right| .
$$

Let Q be the set of all δ_{A}.
If $A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{r}$, then we call the product

$$
\delta_{A_{1}} \delta_{A_{2}} \cdots \delta_{A_{r}}
$$

a standard monomial on Q.

For general n, k, ℓ, each generator χ_{A} of $\left(\mathbb{Z}^{+}\right)^{\Gamma, \geq}$ corresponds to an element in $\mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}$ of the form

$$
\delta_{A}=\left|\begin{array}{cccccccc}
x_{11} & x_{12} & \cdots & x_{1 p} & y_{1 s_{1}} & y_{1 s_{2}} & \cdots & y_{1 s_{q}} \\
x_{21} & x_{22} & \cdots & x_{2 p} & y_{2 s_{1}} & y_{2 s_{2}} & \cdots & y_{2 s_{q}} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
x_{(p+q) 1} & x_{(p+q) 2} & \cdots & x_{(p+q) p} & y_{(p+q) s_{1}} & y_{(p+q) s_{2}} & \cdots & y_{(p+q) s_{q}}
\end{array}\right| .
$$

Let Q be the set of all δ_{A}.
If $A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{r}$, then we call the product

$$
\delta_{A_{1}} \delta_{A_{2}} \cdots \delta_{A_{r}}
$$

a standard monomial on Q.
It turns out that the set of all standard monomials on Q forms a vector space basis for $\mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}$. We say that $\mathcal{P}\left(\mathbf{M}_{n(k+\ell)}\right)^{U_{n} \times U_{k}}$ has a standard monomial theory for Q.

This treatment was given by Sangjib Kim in his thesis.

What other branching algebras are associated with Hibi cones?
The double Pieri algebra $\mathcal{L}_{(n, p),(k, q)}$ for $\mathrm{GL}_{n} \times \mathrm{GL}_{k}$
It describes

$$
\left\{\rho_{n}^{D} \otimes\left(\otimes_{i=1}^{p} \rho_{n}^{\left(\alpha_{i}\right)}\right)\right\} \otimes\left\{\rho_{k}^{D} \otimes\left(\otimes_{j=1}^{q} \rho_{k}^{\left(\alpha_{j}\right)}\right)\right\}
$$

with $\operatorname{depth}(D) \leq k \leq n$.

What other branching algebras are associated with Hibi cones?
The double Pieri algebra $\mathcal{L}_{(n, p),(k, q)}$ for $\mathrm{GL}_{n} \times \mathrm{GL}_{k}$
It describes

$$
\left\{\rho_{n}^{D} \otimes\left(\otimes_{i=1}^{p} \rho_{n}^{\left(\alpha_{i}\right)}\right)\right\} \otimes\left\{\rho_{k}^{D} \otimes\left(\otimes_{j=1}^{q} \rho_{k}^{\left(\alpha_{j}\right)}\right)\right\}
$$

with $\operatorname{depth}(D) \leq k \leq n$.

The iterated Pieri algebra $\mathcal{A}_{n, k, p}$ for O_{n} where $2(k+p)<n$. It describes

$$
\sigma_{n}^{D} \otimes\left(\otimes_{i=1}^{\ell} \sigma_{n}^{\left(\alpha_{i}\right)}\right)
$$

where σ_{n}^{D} is the irreducible representation of O_{n} labelled by D and $\operatorname{depth}(D) \leq k$.

The iterated Pieri algebra $Q_{n, k, p}$ for $\mathrm{Sp}_{2 n}$ where $k+p<n$. It describes

$$
\tau_{2 n}^{D} \otimes\left(\otimes_{i=1}^{\ell} \tau_{2 n}^{\left(\alpha_{i}\right)}\right)
$$

where $\tau_{2 n}^{D}$ is the irreducible representation of $\mathrm{Sp}_{2 n}$ labelled by D and $\operatorname{depth}(D) \leq k$.

The iterated Pieri algebra $Q_{n, k, p}$ for $\mathrm{Sp}_{2 n}$ where $k+p<n$. It describes

$$
\tau_{2 n}^{D} \otimes\left(\otimes_{i=1}^{\ell} \tau_{2 n}^{\left(\alpha_{i}\right)}\right)
$$

where $\tau_{2 n}^{D}$ is the irreducible representation of $\mathrm{Sp}_{2 n}$ labelled by D and $\operatorname{depth}(D) \leq k$.

It turns out that $Q_{n, k, p} \simeq \mathcal{A}_{2 n, k, p}$ for $k+p<n$.

The (more general) iterated Pieri algebra $\mathfrak{A}_{n, k, \ell, p, q}$ for GL_{n} where $k+p+\ell+q) \leq n$.
It describes

$$
\rho_{n}^{D, E} \otimes\left(\bigotimes_{i=1}^{p} \rho_{n}^{\left(\alpha_{i}\right)}\right) \otimes\left(\bigotimes_{j=1}^{q} \rho_{n}^{\left(\alpha_{i}\right)^{*}}\right)
$$

where $\operatorname{depth}(D) \leq k$ and $\operatorname{depth}(E) \leq \ell$.

The (more general) iterated Pieri algebra $\mathfrak{A}_{n, k, \ell, p, q}$ for GL_{n} where $k+p+\ell+q) \leq n$.
It describes

$$
\rho_{n}^{D, E} \otimes\left(\bigotimes_{i=1}^{p} \rho_{n}^{\left(\alpha_{i}\right)}\right) \otimes\left(\bigotimes_{j=1}^{q} \rho_{n}^{\left(\alpha_{i}\right)^{*}}\right)
$$

where $\operatorname{depth}(D) \leq k$ and $\operatorname{depth}(E) \leq \ell$.
It turns out that double Pieri algebras can be regarded as a common structure shared by the iterated Pieri algebras.

Theorem. We have the isomorphism of graded algebras

$$
\begin{gathered}
\mathcal{A}_{n, k, p} \simeq \mathcal{L}_{(n, p),(k, p)} \otimes \mathcal{P}\left(\wedge^{2}\left(\mathbb{C}^{p}\right)\right), \\
\mathfrak{A}_{n, k, \ell, p, q} \simeq \mathcal{L}_{(n, p),(k, q)} \otimes \mathcal{L}_{(n, q),(\ell, p)} \otimes \mathcal{P}\left(\mathrm{M}_{p q}\right) .
\end{gathered}
$$

Can the stable range condition be removed?

Can the stable range condition be removed?
Antirow Pieri algebra for GL_{n} (without stable range condition)

$$
\begin{aligned}
\mathcal{R}_{n, p, q} & =\mathcal{P}\left(\mathrm{M}_{n p}\right) \otimes\left(\bigotimes_{i=1}^{q} \mathcal{P}\left(\mathbb{C}_{i}^{n *}\right)\right) \simeq\left(\bigoplus_{D} \rho_{n}^{D} \otimes \rho_{p}^{D}\right) \otimes\left(\bigotimes_{i=1}^{q} \rho_{n}^{\left(\beta_{i}\right) *}\right) \\
& \left.\simeq \bigoplus_{F, \alpha}\left\{\rho_{n}^{D} \otimes\left(\bigotimes_{i=1}^{q} \rho_{n}^{\left(\beta_{i}\right) *}\right)\right)\right\} \otimes \rho_{p}^{F} .
\end{aligned}
$$

Can the stable range condition be removed?

Antirow Pieri algebra for GL_{n} (without stable range condition)

$$
\begin{aligned}
\mathcal{R}_{n, p, q} & :=\mathcal{P}\left(\mathrm{M}_{n p}\right) \otimes\left(\bigotimes_{i=1}^{q} \mathcal{P}\left(\mathbb{C}_{i}^{n * *}\right)\right) \simeq\left(\bigoplus_{D} \rho_{n}^{D} \otimes \rho_{p}^{D}\right) \otimes\left(\bigotimes_{i=1}^{q} \rho_{n}^{\left(\beta_{i}\right)^{*}}\right) \\
& \simeq \bigoplus_{F, \alpha}\left\{\rho_{n}^{D} \otimes\left(\bigotimes_{i=1}^{q} \rho_{n}^{\left(\beta_{i}\right) * *}\right)\right) \otimes \rho_{p}^{F} .
\end{aligned}
$$

Extract $\mathrm{GL}_{n} \times \mathrm{GL}_{p}$ highest weight vectors:

$$
\mathcal{R}_{n, p, q}^{U_{n} \times U_{p}} \simeq \bigoplus_{F, \alpha}\left\{\rho_{n}^{D} \otimes\left(\bigotimes_{i=1}^{q} \rho_{n}^{\left(\beta_{i}\right) *}\right)\right\}^{U_{n}} \otimes\left(\rho_{p}^{F}\right)^{U_{p}}
$$

Can the stable range condition be removed?

Antirow Pieri algebra for GL_{n} (without stable range condition)

$$
\begin{aligned}
\mathcal{R}_{n, p, q} & :=\mathcal{P}\left(\mathbf{M}_{n p}\right) \otimes\left(\bigotimes_{i=1}^{q} \mathcal{P}\left(\mathbb{C}_{i}^{n *}\right)\right) \simeq\left(\bigoplus_{D} \rho_{n}^{D} \otimes \rho_{p}^{D}\right) \otimes\left(\bigotimes_{i=1}^{q} \rho_{n}^{\left(\beta_{i}\right) *}\right) \\
& \simeq \bigoplus_{F, \alpha}\left\{\rho_{n}^{D} \otimes\left(\bigotimes_{i=1}^{q} \rho_{n}^{\left(\beta_{i}\right) *}\right)\right\} \otimes \rho_{p}^{F}
\end{aligned}
$$

Extract $\mathrm{GL}_{n} \times \mathrm{GL}_{p} \times A_{q}$ highest weight vectors:

$$
\mathcal{R}_{n, p, q}^{U_{n} \times U_{p}} \simeq \bigoplus_{F, \alpha}\left\{\rho_{n}^{D} \otimes\left(\bigotimes_{i=1}^{q} \rho_{n}^{\left(\beta_{i}\right) *}\right)\right\}^{U_{n}} \otimes\left(\rho_{p}^{F}\right)^{U_{p}}
$$

So the algebra $\mathcal{R}_{n, p, q}^{U_{n} \times U_{p}}$ describes $\rho_{n}^{D} \otimes\left(\bigotimes_{i=1}^{q} \rho_{n}^{\left(\beta_{i}\right) * *}\right)$.

Multiplicities in $\rho_{n}^{D} \otimes\left(\bigotimes_{i=1}^{q} \rho_{n}^{\left(\beta_{i}\right) *}\right)$ are counted by patterns of the form

$$
\nu=\begin{array}{lllllll}
& v_{10} & & \nu_{20} & & \cdots & v_{n 0} \\
& & \nu_{11} & & \nu_{21} & & \\
& & & & & & \\
v_{n 1}
\end{array}
$$

$$
\begin{array}{llll}
v_{1 q} & v_{2 q} & \cdots & v_{n q}
\end{array}
$$

with $D=\left(v_{10}, v_{20}, \cdots, v_{n 0}\right)$.

Multiplicities in $\rho_{n}^{D} \otimes\left(\bigotimes_{i=1}^{q} \rho_{n}^{\left(\beta_{i}\right) *}\right)$ are counted by patterns of the form

$$
\begin{aligned}
& \begin{array}{llllll}
\mathcal{V}_{10} & & v_{20} & \cdots & v_{n 0} \\
& v_{11} & v_{21} & & & v_{n 1}
\end{array} \\
& v= \\
& v_{1 q} \quad v_{2 q} \quad \cdots \quad v_{n q}
\end{aligned}
$$

with $D=\left(v_{10}, v_{20}, \cdots, v_{n 0}\right)$.
Some of the entries $v_{i j}$ can be negative. The associated semigroup can be identified with a set of order preserving functions $f: \Gamma \rightarrow$ \mathbb{Z}, and is called a signed Hibi cone.

Multiplicities in $\rho_{n}^{D} \otimes\left(\bigotimes_{i=1}^{q} \rho_{n}^{\left(\beta_{i}\right) *}\right)$ are counted by patterns of the form

with $D=\left(v_{10}, v_{20}, \cdots, v_{n 0}\right)$.
Some of the entries $v_{i j}$ can be negative. The associated semigroup can be identified with a set of order preserving functions $f: \Gamma \rightarrow$ \mathbb{Z}, and is called a signed Hibi cone.

The structure of the signed Hibi cone and the algebra were determined in Yi Wang's thesis (2013).

Thank you.

