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outline

(1) G real reductive. Review the Vogan (+ friends) theory of
signature characters for Harish-Chandra modules:
determining if π ∈ Ĝ is unitary.

(2) G (split) p-adic. Review parallel (less well-developed)
theory for the graded affine Hecke algebra H (Barbasch,
Ciubotaru, Moy): toward determining if π ∈ Ĝur is unitary.

(3) Idea: find relations between spaces of Langlands
Adams-Barbasch-Vogan parameters for GR and Langlands
parameters for GQp to develop theory in (2).

(4) A precise theorem in the context of GL(n).



(almost) nothing about the orbit method

Dubrovnik, 2002



(almost) nothing about the orbit method

Canyonlands, 2004



harish chandra’s algebraic reduction

G complex reductive algebraic group, GR real form
KR maximal compact subgroup
g = gR ⊗R C, K = (KR)C ⊂ G
σ := antiholomorphic involution of G defining GR

Definition

A Hermitian form 〈 , 〉 on a (g,K) module X is σ-invariant if
〈Y · u, v〉 = 〈u,−σ(Y ) · v〉 Y ∈ g;
〈k · u, v〉 = 〈u, k−1 · v〉 k ∈ KR.

cform

Theorem (harish chandra)

Passing to KR-finite vectors induces a bijection from
(equivalence classes of) irreducible unitary representations of
GR and (equivalence classes of) irreducible (g,K) modules
admitting a positive definite σ-invariant form.



strategy

Locate unitary dual as a subset of irreducible (g,K) modules
admitting a positive definite invariant Hermitian form.
Notation:

ĜuR ⊂ ĜhR ⊂ ĜR := irred (g,K) modules.

Recall that Langlands, Knapp, Zuckerman, Vogan classified ĜR:
to each “parameter” γ ∈ P, there corresponds a standard object
std(γ) and canonical irreducible subquotient irr(γ) so that the
correspondence

P −→ ĜR

γ −→ irr(γ)

is bijective. Easy to determine if irr(γ) ∈ ĜhR.



a few details of the standard modules

PR = MRARNR cuspidal parabolic subgroup.
σ tempered (limit of discrete series)
eν character of AR, ν ∈ a∗

typical standard module IndGR
PR

(σ ⊗ eν ⊗ 1)
(e.g. if ν = 0, this is again tempered)



vogan’s signature character

ON THE EXISTENCE AND IRREDUCIBILITY OF 
CERTAIN SERIES OF REPRESENTATIONS1 

BY BERTRAM KOSTANT 

1. Introduction. 1. By the principal series one means here the unitary 
representations of a semisimple Lie group G arising from induction to 
G by characters on MAN corresponding to characters on A. Although 
long conjectured to be irreducible, this family of representations has 
been shown to be irreducible only for special groups. For example see 
[9] for complex G and see [3] for the group Sl(w, R). In the general 
case (all G) irreducibility has been proved by Bruhat [ l ] using ana-
lytic methods, only however, for the "regular" characters on A. A 
proof of the irreducibility of all the elements of the principal series is 
but one application of certain algebraic results, stated here, on 
modules of the universal enveloping algebra U of the Lie algebra g 
of G. 

A second application is the proof of the existence and irreducibility 
of the complementary series for all semisimple Lie groups generalizing 
in a natural way the case of SI (2, R). I t is shown also that if dim A=l 
(split rank 1 case) then except for possibly the trivial (one dimen-
sional) representation the most general irreducible unitary represen-
sation of G admitting a fixed vector for K (Ad0i£ is the maximal com-
pact subgroup of AdflG) belongs either to the principal or comple-
mentary series. 

1.2. If ûc is the complex dual to the Lie algebra a of A then any 
X£ctc defines a one dimensional representation 6—>bx of B = MAN. 
If X* is the space of all analytic infinite functions f on G such that 
f(ab)=b~*f(a) where a £ G , bE:B then Xx is in a natural way a U-
module. The results above are mainly applications of a theorem 
(Theorem 2) giving a necessary and sufficient condition on X for Xx 

to be an irreducible (in the usual algebraic sense) C/-module. In par-
ticular there arises, in a natural way, a region in etc which we call the 
critical strip (CS) for which Xx is always [/-irreducible. The critical 
strip contains all of the X corresponding to the principal series and its 
closure contains all the X corresponding to the complementary series. 

1 By invitation the author addressed the annual meeting of the American Mathe-
matical Society in Cincinnati on January 22, 1962 on the topic A survey of Lie group 
representations. The present paper is partially an outgrowth of some of the ideas on 
multiplicities of representations stated during that talk; received by the editors 
March 3, 1969. 
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warm up: branching to K

Let X be an admissible (g,K) module. Set

mX : K̂ −→ Z

be the function that assign µ ∈ K̂ the multiplicity of the
µ-isotypic space of X:

mX(µ) = dim HomK(Eµ, X) <∞.

When X is irreducible mX is computable as a consequence of
Vogan’s proof of the KL conjectures for real groups: In
appropriate Grothendieck group, X is a computable sum of
standard modules whose m functions are computable.



refinement: signature character

Let X be a (g,K) module with nondegenerate invt form 〈 , 〉.
Since 〈 , 〉 is K invariant, it restricts to a nondegenerate form
on µ-isotypic space of some signature (pX(µ), qX(µ)). Define
the signature character of X to be the function

〈 , 〉X : K̂ −→ Z⊕ Z
µ −→ (pX(µ), qX(µ)).

Since mX = pX + qX , computing 〈 , 〉X is a refinement of the
branching to K problem.

Notice: If X ∈ GhR, then X ∈ GuR if q ≡ 0.



convenient repackaging

Set W = Z[s]/(s2 = 1). Think of

〈 , 〉X : K̂ −→W = Z⊕ Zs.

Then
s · 〈 , 〉X

is the “opposite” signature character: if

〈 , 〉X(µ) = (p, q)

then
s · 〈 , 〉X(µ) = (q, p)



vogan’s signature character theorem

Theorem

Let X be an irreducible (g,K) module with real infinitesimal
character and invariant Hermitian form 〈 , 〉. Then there exist
finitely many irreducible tempered modules with real
infinitesimal character Z1, · · · , Zk and unique nonzero elements
ai ∈W such that

〈 , 〉X =
∑
i

ai · 〈 , 〉Zi

heckecase

If we equip each Zi with its positive form, then 〈 , 〉X is
positive iff all ai ∈ Z.



vogan’s strategy to compute ai

〈 , 〉X =
∑
i

ai · 〈 , 〉Zi

First prove a refinement of the KL conjectures and write

〈 , 〉X =
∑
j

bj · 〈 , 〉std(γj)

as a W combination of invariant forms of standard modules
with the same (real) infinitesimal character.

In terms of computable Jantzen filtrations, Vogan then
explicitly described the behavior of

〈 , 〉std(γ)

as the continuous parameter ν deformed to 0 (where the
standard module becomes tempered).

Problem: First step doesn’t quite make sense. cform

Overcome in Adams-van Leeuwen-T-Vogan and Yee.



parallels for p-adic groups

Black box for today: foundational work of Barbasch and Moy
(building on the Borel-Casselman equivalence and the
Kazhdan-Lusztig classification and further work of Lusztig)
gives algebraic reduction of the unramified unitary dual of split
reductive p-adic groups to the graded affine Hecke algebra.

Expect that this algebraic setting will handle unitarity
questions for much more general kinds of representations
(Barbasch-Ciubotaru).



graded affine hecke algebra

Fix based root system (Π ⊂ R ⊂ X,Π∨ ⊂ R∨ ⊂ X∨).
Set V = X ⊗Z C, same for V ∨.

H ' S(V ∨)⊗ C[W ] as a vector space.

Both natural injections of S(V ∨) and C[W ] in H are algebra
maps. And:

ωtsα − tsαsα(ω) = (α, ω), α ∈ Π, ω ∈ V ∨.

Has natural conjugate linear antiautomorphism τ :

τ(tw) = tw−1 , w ∈W,
τ(ω) = −tw0ωtw0 , ω ∈ V ∨.



hermitian and unitary H-modules

A Hermitian form 〈 , 〉 on a H module X is τ -invariant if

〈Y · u, v〉 = 〈u,−τ(Y ) · v〉 Y ∈ H

Notation:
Ĥu ⊂ Ĥh ⊂ Ĥ := irred H modules.

Lusztig classified Ĥ: once again, to each “parameter” γ ∈ PH,
there corresponds a standard object stdH(γ) and canonical
irreducible subquotient irrH(γ) so that the correspondence

P −→ Ĥ
γ −→ irrH(γ)

is bijective. Easy to determine if irrH(γ) ∈ Ĥh.



a little more about standard modules

H = S(V ∨)⊗ C[W ].

Tempered H modules can be defined according to the
Casselman criterion: Z is tempered if the real part of all of the
S(V ∨) generalized weights λ ∈ V are weakly antidominant. The
connection with group representations implies they are unitary.

If ΠP ⊂ Π, can build “parabolic” subalgebra HP .
Standard modules are of the form

H⊗HP (Z ⊗ Cν)

where Z is tempered and ν ∈ V .



signature character theorem for H-modules

If 〈 , 〉 is an invariant form on an irreducible H module,
restriction to W isotypic spaces defines a function

〈 , 〉X : Ŵ −→W = Z⊕ sZ.

Theorem

Let X be an irreducible H module with real central character
and invariant Hermitian form 〈 , 〉. Then there exist finitely
many irreducible tempered modules with real central character
Z1, · · · , Zk and unique nonzero elements ai ∈W such that

〈 , 〉X =
∑
i

ai · 〈 , 〉Zi

go to real case

No known way to compute the ai. Main result today: deduce
some computations of ai from the real case. main result



comparison

If GR and H correspond to split forms arising from the same
root data, one might ask if there is a correspondence

X ↔ X ′ Zi ↔ Z ′i

so that the two kinds of formulas have matching coefficients:

GR:
〈 , 〉X =

∑
i

ai · 〈 , 〉Zi : K̂ →W

H:
〈 , 〉X′ =

∑
i

ai · 〈 , 〉Z′i : Ŵ →W.

Main result: this is exactly true in the case of GL(n) and
suggests generalizations.



functors from (g, K) modules to H-modules
for gl(n)

Set GR = GL(n,R), and let H correspond to the root system of
gl(n).

Ciubotaru-T defined exact functors

F : (g,K)-mod −→ H-mod

that (when restricted to a nice subcategory) take standard
modules to standard modules (or zero) and irreducibles to
irreducibles (or zero).

More on this in a moment.



main result

Theorem

In the setting of GL(n), suppose X ′ is an irreducible H module
with real central character admitting an invariant form. Then
there exists an irreducible (g,K) module X admitting an
invariant form such that F (X) = X ′. Moreover if

〈 , 〉X =
∑
i

ai · 〈 , 〉Zi : K̂ →W

then
〈 , 〉F (X) =

∑
i

ai · 〈 , 〉F (Zi) : Ŵ →W.

In particular if X is unitary, then so it F (X).

The proof comes down to ALTV plus a nice relationship
between spaces of unramified Langlands parameters for
GL(n,Qp) and ABV parameters for GL(n,R). +δ



a little more about the functors for gl(n)

F : (g,K)-mod −→ H-mod

Following Arakawa-Suzuki, if X is any U(g) module, there is a
natural H = S(V ∨)⊗ C[W ] action on

X ⊗
n︷ ︸︸ ︷

(Cn ⊗ · · · ⊗ Cn)

The W action is obvious. The action of ei in
Cn ' V ∨ ↪→ S(V ∨) ↪→ H involves X and the ith copy of Cn:

ei 7→
∑
j

[Ej acting on X]⊗ [Ej acting in ith component]

where the sum is over any self-dual orthonormal basis {Ej} of
g. Commutes with KR. So get H action on

F (X) := HomKR

(
1, X ⊗

n︷ ︸︸ ︷
(Cn ⊗ · · ·Cn)

)



a little more about the functors for gl(n)

F : (g,K)-mod −→ H-mod

F (X) := HomKR

(
1, X ⊗

n︷ ︸︸ ︷
(Cn ⊗ · · ·Cn)

)
Fairly easy to see (roughly) that F maps standard modules to
standard modules (or zero). To see that F maps irreducible to
irreducibles (or zero), need some relationship between

geometry of K orbits on G/B (Beilinson-Bernstein)

and

geometry of G∨ orbits on unramified p-adic
Langlands parameters (Kazhdan-Lusztig, Lusztig)

Not so natural.



abv to the rescue

F : (g,K)-mod −→ H-mod

F (X) := HomKR

(
1, X ⊗

n︷ ︸︸ ︷
(Cn ⊗ · · ·Cn)

)
Fairly easy to see (roughly) that F maps standard modules to
standard modules (or zero). To see that F maps irreducible to
irreducibles (or zero), need some relationship between

geometry of G∨ orbits on the
Adams-Barbasch-Vogan space.

and

geometry of G∨ orbits on unramified p-adic
Langlands parameters (Kazhdan-Lusztig, Lusztig)

Ciubotaru-T: Natural relationship exists.



conclusion for gl(n)

From geometry conclude

decomposition numbers for H modules

are a subset of

decomposition numbers for (g,K) modules.

(This is a real version of a result of Lusztig and Zelvinsky for
category O.) Since

F : (g,K)-mod −→ H-mod

sends standard modules to the “right” standard modules (or
zero), conclude F sends irreducibles to irreducibles (or zero).
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1. Introduction. Let G be a real linear reductive Lie group. (It is important to

allow G to be disconnected; precise hypotheses on G are formulated in section

2.) To each irreducible admissible representation of G, Langlands in [17] has
associated a natural induced representation, of a kind we will call standard.
Roughly speaking, the standard representations are non-unitarily induced from
discrete series representations. This association sets up a bijection between the
irreducible representations and the standard ones. Write for the irreducible

representation corresponding to the standard representation r. The standard
representations are fairly well understood---much better, at least, than the
irreducible representations. One way to describe irreducible representations is to

write them as (finite) integer combinations of standard representations, in an

appropriate Grothendieck group. That is, we look for an expression

E M(p, )p (M(p,) e Z).
standard

(1.1)

Received June 14, 1982. Supported in part by an NSF grant MCS-8202127.
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coefficient u in T,7+ (case (c*)). Since also ll(y+ lI(y) + 1, we compute

c()

By Definition 13.3(c), we get

/=(u-2)-+ (u- 1)4.

By Theorem 11.9(c), this can be written

#s= (u- 1)6+(u-2)’.

This is the formula for Ts" in Definition 12.3(d*). The other cases are similar.

Q.E.D.

PROPOSITION 13.12. In the setting of Proposition 13.10, suppose the integral
length function on is normalized in accordance with Proposition 13.10(a), and

6y(B is identified with q]L(a as in (13.10)(b).
(a) The operator ) of Definition 13.3(e)coincides with the operator O for

defined by Lemma 12.14.

(b) The elements v of Lemma 13.7 coincide with the elements C: for B of
Lemma 12.15.

Proof. In light of Proposition 13.10, Lemmas 13.4 and 13.7 show that/) and

-’v satisfy the defining properties of D and C.. Q.E.D.

THEOREM 13.13. Let G be a real reductive group, and B (c/(Y1) cl(Yr))
a block of regular characters of G having nonsingular infinitesimal character. Let G
be a second reductive group, and B (c/(l) cl([r)) a block for ; and
assume that the bijection Yi -- i satisfies conditions (a)-(d) of Theorem 11.9. Then
the inverse of the Kazhdan-Lusztig matrix (P,v) (Lemma 12.15) is the matrix

(a) (P,v)- ((- 1)t’(*)-t’(v)P,.
In partjcular, suppose that the Kazhdan-Lusztig conjecture (12.16) holds for ( G, B )
and G, B ), so that

(b)

Then

M(rr(),(y)) (-1)t’(’/’)-t’(v)P,t,v(1 )

M(rr(6), ()) (-1)’%)-"()P$(1).

m((), r(y)) P6(1)

(-1)"(*)-"()M(r(),



more IC4 trivia: famous last words
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as usual. The Iwasawa decomposition of G c is now

GC= AN. (16.6c)

This verifies a conjecture of P. Sally that AN may be regarded as a complex
simple Lie group; I am grateful to him for supplying this example.
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where we are

In context of GL(n) and real infinitesimal char, trying to prove

Theorem

Suppose X ′ is an irreducible H module admitting an invariant
form. Then there exists an irreducible (g,K) module X
admitting an invariant form such that F (X) = X ′. Moreover if

〈 , 〉X =
∑
i

ai · 〈 , 〉Zi : K̂ →W

then
〈 , 〉F (X) =

∑
i

ai · 〈 , 〉F (Zi) : Ŵ →W.

In particular if X is unitary, then so it F (X).

using

F (X) := HomKR

(
1, X ⊗

n︷ ︸︸ ︷
(Cn ⊗ · · ·Cn)

)



finishing the proof should be easy...

Given GL(n,R) invariant form 〈 , 〉 on X, take invariant form
( , ) on Cn and build invariant form

〈 , 〉 ⊗ ( , )⊗n on X ⊗ (Cn)⊗n.

Formal consequence of the definition of the H action shows that
this is an H-invariant form and descends to one on

F (X) := HomKR

(
1, X ⊗

n︷ ︸︸ ︷
(Cn ⊗ · · ·Cn)

)
Jantzen filtrations are preserved by F , etc.

Tiny problem: No GL(n,R) invariant form exists on Cn.



the fix: c-invariant forms

go to invt form

σc :=
antiholomorphic involution of G defining compact real form

Definition

A Hermitian form 〈 , 〉 on a (g,K) module X is c-invariant if
〈Y · u, v〉 = 〈u,−σc(Y ) · v〉 Y ∈ g;
〈k · u, v〉 = 〈u, k−1 · v〉 k ∈ KR.

Minor miracle: c-invariant forms exist and can be canonically
normalized. This is the starting point of ALTV to complete
Vogan’s strategy voganstrategy



c-invariant forms for H modules

H has natural conjugate linear antiautomorphism τc:

τc(tw) = tw−1 , w ∈W,
τc(ω) = ω, ω ∈ V ∨.

A Hermitian form 〈 , 〉 on a H module X is c-invariant if

〈Y · u, v〉 = 〈u,−τc(Y ) · v〉 Y ∈ H

Again they exist and are canonical (Barbasch-Ciubotaru).



The proof should be easy...

Given canonical σc-invariant form 〈 , 〉c on (g,K) module X
and ( , )c on Cn, build σc-invariant form

〈 , 〉 ⊗ ( , )⊗n on X ⊗ (Cn)⊗n.

Formal consequence of the definition of the H action shows that
this is an τc-invariant H form and descends to one on

F (X) := HomKR

(
1, X ⊗

n︷ ︸︸ ︷
(Cn ⊗ · · ·Cn)

)
Easy analysis: Jantzen filtrations are preserved by F , etc.

Now we can follow ALTV to prove a version of the main result
for c-invariant forms.



comparison theorem for c-forms for gl(n)

Theorem

In the setting of GL(n), suppose X ′ is an irreducible H module
with real infinitesimal character. Then there exists an
irreducible (g,K) module X such that F (X) = X ′. Moreover
the signature characters of the canonical c-invariant forms on
X and F (X) are related as follows: if

〈 , 〉cX =
∑
i

ai · 〈 , 〉cZi

then
〈 , 〉cF (X) =

∑
i

ai · 〈 , 〉cF (Zi)

In particular if X is unitary, then so it F (X).

Useless unless we can say something about invariant forms.



from c-forms to σ-invariant forms

Back to the real case. Recall we had σc (defining compact real
form) and σ (defining GR). Differ by the Cartan involution for
GR

θ = σ ◦ σ−1
c .

How can you build a σ-invariant form 〈 , 〉 on X

〈Y · u, v〉 = 〈u,−σ(Y ) · v〉

from a σc-invariant form 〈 , 〉c on X

〈Y · u, v〉c = 〈u,−σc(Y ) · v〉c ?

Twist by θ: The former exists iff X ' Xθ; and if you fix
T : X → Xθ, define

〈u, v〉 = 〈u, T (v)〉c.

Trivial to deduce the σ invariance from the σc invariance. So
really should be keeping track of this information everywhere.



extended groups and hecke algebras

Always possible to choose “fundamental” δ (automorphism of G
preserving K) inner to θ that also preserves a based root datum
(Π ⊂ R ⊂ X,Π∨ ⊂ R∨ ⊂ X∨). Consider representations of the
extended group Gδ = Go {1, δ}, that is (g,Kδ) modules.

For (g,Kδ) module X, can translate canonical c-invariant form
into GR invariant form.

On the Hecke algebra side, δ also gives an automorphism of H.
Consider modules for “extended” algebra Hδ = H o {1, δ}.

Same formalism shows that action of δ relates c-invariant forms
on Hδ modules to honest invariant forms.



back to gl(n) to finish the proof

Redo the functors for groups and algebras extended by
fundamental automorphism δ:

F : (g,Kδ)-mod −→ Hδ-mod

The new results of Lusztig-Vogan imply

decomposition numbers for Hδ modules

are related to a subset of

decomposition numbers for (g,Kδ) modules.

So the functors once again have good properties, preserve
Jantzen filtrations, etc.

The rest is just following your nose....



but still nothing about the orbit method...

Happy Birthday!


