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OUTLINE

(1) G real reductive. Review the Vogan (+ friends) theory of
signature characters_ for Harish-Chandra modules:
determining if 7 € G is unitary.

(2) G (split) p-adic. Review parallel (less well-developed)
theory for the graded affine Hecke algebra H LBarbasch,
Ciubotaru, Moy): toward determining if 7 € G, is unitary.

(3) Idea: find relations between spaces of Langlands
Adams-Barbasch-Vogan parameters for Ggr and Langlands
parameters for G, to develop theory in (2).

(4) A precise theorem in the context of GL(n).



(ALMOST) NOTHING ABOUT THE ORBIT METHOD

Dubrovnik, 2002



(ALMOST) NOTHING ABOUT THE ORBIT METHOD

Canyonlands, 2004



HARISH CHANDRA’S ALGEBRAIC REDUCTION

G complex reductive algebraic group, Gy real form
Kr maximal compact subgroup
g=r®rC, K= (Kgr)c CG

o := antiholomorphic involution of G defining Ggr

A Hermitian form (, ) on a (g, K) module X is o-invariant if
<Y U, U) = <U, _U(Y) ’ U> Y eg
(k-u,v) = (u, k71 v) k € Kg.

THEOREM (HARISH CHANDRA)

Passing to Kgr-finite vectors induces a bijection from
(equivalence classes of ) irreducible unitary representations of
Gr and (equivalence classes of ) irreducible (g, K) modules
admitting a positive definite o-invariant form.




STRATEGY

Locate unitary dual as a subset of irreducible (g, K) modules
admitting a positive definite invariant Hermitian form.
Notation:

Gi ¢ Gk ¢ Gg := irred (g, K) modules.

Recall that Langlands, Knapp, Zuckerman, Vogan classified @Ri
to each “parameter” v € P, there corresponds a standard object
std(y) and canonical irreducible subquotient irr() so that the
correspondence

P — @]R

v — irr(7y)

is bijective. Easy to determine if irr(vy) € @Iﬁé



A FEW DETAILS OF THE STANDARD MODULES

Pr = MrAgrNg cuspidal parabolic subgroup.
o tempered (limit of discrete series)

eV character of Ag, v € a*

typical standard module Indgﬂf (c®e’®1)
(e.g. if v = 0, this is again tempered)



VOGAN’S SIGNATURE CHARACTER

Unitarizability of certain series of
representations

By Davip A. Vogan, Jr.

ON THE EXISTENCE AND IRREDUCIBILITY OF
CERTAIN SERIES OF REPRESENTATIONS!

BY BERTRAM KOSTANT



WARM UP: BRANCHING TO K

Let X be an admissible (g, K') module. Set
mx : K—7

be the function that assign p € K the multiplicity of the
p-isotypic space of X:

mx (p) = dim Homg (E,, X) < .

When X is irreducible myx is computable as a consequence of
Vogan’s proof of the KL conjectures for real groups: In
appropriate Grothendieck group, X is a computable sum of
standard modules whose m functions are computable.



REFINEMENT: SIGNATURE CHARACTER

Let X be a (g, K) module with nondegenerate invt form ( , ).
Since (, ) is K invariant, it restricts to a nondegenerate form
on p-isotypic space of some signature (px(p), gx(p)). Define
the signature character of X to be the function

(, )x: K—7ZaZ

p— (px (1), gx (1))

Since mx = px + qx, computing ( , )x is a refinement of the
branching to K problem.

Notice: If X € Gﬁé, then X € Gy if ¢ = 0.



Set W = Z[s]/(s?> = 1). Think of
(,)x: K—>W=2Z&Ls.

Then
S - < ) >X

is the “opposite” signature character: if
(,)x(w) = (p,9)

then
s, )x(u) = (g,p)



VOGAN’S SIGNATURE CHARACTER THEOREM

THEOREM

Let X be an irreducible (g, K) module with real infinitesimal
character and invariant Hermitian form ( , ). Then there exist
finitely many irreducible tempered modules with real
infinitesimal character Zy,--- , Zy and unique nonzero elements
a; € W such that

<7 >X:Zai'<7 >Zi

If we equip each Z; with its positive form, then (, )x is
positive iff all a; € Z.



VOGAN’S STRATEGY TO COMPUTE aq;

<7 >X:Zai'<7 >Zi

First prove a refinement of the KL conjectures and write
) X - Z b ) std (v4)

as a W combination of invariant forms of standard modules
with the same (real) infinitesimal character.

In terms of computable Jantzen filtrations, Vogan then
explicitly described the behavior of
( ) >std('y)

as the continuous parameter v deformed to 0 (where the
standard module becomes tempered).

Problem: First step doesn’t quite make sense.
Overcome in Adams-van Leeuwen-T-Vogan and Yee.



PARALLELS FOR p-ADIC GROUPS

Black box for today: foundational work of Barbasch and Moy
(building on the Borel-Casselman equivalence and the
Kazhdan-Lusztig classification and further work of Lusztig)
gives algebraic reduction of the unramified unitary dual of split
reductive p-adic groups to the graded affine Hecke algebra.

Expect that this algebraic setting will handle unitarity
questions for much more general kinds of representations
(Barbasch-Ciubotaru).



GRADED AFFINE HECKE ALGEBRA

Fix based root system (Il C R C X,IIY C RV C XV).
Set V = X ®z C, same for V.

H =~ S(VY)® C[W] as a vector space.

Both natural injections of S(VV) and C[I¥] in H are algebra
maps. And:

wts, — ts,Sa(w) = (,w), a€ll, we V.
Has natural conjugate linear antiautomorphism 7:

T(tw):tw—1, we W,

T(W) = ~FgWle,, w€ VY.



HERMITIAN AND UNITARY H-MODULES

A Hermitian form (, ) on a H module X is 7-invariant if

(Y -u,v) = (u,—7(Y) - v) YeH

Notation: R R R
H* c H" ¢ H := irred H modules.

Lusztig classified H: once again, to each “parameter” ~ € Py,
there corresponds a standard object stdg(y) and canonical
irreducible subquotient irrg(7y) so that the correspondence

P—H

v — irrm(y)

is bijective. Easy to determine if irrg(y) € H".



A LITTLE MORE ABOUT STANDARD MODULES

H=S(VY)® C[W].

Tempered H modules can be defined according to the

Casselman criterion: Z is tempered if the real part of all of the
S(VV) generalized weights A € V are weakly antidominant. The
connection with group representations implies they are unitary.

If IIp C I1, can build “parabolic” subalgebra Hp.
Standard modules are of the form

H RHp (Z & (C,,)

where Z is tempered and v € V.



SIGNATURE CHARACTER THEOREM FOR H-MODULES

If (, ) is an invariant form on an irreducible H module,
restriction to W isotypic spaces defines a function

(Vx:W—W=2Za sZ.

THEOREM

Let X be an irreducible H module with real central character

and invariant Hermitian form (, ). Then there exist finitely

many irreducible tempered modules with real central character
Z1,-++, Z and unique nonzero elements a; € W such that

<7 >X:Zai'<7 >Zi

No known way to compute the a;. Main result today: deduce
some computations of a; from the real case.



COMPARISON

If Gr and H correspond to split forms arising from the same
root data, one might ask if there is a correspondence

X~ X Z; ZZ(
so that the two kinds of formulas have matching coefficients:

GR:

~

<,>X:Zai'<,>zi K> W

Coxr=) e, )z« W—oW.

Main result: this is exactly true in the case of GL(n) and
suggests generalizations.



FUNCTORS FROM (g, K') MODULES TO H-MODULES
FOR GL(N)

Set Gr = GL(n,R), and let H correspond to the root system of

gl(n).
Ciubotaru-T defined exact functors
F : (g, K)-mod — H-mod

that (when restricted to a nice subcategory) take standard
modules to standard modules (or zero) and irreducibles to
irreducibles (or zero).

More on this in a moment.



MAIN RESULT

THEOREM

In the setting of GL(n), suppose X' is an irreducible H module
with real central character admitting an invariant form. Then
there exists an irreducible (g, K) module X admitting an
invariant form such that F(X) = X'. Moreover if

<7>X:Zai'<, Vg, K> W

then e
) F(X) Zal ) FZ,- : W —-W.

In particular if X is unitary, then so it FI(X).

The proof comes down to ALTV plus a nice relationship
between spaces of unramified Langlands parameters for
GL(n,Qp) and ABV parameters for GL(n,R). +6



A LITTLE MORE ABOUT THE FUNCTORS FOR GL(N)

F : (g, K)-mod — H-mod
Following Arakawa-Suzuki, if X is any U(g) module, there is a
natural H = S(VV) @ C[W] action on
n
—f—
X®(C'e---oCY

The W action is obvious. The action of e; in
C" ~VV < S(VV) — H involves X and the ith copy of C™:

e; — Z[E] acting on X| ® [E; acting in ith component]
J
where the sum is over any self-dual orthonormal basis {E;} of
g. Commutes with Kr. So get H action on

n

F(X) := Homg, (1, X © (C* ®---C"))



A LITTLE MORE ABOUT THE FUNCTORS FOR GL(N)

F : (g, K)-mod — H-mod

—_—
F(X):=Homg, (1, X ® (C"®---C"))

Fairly easy to see (roughly) that F' maps standard modules to
standard modules (or zero). To see that F' maps irreducible to
irreducibles (or zero), need some relationship between

geometry of K orbits on G/B (Beilinson-Bernstein)

and

geometry of GV orbits on unramified p-adic
Langlands parameters (Kazhdan-Lusztig, Lusztig)

Not so natural.



ABV TO THE RESCUE

F : (g, K)-mod — H-mod

—_—
F(X):=Homg, (1, X ® (C"®---C"))

Fairly easy to see (roughly) that F' maps standard modules to
standard modules (or zero). To see that F' maps irreducible to
irreducibles (or zero), need some relationship between

geometry of GV orbits on the
Adams-Barbasch-Vogan space.

and

geometry of G orbits on unramified p-adic
Langlands parameters (Kazhdan-Lusztig, Lusztig)

Ciubotaru-T: Natural relationship exists.



CONCLUSION FOR GL(N)

From geometry conclude
decomposition numbers for H modules
are a subset of
decomposition numbers for (g, K') modules.

(This is a real version of a result of Lusztig and Zelvinsky for
category O.) Since

F : (g, K)-mod — H-mod

sends standard modules to the “right” standard modules (or
zero), conclude F' sends irreducibles to irreducibles (or zero).



IC4

IRREDUCIBLE CHARACTERS OF SEMISIMPLE
LIE GROUPS IV.
CHARACTER-MULTIPLICITY DUALITY

DAVID A. VOGAN, JR.

THEOREM 13.13.  Let G be a real reductive group, and B = {cl(y,), . . . , cl(y,)}
a block of regular characters of G having nonsingular infinitesimal character. Let G
be a second reductive group, and B= {cl(¥)), . .., cl(y,)} a block for G; and
assume that the bijection y;— ¥, satisfies conditions (a)—(d) of Theorem 11.9. Then

the inverse of the Kazhdan— Lusztig matrix (P,,) (Lemma 12.15) is the matrix
(a) (pm)*l =((- 1)I’<¢>—I’<y)p%.



MORE IC4 TRIVIA: FAMOUS LAST WORDS

G®= GN. (16.6c)

This verifies a conjecture of P. Sally that G°AN may be regarded as a complex
simple Lie group; I am grateful to him for supplying this example.



WHERE WE ARE

In context of GL(n) and real infinitesimal char, trying to prove

THEOREM

Suppose X' is an irreducible H module admitting an invariant
form. Then there exists an irreducible (g, K) module X
admitting an invariant form such that F(X) = X'. Moreover if

X:Zai‘<v >Zi : [?HW

then .
, YR(X) = Zaz s )Rz W= WL

In particular if X is unitary, then so it F(X).

using
n

—_—
F(X) := Hompg, (1, X @ (C" ® ---C"))



FINISHING THE PROOF SHOULD BE EASY...

Given GL(n,R) invariant form (, ) on X, take invariant form
(, ) on C" and build invariant form

(,)Y®(, )" on X ® (C")®™.

Formal consequence of the definition of the H action shows that
this is an H-invariant form and descends to one on

n

—
F(X) := Homp, (L, X @ (C" ®---C"))

Jantzen filtrations are preserved by F', etc.

Tiny problem: No GL(n,R) invariant form exists on C".



THE FIX: c-INVARIANT FORMS

Oc =
antiholomorphic involution of G defining compact real form

A Hermitian form (, ) on a (g, K) module X is c-invariant if
(Y -u,v) =(u,—0.(Y) v) Yeg
(k-u,v) = (u, k=1 - v) k € Kg.

Minor miracle: c-invariant forms exist and can be canonically
normalized. This is the starting point of ALTV to complete
Vogan’s strategy



Cc-INVARIANT FORMS FOR H MODULES

H has natural conjugate linear antiautomorphism 7,:

Tc(tw) =ty,-1, weW,

T(w)=w, weVY.
A Hermitian form (, ) on a H module X is c-invariant if
(Y -u,v) = (u, —7.(Y) - v) YeH

Again they exist and are canonical (Barbasch-Ciubotaru).



THE PROOF SHOULD BE EASY...

Given canonical o -invariant form (, )¢ on (g, K) module X
and (, )¢ on C", build o.-invariant form

(,)®(, )" on X & (C"".

Formal consequence of the definition of the H action shows that
this is an 7.-invariant H form and descends to one on

n
——
F(X):=Homg, (1, X ® (C"®---C"))
Easy analysis: Jantzen filtrations are preserved by F, etc.

Now we can follow ALTV to prove a version of the main result
for c-invariant forms.



COMPARISON THEOREM FOR ¢-FORMS FOR GL(N)

THEOREM

In the setting of GL(n), suppose X' is an irreducible H module
with real infinitesimal character. Then there exists an
irreducible (g, K) module X such that F(X) = X'. Moreover
the signature characters of the canonical c-invariant forms on
X and F(X) are related as follows: if

(% =Y ai(, )5

then

Zaz‘ ) F(Z
i cedor it X . 4 . FE):;-

Useless unless we can say something about invariant forms.



FROM c-FORMS TO 0-INVARIANT FORMS

Back to the real case. Recall we had o, (defining compact real
form) and o (defining Gr). Differ by the Cartan involution for

Gr
1

=000, .
How can you build a o-invariant form (, ) on X
(Y -u,v) = (u,—o(Y) -v)
from a o.-invariant form (, )¢ on X

(Y- u,v)’ = (u,—oo(Y) - 0)°?

Twist by 6: The former exists iff X ~ X%: and if you fix
T:X — X? define

(u,v) = (u, T'(v))°.

Trivial to deduce the ¢ invariance from the o, invariance. So
really should be keeping track of this information everywhere.



EXTENDED GROUPS AND HECKE ALGEBRAS

Always possible to choose “fundamental” § (automorphism of G
preserving K) inner to # that also preserves a based root datum
(Tc RC X,IIY C RY C XV). Consider representations of the
extended group G° = G x {1, 6}, that is (g, K°) modules.

For (g, K 5) module X, can translate canonical c-invariant form
into Gg invariant form.
On the Hecke algebra side, § also gives an automorphism of H.

Consider modules for “extended” algebra H® = H x {1, §}.

Same formalism shows that action of § relates c-invariant forms
on H® modules to honest invariant forms.



BACK TO GL(N) TO FINISH THE PROOF

Redo the functors for groups and algebras extended by
fundamental automorphism §:

F : (g, K°)-mod — H’-mod
The new results of Lusztig-Vogan imply
decomposition numbers for H® modules
are related to a subset of
decomposition numbers for (g, K°) modules.

So the functors once again have good properties, preserve
Jantzen filtrations, etc.

The rest is just following your nose....



BUT STILL NOTHING ABOUT THE ORBIT METHOD...

Happy Birthday!



