Gleason's theorem and unentangled orthonormal bases

Nolan R. Wallach
[5/14]May, 2014

Gleason's theorem

- Let \mathcal{H} be a separable Hilbert space with unit sphere S. Then

$$
f: S \rightarrow \mathbb{R}_{\geq 0}
$$

is called a frame function if for every orthonormal basis of $\mathcal{H},\left\{e_{i}\right\}$,

$$
\sum f\left(e_{i}\right)=1
$$

Gleason's theorem

- Let \mathcal{H} be a separable Hilbert space with unit sphere S. Then

$$
f: S \rightarrow \mathbb{R}_{\geq 0}
$$

is called a frame function if for every orthonormal basis of $\mathcal{H},\left\{e_{i}\right\}$,

$$
\sum f\left(e_{i}\right)=1
$$

- We note that $f(\lambda s)=f(s)$ for $s \in S,|\lambda|=1$. Thus f is defined on $\mathbb{P}(\mathcal{H})$.

Gleason's theorem

- Let \mathcal{H} be a separable Hilbert space with unit sphere S. Then

$$
f: S \rightarrow \mathbb{R}_{\geq 0}
$$

is called a frame function if for every orthonormal basis of $\mathcal{H},\left\{e_{i}\right\}$,

$$
\sum f\left(e_{i}\right)=1
$$

- We note that $f(\lambda s)=f(s)$ for $s \in S,|\lambda|=1$. Thus f is defined on $\mathbb{P}(\mathcal{H})$.
- If T is a Hermitian positive definite trace class operator of trace one define $f_{T}(v)=\langle T v \mid v\rangle$. Then f_{T} is a frame function.

Gleason's theorem

- Let \mathcal{H} be a separable Hilbert space with unit sphere S. Then

$$
f: S \rightarrow \mathbb{R}_{\geq 0}
$$

is called a frame function if for every orthonormal basis of $\mathcal{H},\left\{e_{i}\right\}$,

$$
\sum f\left(e_{i}\right)=1
$$

- We note that $f(\lambda s)=f(s)$ for $s \in S,|\lambda|=1$. Thus f is defined on $\mathbb{P}(\mathcal{H})$.
- If T is a Hermitian positive definite trace class operator of trace one define $f_{T}(v)=\langle T v \mid v\rangle$. Then f_{T} is a frame function.
- If $\operatorname{dim} \mathcal{H} \geq 3$ then every frame function is of this form.

Gleason's theorem

- Let \mathcal{H} be a separable Hilbert space with unit sphere S. Then

$$
f: S \rightarrow \mathbb{R}_{\geq 0}
$$

is called a frame function if for every orthonormal basis of $\mathcal{H},\left\{e_{i}\right\}$,

$$
\sum f\left(e_{i}\right)=1
$$

- We note that $f(\lambda s)=f(s)$ for $s \in S,|\lambda|=1$. Thus f is defined on $\mathbb{P}(\mathcal{H})$.
- If T is a Hermitian positive definite trace class operator of trace one define $f_{T}(v)=\langle T v \mid v\rangle$. Then f_{T} is a frame function.
- If $\operatorname{dim} \mathcal{H} \geq 3$ then every frame function is of this form.
- Gleason's proof uses a little representation theory, a reduction to 3 real dimensions and geography of the 2 sphere.

A little quantum mechanics

- Pure states of a quantum mechanical system are the unit vectors of a Hilbert space, \mathcal{H}, over \mathbb{C} ignoring phase. In other words elements of $\mathbb{P}(\mathcal{H})$.

A little quantum mechanics

- Pure states of a quantum mechanical system are the unit vectors of a Hilbert space, \mathcal{H}, over \mathbb{C} ignoring phase. In other words elements of $\mathbb{P}(\mathcal{H})$.
- If $v, w \in \mathcal{H}$ then we write $\langle v \mid w\rangle$ for the inner product of v with w. Linear in w conjugate linear in v. If $v \in \mathcal{H}$ then we set v^{\dagger} equal to the linear functional $w \longmapsto\langle v \mid w\rangle$.

A little quantum mechanics

- Pure states of a quantum mechanical system are the unit vectors of a Hilbert space, \mathcal{H}, over \mathbb{C} ignoring phase. In other words elements of $\mathbb{P}(\mathcal{H})$.
- If $v, w \in \mathcal{H}$ then we write $\langle v \mid w\rangle$ for the inner product of v with w. Linear in w conjugate linear in v. If $v \in \mathcal{H}$ then we set v^{\dagger} equal to the linear functional $w \longmapsto\langle v \mid w\rangle$.
- To a pure state, v, we form the linear map $v \otimes v^{\dagger}$. A mixed state is a limit of convex combinations of pure states. Thus mixed state is a positive semidefinite trace class operator of trace 1 .

A little quantum mechanics

- Pure states of a quantum mechanical system are the unit vectors of a Hilbert space, \mathcal{H}, over \mathbb{C} ignoring phase. In other words elements of $\mathbb{P}(\mathcal{H})$.
- If $v, w \in \mathcal{H}$ then we write $\langle v \mid w\rangle$ for the inner product of v with w. Linear in w conjugate linear in v. If $v \in \mathcal{H}$ then we set v^{\dagger} equal to the linear functional $w \longmapsto\langle v \mid w\rangle$.
- To a pure state, v, we form the linear map $v \otimes v^{\dagger}$. A mixed state is a limit of convex combinations of pure states. Thus mixed state is a positive semidefinite trace class operator of trace 1.
- So Gleason's theorem gives an operational interperatation of mixed states and has been used argue against hidden variables in quantum mechanics.

Two dimensions

- We assume that $\operatorname{dim} \mathcal{H}=2$. We note that if $v \in \mathcal{H}$ is a unit vector then there is a unique, up to phase, unit vector \widehat{v} orthogonal to it. This yields a map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1},[v] \longmapsto[\widehat{v}]$.

Two dimensions

- We assume that $\operatorname{dim} \mathcal{H}=2$. We note that if $v \in \mathcal{H}$ is a unit vector then there is a unique, up to phase, unit vector \hat{v} orthogonal to it. This yields a map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1},[v] \longmapsto[\widehat{v}]$.
- We note that this defines a fixed point free involution of \mathbb{P}^{1}. We can thus choose a fundamental domain for this involution. That is $X \cup \widehat{X}=\mathbb{P}^{1}$ and $X \cap \widehat{X}=\varnothing$.

Two dimensions

- We assume that $\operatorname{dim} \mathcal{H}=2$. We note that if $v \in \mathcal{H}$ is a unit vector then there is a unique, up to phase, unit vector \widehat{v} orthogonal to it. This yields a map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1},[v] \longmapsto[\widehat{v}]$.
- We note that this defines a fixed point free involution of \mathbb{P}^{1}. We can thus choose a fundamental domain for this involution. That is $X \cup \widehat{X}=\mathbb{P}^{1}$ and $X \cap \widehat{X}=\varnothing$.
- Fix such an X and $g: X \rightarrow[0,1]$. Then if we define $f(v)=g([v])$ and $f(\widehat{v})=1-g([v])$ then we have defined a frame function and this type of function is the most general one.

Multi-particle systems

- Suppose that we have n independent particles each having "wave function" $\phi_{i} \in \mathcal{H}_{i}, i=1, \ldots, n$.

Multi-particle systems

- Suppose that we have n independent particles each having "wave function" $\phi_{i} \in \mathcal{H}_{i}, i=1, \ldots, n$.
- The phase space for the n the particles is $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \cdots \otimes \mathcal{H}_{n}$. If the wave function for the particles is not a product state, that is, not $\phi_{1} \otimes \cdots \otimes \phi_{n}$ with ϕ_{i} a state in \mathcal{H}_{i}, then the n particles are said to be entangled.

Multi-particle systems

- Suppose that we have n independent particles each having "wave function" $\phi_{i} \in \mathcal{H}_{i}, i=1, \ldots, n$.
- The phase space for the n the particles is $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \cdots \otimes \mathcal{H}_{n}$. If the wave function for the particles is not a product state, that is, not $\phi_{1} \otimes \cdots \otimes \phi_{n}$ with ϕ_{i} a state in \mathcal{H}_{i}, then the n particles are said to be entangled.
- If $m>1, d_{i}>1$ then a randomly chosen state will be entangled. Since the dimension of the set of states is $d_{1} \cdots d_{n}-1$ and the dimension of the set of product states is $d_{1}+\ldots+d_{m}-n+1$. Thus if $m>1$ and all $d_{i}>1$ almost all states are entangled.

Unentangled Gleason theorem

- If $\left\{\phi_{i j}\right\}_{0 \leq j<\operatorname{dim} \mathcal{H}_{i}}$ is an orthonormal basis of \mathcal{H}_{i} then the orthonormal basis $\left\{\phi_{1 i_{1}} \otimes \cdots \otimes \phi_{n i_{n}}\right\}$ is called a product basis. If $\left\{\varphi_{k}\right\}$ is an orthonormal basis and each basis element is a product vector then we will call the basis an unentangled basis.

Unentangled Gleason theorem

- If $\left\{\phi_{i j}\right\}_{0 \leq j<\operatorname{dim} \mathcal{H}_{i}}$ is an orthonormal basis of \mathcal{H}_{i} then the orthonormal basis $\left\{\phi_{1 i_{1}} \otimes \cdots \otimes \phi_{n i_{n}}\right\}$ is called a product basis. If $\left\{\varphi_{k}\right\}$ is an orthonormal basis and each basis element is a product vector then we will call the basis an unentangled basis.
- In light of work on quantum computing it was reasonable to ask whether there was an analogous statement to Gleason's theorem for unentangled bases.

Unentangled Gleason theorem

- If $\left\{\phi_{i j}\right\}_{0 \leq j<\operatorname{dim} \mathcal{H}_{i}}$ is an orthonormal basis of \mathcal{H}_{i} then the orthonormal basis $\left\{\phi_{1 i_{1}} \otimes \cdots \otimes \phi_{n i_{n}}\right\}$ is called a product basis. If $\left\{\varphi_{k}\right\}$ is an orthonormal basis and each basis element is a product vector then we will call the basis an unentangled basis.
- In light of work on quantum computing it was reasonable to ask whether there was an analogous statement to Gleason's theorem for unentangled bases.
- Suppose that $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \cdots \otimes \mathcal{H}_{n}$ and we consider $\Sigma=\left\{\phi_{1} \otimes \cdots \otimes \phi_{n} \mid\left\|\phi_{i}\right\|=1, \phi_{i} \in \mathcal{H}_{i}\right\}$ and consider the functions $f: \Sigma \rightarrow \mathbb{R}_{\geq 0}$ such that for each unentangled basis $\left\{\varphi_{k}\right\}$ we have $\sum f\left(\varphi_{k}\right)=1$. That is, unentangled frame functions.

Unentangled Gleason theorem

- If $\left\{\phi_{i j}\right\}_{0 \leq j<\operatorname{dim} \mathcal{H}_{i}}$ is an orthonormal basis of \mathcal{H}_{i} then the orthonormal basis $\left\{\phi_{1 i_{1}} \otimes \cdots \otimes \phi_{n i_{n}}\right\}$ is called a product basis. If $\left\{\varphi_{k}\right\}$ is an orthonormal basis and each basis element is a product vector then we will call the basis an unentangled basis.
- In light of work on quantum computing it was reasonable to ask whether there was an analogous statement to Gleason's theorem for unentangled bases.
- Suppose that $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \cdots \otimes \mathcal{H}_{n}$ and we consider $\Sigma=\left\{\phi_{1} \otimes \cdots \otimes \phi_{n} \mid\left\|\phi_{i}\right\|=1, \phi_{i} \in \mathcal{H}_{i}\right\}$ and consider the functions $f: \Sigma \rightarrow \mathbb{R}_{\geq 0}$ such that for each unentangled basis $\left\{\varphi_{k}\right\}$ we have $\sum f\left(\varphi_{k}\right)=1$. That is, unentangled frame functions.
- If $\operatorname{dim} \mathcal{H}_{i} \geq 3$ for all $i=1, \ldots, n$ then there exists T a mixed state in \mathcal{H} such that $f(\varphi)=\langle T \varphi \mid \varphi\rangle$ for all product states φ.
- Suppose $\mathcal{H}=\mathbb{C}^{2} \otimes V$ a tensor product Hilbert space. We assert that in this context there is an unentangled frame function that is not given by a mixed state.
- Suppose $\mathcal{H}=\mathbb{C}^{2} \otimes V$ a tensor product Hilbert space. We assert that in this context there is an unentangled frame function that is not given by a mixed state.
- We first describe all unentangled orthonormal bases. Let $z_{i}=a_{i} \otimes b_{i}$ be such an orthonormal basis. If $i \neq j$ and if $\left\langle a_{i} \mid a_{j}\right\rangle \neq 0$ then $\left\langle b_{i} \mid b_{j}\right\rangle=0$.
- Suppose $\mathcal{H}=\mathbb{C}^{2} \otimes V$ a tensor product Hilbert space. We assert that in this context there is an unentangled frame function that is not given by a mixed state.
- We first describe all unentangled orthonormal bases. Let $z_{i}=a_{i} \otimes b_{i}$ be such an orthonormal basis. If $i \neq j$ and if $\left\langle a_{i} \mid a_{j}\right\rangle \neq 0$ then $\left\langle b_{i} \mid b_{j}\right\rangle=0$.
- There is an orthogonal decomposition $V=\oplus V_{j}$ and for each j two orthonormal bases $v_{j i}$ and $w_{j i}$ of V_{j} and c_{j} a unit vector in \mathbb{C}^{2} such that the the basis is

$$
\cup_{j}\left(\left\{c_{j} \otimes v_{j i}\right\}\right) \cup\left(\left\{\widehat{c}_{j} \otimes w_{j i}\right\}\right)
$$

Using this result we easily see

- Suppose $\mathcal{H}=\mathbb{C}^{2} \otimes V$ a tensor product Hilbert space. We assert that in this context there is an unentangled frame function that is not given by a mixed state.
- We first describe all unentangled orthonormal bases. Let $z_{i}=a_{i} \otimes b_{i}$ be such an orthonormal basis. If $i \neq j$ and if $\left\langle a_{i} \mid a_{j}\right\rangle \neq 0$ then $\left\langle b_{i} \mid b_{j}\right\rangle=0$.
- There is an orthogonal decomposition $V=\oplus V_{j}$ and for each j two orthonormal bases $v_{j i}$ and $w_{j i}$ of V_{j} and c_{j} a unit vector in \mathbb{C}^{2} such that the the basis is

$$
\cup_{j}\left(\left\{c_{j} \otimes v_{j i}\right\}\right) \cup\left(\left\{\widehat{c}_{j} \otimes w_{j i}\right\}\right)
$$

Using this result we easily see

- If f is a frame function for \mathbb{C}^{2} and if g is one for V then $f \otimes g$ is an unentangled one for $\mathbb{C}^{2} \otimes V$.

Qubits

- We now concentrate on the case when all of the spaces \mathcal{H}_{i} are equal to \mathbb{C}^{2}. The case that is most important in quantum information theory. We will denote the Hilbert space $Q B_{n}=\otimes^{n} \mathbb{C}^{2}$. From here on I am discussing joint work with Jiri Lebl and Asif Shakeel.

Qubits

- We now concentrate on the case when all of the spaces \mathcal{H}_{i} are equal to \mathbb{C}^{2}. The case that is most important in quantum information theory. We will denote the Hilbert space $Q B_{n}=\otimes^{n} \mathbb{C}^{2}$. From here on I am discussing joint work with Jiri Lebl and Asif Shakeel.
- A UOB for $Q B_{n}$ is 2^{n} vectors $z_{j}=a_{1}^{j} \otimes a_{2}^{j} \otimes \cdots \otimes a_{n}^{j}, j=1, \ldots, 2^{n}$ with a_{i}^{j} a unit vector in \mathbb{C}^{2} and for each $j \neq k$ there exists i such that up to phase $a_{i}^{k}=\widehat{a_{i}^{j}}$. Thus if we think of a UOB projectively $\left[z_{j}\right]=\left[a_{1}^{j}\right] \otimes\left[a_{2}^{j}\right] \otimes \cdots \otimes\left[a_{n}^{j}\right]$ (i.e. using the Segre imbedding of $\left(\mathbb{P}^{1}\right)^{n}$ into $\mathbb{P}^{2^{n}-1}$). So the notion of UOB is purely combinatorial.

Qubits

- We now concentrate on the case when all of the spaces \mathcal{H}_{i} are equal to \mathbb{C}^{2}. The case that is most important in quantum information theory. We will denote the Hilbert space $Q B_{n}=\otimes^{n} \mathbb{C}^{2}$. From here on I am discussing joint work with Jiri Lebl and Asif Shakeel.
- A UOB for $Q B_{n}$ is 2^{n} vectors $z_{j}=a_{1}^{j} \otimes a_{2}^{j} \otimes \cdots \otimes a_{n}^{j}, j=1, \ldots, 2^{n}$ with a_{i}^{j} a unit vector in \mathbb{C}^{2} and for each $j \neq k$ there exists i such that up to phase $a_{i}^{k}=\widehat{a_{j}^{j}}$. Thus if we think of a UOB projectively $\left[z_{j}\right]=\left[a_{1}^{j}\right] \otimes\left[a_{2}^{j}\right] \otimes \cdots \otimes\left[a_{n}^{j}\right]$ (i.e. using the Segre imbedding of $\left(\mathbb{P}^{1}\right)^{n}$ into $\mathbb{P}^{2^{n}-1}$). So the notion of UOB is purely combinatorial.
- Let S_{i} be the set $\left\{\left[a_{i}^{j}\right] \mid j=1, \ldots, 2^{n}\right\}$. We have seen that the involution $S_{i} \rightarrow S_{i}$ given by $u \longmapsto \hat{u}$ is fixed point free. We can therefore choose $U_{i} \subset S_{i}$ a fundamental domain. We write $U_{i}=\left\{u_{i 1}, \ldots, u_{i k_{i}}\right\}$. We also note that the results above imply that the number of j such that $\left[a_{i}^{j}\right]=u$ is the same as the number of j such that $\left[a_{i}^{j}\right]=\hat{u}$.
- For each j we put together an n-bit string $b(j)$ with i-th bit 0 if $\left[a_{i}^{j}\right]=u \in U_{i}$ or 1 if it is \hat{u} with $u \in U_{i}$. Set $v_{j}=e_{b_{1}} \otimes e_{b_{1}} \otimes \cdots \otimes e_{b_{n}}$ with e_{0}, e_{1} the standard orthonormal basis of \mathbb{C}^{2} and $b=b(j)$.
- For each j we put together an n-bit string $b(j)$ with i-th bit 0 if $\left[a_{i}^{j}\right]=u \in U_{i}$ or 1 if it is \hat{u} with $u \in U_{i}$. Set $v_{j}=e_{b_{1}} \otimes e_{b_{1}} \otimes \cdots \otimes e_{b_{n}}$ with e_{0}, e_{1} the standard orthonormal basis of \mathbb{C}^{2} and $b=b(j)$.
- The vectors are orthonormal. Thus there is a permutation, σ, of $1, \ldots, 2^{n}$ so that $b(\sigma j)$ is the base two expansion of $j-1$ padded by 0 's on the left. We will say that a UOB is in normal order if σ is the identity. Assume that the UOB is in normal order.
- Set $k=\sum k_{i}$. We give a coloring of the hypercube graph with k colors corresponding to the UOB. Recall that the n-th hypercube graph has vertices $0, \ldots, 2^{n-1}$ and edges $[i, j]$ with $i \neq j$ having all binary digits the same except for one $I=I(i, j)=I(j, i)$. We set $m=k_{1}+\ldots+k_{l-1}+p$ if

$$
\left[a_{l(i, j)}^{i}\right]=u,\left[a_{l(i, j)}^{j}\right]=\hat{u}
$$

and one of u or \hat{u} is $u_{l, p}$. Then we color the corresponding edge with the m-th color.

- Set $k=\sum k_{i}$. We give a coloring of the hypercube graph with k colors corresponding to the UOB. Recall that the n-th hypercube graph has vertices $0, \ldots, 2^{n-1}$ and edges $[i, j]$ with $i \neq j$ having all binary digits the same except for one $I=I(i, j)=I(j, i)$. We set $m=k_{1}+\ldots+k_{l-1}+p$ if

$$
\left[a_{l(i, j)}^{i}\right]=u,\left[a_{l(i, j)}^{j}\right]=\hat{u}
$$

and one of u or \hat{u} is $u_{l, p}$. Then we color the corresponding edge with the m-th color.

- Set $\alpha_{i}^{j}=m$ if the edge eminating from j in the direction i has color m.

$$
a \otimes b, a \otimes \hat{b}, \hat{a} \otimes c, \hat{a} \otimes \hat{c},\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 3 & 3
\end{array}\right]
$$

- $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 3\end{array}\right] \Leftrightarrow\left(u_{1}, u_{2}, u_{3}\right) \longmapsto$
$\left\{u_{1} \otimes u_{2}, u_{1} \otimes \widehat{u_{2}}, \widehat{u_{1}} \otimes u_{3}, \widehat{u_{1}} \otimes \widehat{u_{3}}\right\}$ a parametrized family of UOB parametrized by $\left(\mathbb{P}^{1}\right)^{3}$.
- $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 3\end{array}\right] \Leftrightarrow\left(u_{1}, u_{2}, u_{3}\right) \longmapsto$ $\left\{u_{1} \otimes u_{2}, u_{1} \otimes \widehat{u_{2}}, \widehat{u_{1}} \otimes u_{3}, \widehat{u_{1}} \otimes \widehat{u_{3}}\right\}$ a parametrized family of UOB parametrized by $\left(\mathbb{P}^{1}\right)^{3}$.
- If we consider the locus of this parameterized subset of the and the one that comes by rotating the square by $\frac{\pi}{2}$ the union of the sets is all UOB in 2 qubits. The intersection of these sets is the locus parameterization that comes from using the red as above but replacing (say) the green by blue.
- $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 3\end{array}\right] \Leftrightarrow\left(u_{1}, u_{2}, u_{3}\right) \longmapsto$ $\left\{u_{1} \otimes u_{2}, u_{1} \otimes \widehat{u_{2}}, \widehat{u_{1}} \otimes u_{3}, \widehat{u_{1}} \otimes \widehat{u_{3}}\right\}$ a parametrized family of UOB parametrized by $\left(\mathbb{P}^{1}\right)^{3}$.
- If we consider the locus of this parameterized subset of the and the one that comes by rotating the square by $\frac{\pi}{2}$ the union of the sets is all UOB in 2 qubits. The intersection of these sets is the locus parameterization that comes from using the red as above but replacing (say) the green by blue.
- To get a better idea of the pattern consider Q_{3}. In this case the maximal number of colors that will come from a UOB is 7 and up to similar rotations to the case above the only coloring with 7 colors coming from a UOB is
cyan, red, green,orange,yellow, brown,blue $\left[\begin{array}{cccccccc}1 & 1 & 5 & 5 & 1 & 1 & 5 & 5 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 4 & 4 & 7 & 7 & 6 & 6\end{array}\right]$

- This example indicates a surprising (to us complication). Notice that it has 6 colors. We also note (not easy) that adding a color (in other words taking some colors that appear multiple times and changing a proper subset of the edges of each of these colors into the new color) is not possible.
- This example indicates a surprising (to us complication). Notice that it has 6 colors. We also note (not easy) that adding a color (in other words taking some colors that appear multiple times and changing a proper subset of the edges of each of these colors into the new color) is not possible.
- We can go from a coloring of Q_{n} with k colors to a map, Φ, of $\left(\mathbb{P}^{1}\right)^{k}$ to $\left(\otimes^{n} \mathbb{C}^{2}\right)^{2^{n}}$ as follows: Let j be a vertex of Q_{n} then for every $1 \leq i \leq n$ there is exactly one vertex that differs in exactly that digit from j, j_{i}. If the edge $\left[j, j_{i}\right]$ is colored with the l_{i}-th color. Then we take the j-th component of $\Phi\left(u_{1}, \ldots, u_{k}\right)$ to be

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}, v_{i}=\left\{\begin{array}{l}
u_{l_{i}} \text { if the } i \text {-th digit is } 0 \\
\widehat{u}_{l_{i}} \text { if the } i \text {-th digit is } 1
\end{array}\right.
$$

- This example indicates a surprising (to us complication). Notice that it has 6 colors. We also note (not easy) that adding a color (in other words taking some colors that appear multiple times and changing a proper subset of the edges of each of these colors into the new color) is not possible.
- We can go from a coloring of Q_{n} with k colors to a map, Φ, of $\left(\mathbb{P}^{1}\right)^{k}$ to $\left(\otimes^{n} \mathbb{C}^{2}\right)^{2^{n}}$ as follows: Let j be a vertex of Q_{n} then for every $1 \leq i \leq n$ there is exactly one vertex that differs in exactly that digit from j, j_{i}. If the edge $\left[j, j_{i}\right]$ is colored with the l_{i}-th color. Then we take the j-th component of $\Phi\left(u_{1}, \ldots, u_{k}\right)$ to be

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}, v_{i}=\left\{\begin{array}{l}
u_{l_{i}} \text { if the } i \text {-th digit is } 0 \\
\widehat{u}_{l_{i}} \text { if the } i \text {-th digit is } 1
\end{array}\right.
$$

- We will say that the coloring is useful if it yields a family of UOB. We will say that a useful family is maximal if adding a color makes it useless.

Theorems

- Every UOB is a value of one of these families coming from a maximal useful UOB.

Theorems

- Every UOB is a value of one of these families coming from a maximal useful UOB.
- Any useful coloring has at most $2^{n}-1$ colors and this number is attained.

Theorems

- Every UOB is a value of one of these families coming from a maximal useful UOB.
- Any useful coloring has at most $2^{n}-1$ colors and this number is attained.
- The useful colorings with $2^{n}-1$ colors are constructed recursively as follows: There is one direction, say i, with exactly one color on every edge in that direction coordinates which we call vertical. We then have two $n-1$ cubes Q^{0} (i-th coordinate 0) and Q^{1} each of these has $2^{n-1}-1$ with a total of $2^{n}-2$ colors (since adding 1 to the total number of colors of the two subcubes is $2^{n}-1$. So we see that each has one direction in each subcube with all colors the same and continue.

Theorems

- Every UOB is a value of one of these families coming from a maximal useful UOB.
- Any useful coloring has at most $2^{n}-1$ colors and this number is attained.
- The useful colorings with $2^{n}-1$ colors are constructed recursively as follows: There is one direction, say i, with exactly one color on every edge in that direction coordinates which we call vertical. We then have two $n-1$ cubes Q^{0} (i-th coordinate 0) and Q^{1} each of these has $2^{n-1}-1$ with a total of $2^{n}-2$ colors (since adding 1 to the total number of colors of the two subcubes is $2^{n}-1$. So we see that each has one direction in each subcube with all colors the same and continue.
- Note that the directions in the subcube can be different. If we take them to be the same then we have the examples above for $n=2,3,4$.

Theorems

- Every UOB is a value of one of these families coming from a maximal useful UOB.
- Any useful coloring has at most $2^{n}-1$ colors and this number is attained.
- The useful colorings with $2^{n}-1$ colors are constructed recursively as follows: There is one direction, say i, with exactly one color on every edge in that direction coordinates which we call vertical. We then have two $n-1$ cubes Q^{0} (i-th coordinate 0) and Q^{1} each of these has $2^{n-1}-1$ with a total of $2^{n}-2$ colors (since adding 1 to the total number of colors of the two subcubes is $2^{n}-1$. So we see that each has one direction in each subcube with all colors the same and continue.
- Note that the directions in the subcube can be different. If we take them to be the same then we have the examples above for $n=2,3,4$.
- If $n=3$ then up to permutation of order and permutation of vectors the the two types we gave are all of the maximal useful colorings.

