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Gleason’s theorem

Let H be a separable Hilbert space with unit sphere S . Then

f : S → R≥0

is called a frame function if for every orthonormal basis of H, {ei},

∑ f (ei ) = 1.

We note that f (λs) = f (s) for s ∈ S , |λ| = 1. Thus f is defined on
P(H).
If T is a Hermitian positive definite trace class operator of trace one
define fT (v) = 〈Tv |v〉. Then fT is a frame function.
If dimH ≥ 3 then every frame function is of this form.
Gleason’s proof uses a little representation theory, a reduction to 3
real dimensions and geography of the 2 sphere.
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A little quantum mechanics

Pure states of a quantum mechanical system are the unit vectors of a
Hilbert space, H, over C ignoring phase. In other words elements of
P(H).

If v ,w ∈ H then we write 〈v |w〉 for the inner product of v with w .
Linear in w conjugate linear in v . If v ∈ H then we set v † equal to
the linear functional w 7−→ 〈v |w〉.
To a pure state, v , we form the linear map v ⊗ v †. A mixed state is a
limit of convex combinations of pure states. Thus mixed state is a
positive semidefinite trace class operator of trace 1.

So Gleason’s theorem gives an operational interperatation of mixed
states and has been used argue against hidden variables in quantum
mechanics.
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Two dimensions

We assume that dimH = 2. We note that if v ∈ H is a unit vector
then there is a unique, up to phase, unit vector v̂ orthogonal to it.
This yields a map P1 → P1, [v ] 7−→ [v̂ ].

We note that this defines a fixed point free involution of P1. We can
thus choose a fundamental domain for this involution. That is
X ∪ X̂ = P1 and X ∩ X̂ = ∅.
Fix such an X and g : X → [0, 1]. Then if we define f (v) = g([v ])
and f (v̂) = 1− g([v ]) then we have defined a frame function and
this type of function is the most general one.
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Multi-particle systems

Suppose that we have n independent particles each having “wave
function”φi ∈ Hi , i = 1, ..., n.

The phase space for the n the particles is H = H1 ⊗H2 ⊗ · · · ⊗Hn.
If the wave function for the particles is not a product state, that is,
not φ1 ⊗ · · · ⊗ φn with φi a state in Hi ,then the n particles are said
to be entangled.

If m > 1, di > 1 then a randomly chosen state will be entangled.
Since the dimension of the set of states is d1 · · · dn − 1 and the
dimension of the set of product states is d1 + ...+ dm − n+ 1.Thus if
m > 1 and all di > 1 almost all states are entangled.
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Unentangled Gleason theorem

If {φij}0≤j<dimHi is an orthonormal basis of Hi then the orthonormal
basis {φ1i1 ⊗ · · · ⊗ φnin} is called a product basis. If {ϕk} is an
orthonormal basis and each basis element is a product vector then we
will call the basis an unentangled basis.

In light of work on quantum computing it was reasonable to ask
whether there was an analogous statement to Gleason’s theorem for
unentangled bases.

Suppose that H = H1 ⊗H2 ⊗ · · · ⊗Hn and we consider
Σ = {φ1 ⊗ · · · ⊗ φn | ‖φi‖ = 1,φi ∈ Hi} and consider the functions
f : Σ→ R≥0 such that for each unentangled basis {ϕk} we have
∑ f (ϕk ) = 1. That is, unentangled frame functions.
If dimHi ≥ 3 for all i = 1, ..., n then there exists T a mixed state in
H such that f (ϕ) = 〈T ϕ|ϕ〉 for all product states ϕ.
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Suppose H = C2 ⊗ V a tensor product Hilbert space. We assert that
in this context there is an unentangled frame function that is not
given by a mixed state.

We first describe all unentangled orthonormal bases. Let zi = ai ⊗ bi
be such an orthonormal basis. If i 6= j and if 〈ai |aj 〉 6= 0 then
〈bi |bj 〉 = 0.
There is an orthogonal decomposition V = ⊕Vj and for each j two
orthonormal bases vji and wji of Vj and cj a unit vector in C2 such
that the the basis is

∪j ({cj ⊗ vji}) ∪ ({ĉj ⊗ wji}) .

Using this result we easily see

If f is a frame function for C2 and if g is one for V then f ⊗ g is an
unentangled one for C2 ⊗ V .
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Qubits
We now concentrate on the case when all of the spaces Hi are equal
to C2. The case that is most important in quantum information
theory. We will denote the Hilbert space QBn = ⊗nC2. From here on
I am discussing joint work with Jiri Lebl and Asif Shakeel.

A UOB for QBn is 2n vectors zj = a
j
1 ⊗ a

j
2 ⊗ · · · ⊗ a

j
n, j = 1, ..., 2n

with aji a unit vector in C2 and for each j 6= k there exists i such that
up to phase aki = â

j
i . Thus if we think of a UOB projectively

[zj ] =
[
aj1
]
⊗
[
aj2
]
⊗ · · · ⊗

[
ajn
]
(i.e. using the Segre imbedding of

(P1)n into P2
n−1). So the notion of UOB is purely combinatorial.

Let Si be the set {[aji ]|j = 1, ..., 2n}. We have seen that the
involution Si → Si given by u 7−→ û is fixed point free. We can
therefore choose Ui ⊂ Si a fundamental domain. We write
Ui = {ui1, ..., uiki }. We also note that the results above imply that
the number of j such that

[
aji
]
= u is the same as the number of j

such that
[
aji
]
= û.
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For each j we put together an n—bit string b(j) with i—th bit 0 if
[aji ] = u ∈ Ui or 1 if it is û with u ∈ Ui . Set
vj = eb1 ⊗ eb1 ⊗ · · · ⊗ ebn with e0, e1 the standard orthonormal basis
of C2 and b = b(j).

The vectors are orthonormal. Thus there is a permutation, σ, of
1, ..., 2n so that b(σj) is the base two expansion of j − 1 padded by
0’s on the left. We will say that a UOB is in normal order if σ is the
identity. Assume that the UOB is in normal order.
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Set k = ∑ ki . We give a coloring of the hypercube graph with k
colors corresponding to the UOB. Recall that the n—th hypercube
graph has vertices 0, ..., 2n−1 and edges [i , j ] with i 6= j having all
binary digits the same except for one l = l(i , j) = l(j , i). We set
m = k1 + ...+ kl−1 + p if[

ail(i ,j)
]
= u,

[
ajl(i ,j)

]
= û

and one of u or û is ul ,p . Then we color the corresponding edge with
the m—th color.

Set αji = m if the edge eminating from j in the direction i has color m.
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a⊗ b, a⊗ b̂, â⊗ c , â⊗ ĉ,
[
1 1 1 1
2 2 3 3

]
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[
1 1 1 1
2 2 3 3

]
⇔ (u1, u2, u3) 7−→

{u1 ⊗ u2, u1 ⊗ û2, û1 ⊗ u3, û1 ⊗ û3} a parametrized family of UOB
parametrized by

(
P1
)3.

If we consider the locus of this parameterized subset of the and the
one that comes by rotating the square by π

2 the union of the sets is
all UOB in 2 qubits. The intersection of these sets is the locus
parameterization that comes from using the red as above but
replacing (say) the green by blue.

To get a better idea of the pattern consider Q3. In this case the
maximal number of colors that will come from a UOB is 7 and up to
similar rotations to the case above the only coloring with 7 colors
coming from a UOB is
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cyan, red, green,orange,yellow,brown,blue

 1 1 5 5 1 1 5 5
2 2 2 2 2 2 2 2
3 3 4 4 7 7 6 6
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This example indicates a surprising (to us complication). Notice that
it has 6 colors. We also note (not easy) that adding a color (in other
words taking some colors that appear multiple times and changing a
proper subset of the edges of each of these colors into the new color)
is not possible.

We can go from a coloring of Qn with k colors to a map, Φ, of
(
P1
)k

to (⊗nC2)2
n
as follows: Let j be a vertex of Qn then for every

1 ≤ i ≤ n there is exactly one vertex that differs in exactly that digit
from j ,ji . If the edge [j , ji ] is colored with the li—th color. Then we
take the j—th component of Φ(u1, ..., uk ) to be

v1 ⊗ v2 ⊗ · · · ⊗ vn, vi =
{
uli if the i—th digit is 0
ûli if the i—th digit is 1

We will say that the coloring is useful if it yields a family of UOB. We
will say that a useful family is maximal if adding a color makes it
useless.

Nolan R. Wallach () Gleason’s theorem and unentangled orthonormal bases [5/14]May, 2014 17 / 19



This example indicates a surprising (to us complication). Notice that
it has 6 colors. We also note (not easy) that adding a color (in other
words taking some colors that appear multiple times and changing a
proper subset of the edges of each of these colors into the new color)
is not possible.

We can go from a coloring of Qn with k colors to a map, Φ, of
(
P1
)k

to (⊗nC2)2
n
as follows: Let j be a vertex of Qn then for every

1 ≤ i ≤ n there is exactly one vertex that differs in exactly that digit
from j ,ji . If the edge [j , ji ] is colored with the li—th color. Then we
take the j—th component of Φ(u1, ..., uk ) to be

v1 ⊗ v2 ⊗ · · · ⊗ vn, vi =
{
uli if the i—th digit is 0
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Theorems
Every UOB is a value of one of these families coming from a maximal
useful UOB.

Any useful coloring has at most 2n − 1 colors and this number is
attained.
The useful colorings with 2n − 1 colors are constructed recursively as
follows: There is one direction, say i , with exactly one color on every
edge in that direction coordinates which we call vertical. We then
have two n− 1 cubes Q0 (i—th coordinate 0) and Q1 each of these
has 2n−1 − 1 with a total of 2n − 2 colors (since adding 1 to the total
number of colors of the two subcubes is 2n − 1. So we see that each
has one direction in each subcube with all colors the same and
continue.
Note that the directions in the subcube can be different. If we take
them to be the same then we have the examples above for n = 2, 3, 4.
If n = 3 then up to permutation of order and permutation of vectors
the the two types we gave are all of the maximal useful colorings.
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