Gleason's theorem and unentangled orthonormal bases

Nolan R. Wallach

[5/14]May, 2014

Nolan R. Wallach ()

Gleason's theorem and unentangled orthonorr

[5/14]May, 2014 1 / 19

・ロト・(局)・(目)・(目)・(日)・(の)

• Let \mathcal{H} be a separable Hilbert space with unit sphere S. Then

$$f:S
ightarrow \mathbb{R}_{\geq 0}$$

$$\sum f(e_i) = 1.$$

• Let \mathcal{H} be a separable Hilbert space with unit sphere S. Then

$$f:S \to \mathbb{R}_{\geq 0}$$

is called a *frame function* if for every orthonormal basis of \mathcal{H} , $\{e_i\}$,

$$\sum f(e_i) = 1.$$

• We note that $f(\lambda s) = f(s)$ for $s \in S$, $|\lambda| = 1$. Thus f is defined on $\mathbb{P}(\mathcal{H})$.

• Let \mathcal{H} be a separable Hilbert space with unit sphere S. Then

$$f:S \to \mathbb{R}_{\geq 0}$$

$$\sum f(e_i) = 1.$$

- We note that $f(\lambda s) = f(s)$ for $s \in S$, $|\lambda| = 1$. Thus f is defined on $\mathbb{P}(\mathcal{H})$.
- If T is a Hermitian positive definite trace class operator of trace one define $f_T(v) = \langle Tv | v \rangle$. Then f_T is a frame function.

• Let \mathcal{H} be a separable Hilbert space with unit sphere S. Then

$$f:S \to \mathbb{R}_{\geq 0}$$

$$\sum f(e_i) = 1.$$

- We note that $f(\lambda s) = f(s)$ for $s \in S$, $|\lambda| = 1$. Thus f is defined on $\mathbb{P}(\mathcal{H})$.
- If T is a Hermitian positive definite trace class operator of trace one define $f_T(v) = \langle Tv | v \rangle$. Then f_T is a frame function.
- If dim $\mathcal{H} \geq$ 3 then every frame function is of this form.

• Let \mathcal{H} be a separable Hilbert space with unit sphere S. Then

$$f:S \to \mathbb{R}_{\geq 0}$$

$$\sum f(e_i) = 1.$$

- We note that $f(\lambda s) = f(s)$ for $s \in S$, $|\lambda| = 1$. Thus f is defined on $\mathbb{P}(\mathcal{H})$.
- If T is a Hermitian positive definite trace class operator of trace one define $f_T(v) = \langle Tv | v \rangle$. Then f_T is a frame function.
- If dim $\mathcal{H} \geq$ 3 then every frame function is of this form.
- Gleason's proof uses a little representation theory, a reduction to 3 real dimensions and geography of the 2 sphere.

• Pure states of a quantum mechanical system are the unit vectors of a Hilbert space, \mathcal{H} , over \mathbb{C} ignoring phase. In other words elements of $\mathbb{P}(\mathcal{H})$.

- Pure states of a quantum mechanical system are the unit vectors of a Hilbert space, *H*, over C ignoring phase. In other words elements of P(*H*).
- If v, w ∈ H then we write ⟨v|w⟩ for the inner product of v with w. Linear in w conjugate linear in v. If v ∈ H then we set v[†] equal to the linear functional w → ⟨v|w⟩.

- Pure states of a quantum mechanical system are the unit vectors of a Hilbert space, *H*, over C ignoring phase. In other words elements of P(*H*).
- If v, w ∈ H then we write ⟨v|w⟩ for the inner product of v with w. Linear in w conjugate linear in v. If v ∈ H then we set v[†] equal to the linear functional w → ⟨v|w⟩.
- To a pure state, v, we form the linear map v ⊗ v[†]. A mixed state is a limit of convex combinations of pure states. Thus mixed state is a positive semidefinite trace class operator of trace 1.

- Pure states of a quantum mechanical system are the unit vectors of a Hilbert space, *H*, over C ignoring phase. In other words elements of P(*H*).
- If v, w ∈ H then we write ⟨v|w⟩ for the inner product of v with w. Linear in w conjugate linear in v. If v ∈ H then we set v[†] equal to the linear functional w → ⟨v|w⟩.
- To a pure state, v, we form the linear map v ⊗ v[†]. A mixed state is a limit of convex combinations of pure states. Thus mixed state is a positive semidefinite trace class operator of trace 1.
- So Gleason's theorem gives an operational interperatation of mixed states and has been used argue against hidden variables in quantum mechanics.

Two dimensions

 We assume that dim H = 2. We note that if v ∈ H is a unit vector then there is a unique, up to phase, unit vector v orthogonal to it. This yields a map P¹ → P¹, [v] → [v].

Two dimensions

- We assume that dim H = 2. We note that if v ∈ H is a unit vector then there is a unique, up to phase, unit vector v orthogonal to it. This yields a map P¹ → P¹, [v] → [v].
- We note that this defines a fixed point free involution of P¹. We can thus choose a fundamental domain for this involution. That is X ∪ X̂ = P¹ and X ∩ X̂ = Ø.

Two dimensions

- We assume that dim H = 2. We note that if v ∈ H is a unit vector then there is a unique, up to phase, unit vector v orthogonal to it. This yields a map P¹ → P¹, [v] → [v].
- We note that this defines a fixed point free involution of P¹. We can thus choose a fundamental domain for this involution. That is X ∪ X̂ = P¹ and X ∩ X̂ = Ø.
- Fix such an X and $g: X \to [0, 1]$. Then if we define f(v) = g([v]) and $f(\hat{v}) = 1 g([v])$ then we have defined a frame function and this type of function is the most general one.

Multi-particle systems

Suppose that we have n independent particles each having "wave function" φ_i ∈ H_i, i = 1, ..., n.

Multi-particle systems

- Suppose that we have n independent particles each having "wave function" φ_i ∈ H_i, i = 1, ..., n.
- The phase space for the *n* the particles is $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_n$. If the wave function for the particles is not a product state, that is, not $\phi_1 \otimes \cdots \otimes \phi_n$ with ϕ_i a state in \mathcal{H}_i , then the *n* particles are said to be entangled.

Multi-particle systems

- Suppose that we have *n* independent particles each having "wave function" $\phi_i \in \mathcal{H}_i, i = 1, ..., n$.
- The phase space for the *n* the particles is $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_n$. If the wave function for the particles is not a product state, that is, not $\phi_1 \otimes \cdots \otimes \phi_n$ with ϕ_i a state in \mathcal{H}_i , then the *n* particles are said to be entangled.
- If m > 1, $d_i > 1$ then a randomly chosen state will be entangled. Since the dimension of the set of states is $d_1 \cdots d_n - 1$ and the dimension of the set of product states is $d_1 + ... + d_m - n + 1$. Thus if m > 1 and all $d_i > 1$ almost all states are entangled.

If {φ_{ij}}_{0≤j<dim H_i} is an orthonormal basis of H_i then the orthonormal basis {φ_{1i1} ⊗··· ⊗ φ_{nin}} is called a product basis. If {φ_k} is an orthonormal basis and each basis element is a product vector then we will call the basis an unentangled basis.

- If {φ_{ij}}_{0≤j<dim H_i} is an orthonormal basis of H_i then the orthonormal basis {φ_{1i1} ⊗··· ⊗ φ_{nin}} is called a product basis. If {φ_k} is an orthonormal basis and each basis element is a product vector then we will call the basis an unentangled basis.
- In light of work on quantum computing it was reasonable to ask whether there was an analogous statement to Gleason's theorem for unentangled bases.

- If {φ_{ij}}_{0≤j<dim H_i} is an orthonormal basis of H_i then the orthonormal basis {φ_{1i1} ⊗··· ⊗ φ_{nin}} is called a product basis. If {φ_k} is an orthonormal basis and each basis element is a product vector then we will call the basis an unentangled basis.
- In light of work on quantum computing it was reasonable to ask whether there was an analogous statement to Gleason's theorem for unentangled bases.
- Suppose that $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_n$ and we consider $\Sigma = \{\phi_1 \otimes \cdots \otimes \phi_n | \|\phi_i\| = 1, \phi_i \in \mathcal{H}_i\}$ and consider the functions $f : \Sigma \to \mathbb{R}_{\geq 0}$ such that for each unentangled basis $\{\varphi_k\}$ we have $\sum f(\varphi_k) = 1$. That is, unentangled frame functions.

- If $\{\phi_{ij}\}_{0 \le j < \dim \mathcal{H}_i}$ is an orthonormal basis of \mathcal{H}_i then the orthonormal basis $\{\phi_{1i_1} \otimes \cdots \otimes \phi_{ni_n}\}$ is called a product basis. If $\{\varphi_k\}$ is an orthonormal basis and each basis element is a product vector then we will call the basis an unentangled basis.
- In light of work on quantum computing it was reasonable to ask whether there was an analogous statement to Gleason's theorem for unentangled bases.
- Suppose that $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_n$ and we consider $\Sigma = \{\phi_1 \otimes \cdots \otimes \phi_n | \|\phi_i\| = 1, \phi_i \in \mathcal{H}_i\}$ and consider the functions $f : \Sigma \to \mathbb{R}_{\geq 0}$ such that for each unentangled basis $\{\varphi_k\}$ we have $\sum f(\varphi_k) = 1$. That is, unentangled frame functions.
- If dim $\mathcal{H}_i \geq 3$ for all i = 1, ..., n then there exists T a mixed state in \mathcal{H} such that $f(\varphi) = \langle T\varphi | \varphi \rangle$ for all product states φ .

・ 何 ト ・ ヨ ト ・ ヨ ト

• Suppose $\mathcal{H} = \mathbb{C}^2 \otimes V$ a tensor product Hilbert space. We assert that in this context there is an unentangled frame function that is not given by a mixed state.

- Suppose $\mathcal{H} = \mathbb{C}^2 \otimes V$ a tensor product Hilbert space. We assert that in this context there is an unentangled frame function that is not given by a mixed state.
- We first describe all unentangled orthonormal bases. Let $z_i = a_i \otimes b_i$ be such an orthonormal basis. If $i \neq j$ and if $\langle a_i | a_j \rangle \neq 0$ then $\langle b_i | b_j \rangle = 0$.

- Suppose $\mathcal{H} = \mathbb{C}^2 \otimes V$ a tensor product Hilbert space. We assert that in this context there is an unentangled frame function that is not given by a mixed state.
- We first describe all unentangled orthonormal bases. Let $z_i = a_i \otimes b_i$ be such an orthonormal basis. If $i \neq j$ and if $\langle a_i | a_j \rangle \neq 0$ then $\langle b_i | b_j \rangle = 0$.
- There is an orthogonal decomposition $V = \bigoplus V_j$ and for each j two orthonormal bases v_{ji} and w_{ji} of V_j and c_j a unit vector in \mathbb{C}^2 such that the the basis is

$$\cup_j \left(\{ c_j \otimes v_{ji} \} \right) \cup \left(\{ \widehat{c_j} \otimes w_{ji} \} \right).$$

Using this result we easily see

- Suppose $\mathcal{H} = \mathbb{C}^2 \otimes V$ a tensor product Hilbert space. We assert that in this context there is an unentangled frame function that is not given by a mixed state.
- We first describe all unentangled orthonormal bases. Let $z_i = a_i \otimes b_i$ be such an orthonormal basis. If $i \neq j$ and if $\langle a_i | a_j \rangle \neq 0$ then $\langle b_i | b_j \rangle = 0$.
- There is an orthogonal decomposition $V = \bigoplus V_j$ and for each j two orthonormal bases v_{ji} and w_{ji} of V_j and c_j a unit vector in \mathbb{C}^2 such that the the basis is

$$\cup_j \left(\{ c_j \otimes v_{ji} \} \right) \cup \left(\{ \widehat{c}_j \otimes w_{ji} \} \right).$$

Using this result we easily see

If f is a frame function for C² and if g is one for V then f ⊗ g is an unentangled one for C² ⊗ V.

Qubits

• We now concentrate on the case when all of the spaces \mathcal{H}_i are equal to \mathbb{C}^2 . The case that is most important in quantum information theory. We will denote the Hilbert space $QB_n = \otimes^n \mathbb{C}^2$. From here on I am discussing joint work with Jiri Lebl and Asif Shakeel.

Qubits

- We now concentrate on the case when all of the spaces H_i are equal to C². The case that is most important in quantum information theory. We will denote the Hilbert space QB_n = ⊗ⁿC². From here on I am discussing joint work with Jiri LebI and Asif Shakeel.
- A UOB for QB_n is 2ⁿ vectors z_j = a^j₁ ⊗ a^j₂ ⊗ · · · ⊗ a^j_n, j = 1, ..., 2ⁿ with a^j_i a unit vector in C² and for each j ≠ k there exists i such that up to phase a^k_i = a^j_i. Thus if we think of a UOB projectively
 [z_j] = [a^j₁] ⊗ [a^j₂] ⊗ · · · ⊗ [a^j_n] (i.e. using the Segre imbedding of
 (P¹)ⁿ into P^{2ⁿ-1}). So the notion of UOB is purely combinatorial.

Qubits

- We now concentrate on the case when all of the spaces H_i are equal to C². The case that is most important in quantum information theory. We will denote the Hilbert space QB_n = ⊗ⁿC². From here on I am discussing joint work with Jiri LebI and Asif Shakeel.
- A UOB for QB_n is 2^n vectors $z_i = a_1^j \otimes a_2^j \otimes \cdots \otimes a_n^j$, $j = 1, ..., 2^n$ with a_i^j a unit vector in \mathbb{C}^2 and for each $j \neq k$ there exists *i* such that up to phase $a_i^k = \widehat{a_i^j}$. Thus if we think of a UOB projectively $[z_j] = \begin{bmatrix} a_1^j \end{bmatrix} \otimes \begin{bmatrix} a_2^j \end{bmatrix} \otimes \cdots \otimes \begin{bmatrix} a_n^j \end{bmatrix}$ (i.e. using the Segre imbedding of $(\mathbb{P}^1)^n$ into \mathbb{P}^{2^n-1}). So the notion of UOB is purely combinatorial. • Let S_i be the set $\{[a_i^j]|j=1,...,2^n\}$. We have seen that the involution $S_i \rightarrow S_i$ given by $u \longmapsto \hat{u}$ is fixed point free. We can therefore choose $U_i \subset S_i$ a fundamental domain. We write $U_i = \{u_{i1}, ..., u_{ik_i}\}$. We also note that the results above imply that the number of j such that $\begin{bmatrix} a_i^j \end{bmatrix} = u$ is the same as the number of j such that $\left| \mathbf{a}_{i}^{j} \right| = \hat{u}$.

• For each j we put together an n-bit string b(j) with i-th bit 0 if $[a_i^j] = u \in U_i$ or 1 if it is \hat{u} with $u \in U_i$. Set $v_j = e_{b_1} \otimes e_{b_1} \otimes \cdots \otimes e_{b_n}$ with e_0, e_1 the standard orthonormal basis of \mathbb{C}^2 and b = b(j).

- For each j we put together an n-bit string b(j) with i-th bit 0 if $[a_i^j] = u \in U_i$ or 1 if it is \hat{u} with $u \in U_i$. Set $v_j = e_{b_1} \otimes e_{b_1} \otimes \cdots \otimes e_{b_n}$ with e_0, e_1 the standard orthonormal basis of \mathbb{C}^2 and b = b(j).
- The vectors are orthonormal. Thus there is a permutation, σ, of 1, ..., 2ⁿ so that b(σj) is the base two expansion of j 1 padded by 0's on the left. We will say that a UOB is in normal order if σ is the identity. Assume that the UOB is in normal order.

Set k = ∑ k_i. We give a coloring of the hypercube graph with k colors corresponding to the UOB. Recall that the n-th hypercube graph has vertices 0, ..., 2ⁿ⁻¹ and edges [i, j] with i ≠ j having all binary digits the same except for one l = l(i, j) = l(j, i). We set m = k₁ + ... + k_{l-1} + p if

$$\begin{bmatrix} \mathbf{a}_{l(i,j)}^{i} \end{bmatrix} = \mathbf{u}, \begin{bmatrix} \mathbf{a}_{l(i,j)}^{j} \end{bmatrix} = \hat{\mathbf{u}}$$

and one of u or \hat{u} is $u_{l,p}$. Then we color the corresponding edge with the *m*-th color.

イロッ イボッ イヨッ イヨッ 三日

Set k = ∑k_i. We give a coloring of the hypercube graph with k colors corresponding to the UOB. Recall that the n-th hypercube graph has vertices 0, ..., 2ⁿ⁻¹ and edges [i, j] with i ≠ j having all binary digits the same except for one l = l(i, j) = l(j, i). We set m = k₁ + ... + k_{l-1} + p if

$$\begin{bmatrix} \mathbf{a}_{l(i,j)}^{i} \end{bmatrix} = \mathbf{u}, \begin{bmatrix} \mathbf{a}_{l(i,j)}^{j} \end{bmatrix} = \hat{\mathbf{u}}$$

and one of u or \hat{u} is $u_{l,p}$. Then we color the corresponding edge with the *m*-th color.

• Set $\alpha_i^j = m$ if the edge eminating from j in the direction i has color m.

э [5/14]May, 2014

47 ▶

3

12 / 19

• $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 3 \end{bmatrix} \Leftrightarrow (u_1, u_2, u_3) \longmapsto \{u_1 \otimes u_2, u_1 \otimes \widehat{u_2}, \widehat{u_1} \otimes u_3, \widehat{u_1} \otimes \widehat{u_3}\} \text{ a parametrized family of UOB parametrized by } (\mathbb{P}^1)^3.$

• $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 3 \end{bmatrix} \Leftrightarrow (u_1, u_2, u_3) \longmapsto \{u_1 \otimes u_2, u_1 \otimes \widehat{u_2}, \widehat{u_1} \otimes u_3, \widehat{u_1} \otimes \widehat{u_3}\}$ a parametrized family of UOB parametrized by $(\mathbb{P}^1)^3$.

 If we consider the locus of this parameterized subset of the and the one that comes by rotating the square by π/2 the union of the sets is all UOB in 2 qubits. The intersection of these sets is the locus parameterization that comes from using the red as above but replacing (say) the green by blue.

• $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 3 \end{bmatrix} \Leftrightarrow (u_1, u_2, u_3) \longmapsto \{u_1 \otimes u_2, u_1 \otimes \widehat{u_2}, \widehat{u_1} \otimes u_3, \widehat{u_1} \otimes \widehat{u_3}\}$ a parametrized family of UOB parametrized by $(\mathbb{P}^1)^3$.

- If we consider the locus of this parameterized subset of the and the one that comes by rotating the square by π/2 the union of the sets is all UOB in 2 qubits. The intersection of these sets is the locus parameterization that comes from using the red as above but replacing (say) the green by blue.
- To get a better idea of the pattern consider Q_3 . In this case the maximal number of colors that will come from a UOB is 7 and up to similar rotations to the case above the only coloring with 7 colors coming from a UOB is

3

[5/14]May, 2014 15 / 19

・ロト・(部・・モト・モー・)への

Nolan R. Wallach ()

Gleason's theorem and unentangled orthonor

[5/14]May, 2014 1

・ロト・(局)・(目)・(目)・(日)・(の)

16 / 19

• This example indicates a surprising (to us complication). Notice that it has 6 colors. We also note (not easy) that adding a color (in other words taking some colors that appear multiple times and changing a proper subset of the edges of each of these colors into the new color) is not possible.

- This example indicates a surprising (to us complication). Notice that it has 6 colors. We also note (not easy) that adding a color (in other words taking some colors that appear multiple times and changing a proper subset of the edges of each of these colors into the new color) is not possible.
- We can go from a coloring of Q_n with k colors to a map, Φ, of (P¹)^k to (⊗ⁿC²)^{2ⁿ} as follows: Let j be a vertex of Q_n then for every 1 ≤ i ≤ n there is exactly one vertex that differs in exactly that digit from j, j_i. If the edge [j, j_i] is colored with the l_i-th color. Then we take the j-th component of Φ(u₁, ..., u_k) to be

$$v_1 \otimes v_2 \otimes \dots \otimes v_n$$
, $v_i = \left\{egin{array}{c} u_{l_i} ext{ if the } i- ext{th digit is 0} \ \widehat{u_{l_i}} ext{ if the } i- ext{th digit is 1} \end{array}
ight.$

- This example indicates a surprising (to us complication). Notice that it has 6 colors. We also note (not easy) that adding a color (in other words taking some colors that appear multiple times and changing a proper subset of the edges of each of these colors into the new color) is not possible.
- We can go from a coloring of Q_n with k colors to a map, Φ, of (ℙ¹)^k to (⊗ⁿC²)^{2ⁿ} as follows: Let j be a vertex of Q_n then for every 1 ≤ i ≤ n there is exactly one vertex that differs in exactly that digit from j, j_i. If the edge [j, j_i] is colored with the l_i-th color. Then we take the j-th component of Φ(u₁, ..., u_k) to be

$$v_1 \otimes v_2 \otimes \cdots \otimes v_n$$
, $v_i = \left\{ egin{array}{c} u_{l_i} ext{ if the } i- ext{th digit is 0} \ \widehat{u_{l_i}} ext{ if the } i- ext{th digit is 1} \end{array}
ight.$

• We will say that the coloring is useful if it yields a family of UOB. We will say that a useful family is maximal if adding a color makes it useless.

- 4 目 ト - 4 日 ト - 4 日 ト

• Every UOB is a value of one of these families coming from a maximal useful UOB.

-

• • • • • • • • • • • •

- Every UOB is a value of one of these families coming from a maximal useful UOB.
- Any useful coloring has at most 2ⁿ 1 colors and this number is attained.

- Every UOB is a value of one of these families coming from a maximal useful UOB.
- Any useful coloring has at most 2ⁿ 1 colors and this number is attained.
- The useful colorings with $2^n 1$ colors are constructed recursively as follows: There is one direction, say *i*, with exactly one color on every edge in that direction coordinates which we call vertical. We then have two n 1 cubes Q^0 (*i*-th coordinate 0) and Q^1 each of these has $2^{n-1} 1$ with a total of $2^n 2$ colors (since adding 1 to the total number of colors of the two subcubes is $2^n 1$. So we see that each has one direction in each subcube with all colors the same and continue.

- Every UOB is a value of one of these families coming from a maximal useful UOB.
- Any useful coloring has at most 2ⁿ 1 colors and this number is attained.
- The useful colorings with $2^n 1$ colors are constructed recursively as follows: There is one direction, say *i*, with exactly one color on every edge in that direction coordinates which we call vertical. We then have two n 1 cubes Q^0 (*i*-th coordinate 0) and Q^1 each of these has $2^{n-1} 1$ with a total of $2^n 2$ colors (since adding 1 to the total number of colors of the two subcubes is $2^n 1$. So we see that each has one direction in each subcube with all colors the same and continue.
- Note that the directions in the subcube can be different. If we take them to be the same then we have the examples above for n = 2, 3, 4.

- Every UOB is a value of one of these families coming from a maximal useful UOB.
- Any useful coloring has at most 2ⁿ 1 colors and this number is attained.
- The useful colorings with $2^n 1$ colors are constructed recursively as follows: There is one direction, say *i*, with exactly one color on every edge in that direction coordinates which we call vertical. We then have two n 1 cubes Q^0 (*i*-th coordinate 0) and Q^1 each of these has $2^{n-1} 1$ with a total of $2^n 2$ colors (since adding 1 to the total number of colors of the two subcubes is $2^n 1$. So we see that each has one direction in each subcube with all colors the same and continue.
- Note that the directions in the subcube can be different. If we take them to be the same then we have the examples above for n = 2, 3, 4.
- If *n* = 3 then up to permutation of order and permutation of vectors the the two types we gave are all of the maximal useful colorings.

18 / 19

・ロト・(部・・モト・モー・)への