Relations Between Unitary Representations of Real and *p*-adic Groups

Peter E. Trapa University of Utah

David Vogan's 60th Birthday Conference May 19, 2014 MIT

OUTLINE

- (1) G real reductive. Review the Vogan (+ friends) theory of signature characters for Harish-Chandra modules: determining if $\pi \in \widehat{G}$ is unitary.
- (2) G (split) p-adic. Review parallel (less well-developed) theory for the graded affine Hecke algebra \mathbb{H} (Barbasch, Ciubotaru, Moy): toward determining if $\pi \in \widehat{G}_{ur}$ is unitary.
- (3) Idea: find relations between spaces of Langlands Adams-Barbasch-Vogan parameters for $G_{\mathbb{R}}$ and Langlands parameters for $G_{\mathbb{Q}_p}$ to develop theory in (2).
- (4) A precise theorem in the context of GL(n).

(ALMOST) NOTHING ABOUT THE ORBIT METHOD

Dubrovnik, 2002

(ALMOST) NOTHING ABOUT THE ORBIT METHOD

Canyonlands, 2004

HARISH CHANDRA'S ALGEBRAIC REDUCTION

G complex reductive algebraic group, $G_{\mathbb{R}}$ real form $K_{\mathbb{R}}$ maximal compact subgroup $\mathfrak{g} = \mathfrak{g}_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}, K = (K_{\mathbb{R}})_{\mathbb{C}} \subset G$ $\sigma :=$ antiholomorphic involution of G defining $G_{\mathbb{R}}$

Definition

A Hermitian form \langle , \rangle on a (\mathfrak{g}, K) module X is $\underline{\sigma}$ -invariant if $\langle Y \cdot u, v \rangle = \langle u, -\sigma(Y) \cdot v \rangle \qquad Y \in \mathfrak{g};$

$$\langle k \cdot u, v \rangle = \langle u, k^{-1} \cdot v \rangle \qquad k \in K_{\mathbb{R}}.$$

 \blacktriangleright cform

THEOREM (HARISH CHANDRA)

Passing to $K_{\mathbb{R}}$ -finite vectors induces a bijection from (equivalence classes of) irreducible unitary representations of $G_{\mathbb{R}}$ and (equivalence classes of) irreducible (\mathfrak{g}, K) modules admitting a positive definite σ -invariant form.

Locate unitary dual as a subset of irreducible (\mathfrak{g}, K) modules admitting a positive definite invariant Hermitian form. Notation:

$$\widehat{G}^u_{\mathbb{R}} \subset \widehat{G}^h_{\mathbb{R}} \subset \widehat{G}_{\mathbb{R}} :=$$
irred (\mathfrak{g}, K) modules.

Recall that Langlands, Knapp, Zuckerman, Vogan classified $\widehat{G}_{\mathbb{R}}$: to each "parameter" $\gamma \in \mathcal{P}$, there corresponds a standard object std(γ) and canonical irreducible subquotient irr(γ) so that the correspondence

$$\begin{array}{l} \mathcal{P} \longrightarrow \widehat{G}_{\mathbb{R}} \\ \gamma \longrightarrow \operatorname{irr}(\gamma) \end{array}$$

is bijective. Easy to determine if $\operatorname{irr}(\gamma) \in \widehat{G}^h_{\mathbb{R}}$.

 $P_{\mathbb{R}} = M_{\mathbb{R}} A_{\mathbb{R}} N_{\mathbb{R}}$ cuspidal parabolic subgroup. σ tempered (limit of discrete series) e^{ν} character of $A_{\mathbb{R}}, \nu \in \mathfrak{a}^*$

typical standard module $\operatorname{Ind}_{P_{\mathbb{R}}}^{G_{\mathbb{R}}}(\sigma \otimes e^{\nu} \otimes 1)$ (e.g. if $\nu = 0$, this is again tempered)

Unitarizability of certain series of representations

By DAVID A. VOGAN, JR.

ON THE EXISTENCE AND IRREDUCIBILITY OF CERTAIN SERIES OF REPRESENTATIONS¹

BY BERTRAM KOSTANT

Let X be an admissible (\mathfrak{g}, K) module. Set

$$m_X : \widehat{K} \longrightarrow \mathbb{Z}$$

be the function that assign $\mu \in \widehat{K}$ the multiplicity of the μ -isotypic space of X:

$$m_X(\mu) = \dim \operatorname{Hom}_K(E_\mu, X) < \infty.$$

When X is irreducible m_X is computable as a consequence of Vogan's proof of the KL conjectures for real groups: In appropriate Grothendieck group, X is a computable sum of standard modules whose m functions are computable.

Let X be a (\mathfrak{g}, K) module with nondegenerate invt form \langle , \rangle . Since \langle , \rangle is K invariant, it restricts to a nondegenerate form on μ -isotypic space of some signature $(p_X(\mu), q_X(\mu))$. Define the signature character of X to be the function

$$\langle \ , \ \rangle_X : \ \widehat{K} \longrightarrow \mathbb{Z} \oplus \mathbb{Z}$$

 $\mu \longrightarrow (p_X(\mu), q_X(\mu)).$

Since $m_X = p_X + q_X$, computing \langle , \rangle_X is a refinement of the branching to K problem.

Notice: If $X \in G^h_{\mathbb{R}}$, then $X \in G^u_{\mathbb{R}}$ if $q \equiv 0$.

CONVENIENT REPACKAGING

Set
$$\mathbb{W} = \mathbb{Z}[s]/(s^2 = 1)$$
. Think of
 $\langle , \rangle_X : \widehat{K} \longrightarrow \mathbb{W} = \mathbb{Z} \oplus \mathbb{Z}s.$

Then

 $s\cdot \langle \ , \ \rangle_X$

is the "opposite" signature character: if

$$\langle \ , \ \rangle_X(\mu) = (p,q)$$

then

$$s \cdot \langle , \rangle_X(\mu) = (q, p)$$

THEOREM

Let X be an irreducible (\mathfrak{g}, K) module with real infinitesimal character and invariant Hermitian form \langle , \rangle . Then there exist finitely many irreducible tempered modules with real infinitesimal character Z_1, \dots, Z_k and unique nonzero elements $a_i \in \mathbb{W}$ such that

$$\langle \ , \ \rangle_X = \sum_i a_i \cdot \langle \ , \ \rangle_{Z_i}$$

▶ heckecase

If we equip each Z_i with its positive form, then \langle , \rangle_X is positive iff all $a_i \in \mathbb{Z}$.

$$\langle \ , \ \rangle_X = \sum_i a_i \cdot \langle \ , \ \rangle_{Z_i}$$

First prove a refinement of the KL conjectures and write

$$\langle \ , \ \rangle_X = \sum_j b_j \cdot \langle \ , \ \rangle_{\mathrm{std}(\gamma_j)}$$

as a \mathbb{W} combination of invariant forms of standard modules with the same (real) infinitesimal character.

In terms of computable Jantzen filtrations, Vogan then explicitly described the behavior of

 $\langle \ , \ \rangle_{\mathrm{std}(\gamma)}$

as the continuous parameter ν deformed to 0 (where the standard module becomes tempered).

Problem: First step doesn't quite make sense. Overcome in Adams-van Leeuwen-T-Vogan and Yee. Black box for today: foundational work of Barbasch and Moy (building on the Borel-Casselman equivalence and the Kazhdan-Lusztig classification and further work of Lusztig) gives algebraic reduction of the unramified unitary dual of split reductive *p*-adic groups to the graded affine Hecke algebra.

Expect that this algebraic setting will handle unitarity questions for much more general kinds of representations (Barbasch-Ciubotaru).

GRADED AFFINE HECKE ALGEBRA

Fix based root system $(\Pi \subset R \subset X, \Pi^{\vee} \subset R^{\vee} \subset X^{\vee}).$ Set $V = X \otimes_{\mathbb{Z}} \mathbb{C}$, same for V^{\vee} .

 $\mathbb{H} \simeq S(V^{\vee}) \otimes \mathbb{C}[W] \text{ as a vector space.}$

Both natural injections of $S(V^{\vee})$ and $\mathbb{C}[W]$ in \mathbb{H} are algebra maps. And:

$$\omega t_{s_{\alpha}} - t_{s_{\alpha}} s_{\alpha}(\omega) = (\alpha, \omega), \quad \alpha \in \Pi, \ \omega \in V^{\vee}.$$

Has natural conjugate linear antiautomorphism τ :

$$\begin{split} \tau(t_w) &= t_{w^{-1}}, \quad w \in W, \\ \tau(\omega) &= -\overline{t_{w_0} \omega t_{w_0}}, \quad \omega \in V^{\vee}. \end{split}$$

HERMITIAN AND UNITARY \mathbb{H} -modules

A Hermitian form \langle , \rangle on a \mathbb{H} module X is τ -invariant if

$$\langle Y \cdot u, v \rangle = \langle u, -\tau(Y) \cdot v \rangle \qquad Y \in \mathbb{H}$$

Notation:

$$\widehat{\mathbb{H}}^u \subset \widehat{\mathbb{H}}^h \subset \widehat{\mathbb{H}} :=$$
irred \mathbb{H} modules.

Lusztig classified $\widehat{\mathbb{H}}$: once again, to each "parameter" $\gamma \in \mathcal{P}_{\mathbb{H}}$, there corresponds a standard object $\mathrm{std}_{\mathbb{H}}(\gamma)$ and canonical irreducible subquotient $\mathrm{irr}_{\mathbb{H}}(\gamma)$ so that the correspondence

$$\begin{array}{c} \mathcal{P} \longrightarrow \widehat{\mathbb{H}} \\ \gamma \longrightarrow \operatorname{irr}_{\mathbb{H}}(\gamma) \end{array}$$

is bijective. Easy to determine if $\operatorname{irr}_{\mathbb{H}}(\gamma) \in \widehat{\mathbb{H}}^h$.

 $\mathbb{H} = S(V^{\vee}) \otimes \mathbb{C}[W].$

Tempered \mathbb{H} modules can be defined according to the Casselman criterion: Z is tempered if the real part of all of the $S(V^{\vee})$ generalized weights $\lambda \in V$ are weakly antidominant. The connection with group representations implies they are unitary.

If $\Pi_P \subset \Pi$, can build "parabolic" subalgebra \mathbb{H}_P . Standard modules are of the form

 $\mathbb{H} \otimes_{\mathbb{H}_P} (Z \otimes \mathbb{C}_{\nu})$

where Z is tempered and $\nu \in V$.

SIGNATURE CHARACTER THEOREM FOR \mathbb{H} -modules

If $\langle \ ,\ \rangle$ is an invariant form on an irreducible $\mathbb H$ module, restriction to W isotypic spaces defines a function

$$\langle , \rangle_X : \widehat{W} \longrightarrow \mathbb{W} = \mathbb{Z} \oplus s\mathbb{Z}.$$

THEOREM

Let X be an irreducible \mathbb{H} module with real central character and invariant Hermitian form \langle , \rangle . Then there exist finitely many irreducible tempered modules with real central character Z_1, \dots, Z_k and unique nonzero elements $a_i \in \mathbb{W}$ such that

$$\langle \ , \ \rangle_X = \sum_i a_i \cdot \langle \ , \ \rangle_{Z_i}$$

▶ go to real case

No known way to compute the a_i . Main result today: deduce some computations of a_i from the real case. \bullet main result

COMPARISON

If $G_{\mathbb{R}}$ and \mathbb{H} correspond to split forms arising from the same root data, one might ask if there is a correspondence

$$X \leftrightarrow X' \qquad Z_i \leftrightarrow Z'_i$$

so that the two kinds of formulas have matching coefficients:

$$G_{\mathbb{R}}$$
:
 $\langle \ , \ \rangle_X = \sum_i a_i \cdot \langle \ , \ \rangle_{Z_i} \ : \ \widehat{K} \to \mathbb{W}$

 \mathbb{H} :

$$\langle \ , \ \rangle_{X'} = \sum_i a_i \cdot \langle \ , \ \rangle_{Z'_i} \ : \ \widehat{W} \to \mathbb{W}.$$

Main result: this is exactly true in the case of GL(n) and suggests generalizations.

FUNCTORS FROM (\mathfrak{g}, K) MODULES TO \mathbb{H} -MODULES FOR GL(N)

Set $G_{\mathbb{R}} = \operatorname{GL}(n, \mathbb{R})$, and let \mathbb{H} correspond to the root system of $\mathfrak{gl}(n)$.

Ciubotaru-T defined exact functors

 $F \; : \; (\mathfrak{g}, K) \operatorname{\!-mod} \longrightarrow \mathbb{H} \operatorname{\!-mod}$

that (when restricted to a nice subcategory) take standard modules to standard modules (or zero) and irreducibles to irreducibles (or zero).

More on this in a moment.

MAIN RESULT

Theorem

In the setting of GL(n), suppose X' is an irreducible \mathbb{H} module with real central character admitting an invariant form. Then there exists an irreducible (\mathfrak{g}, K) module X admitting an invariant form such that F(X) = X'. Moreover if

$$\langle \ , \ \rangle_X = \sum_i a_i \cdot \langle \ , \ \rangle_{Z_i} \ : \ \widehat{K} \to \mathbb{W}$$

then

$$\langle \ , \ \rangle_{F(X)} = \sum_{i} a_i \cdot \langle \ , \ \rangle_{F(Z_i)} \ : \ \widehat{W} \to \mathbb{W}.$$

In particular if X is unitary, then so it F(X).

The proof comes down to ALTV plus a nice relationship between spaces of unramified Langlands parameters for $\operatorname{GL}(n, \mathbb{Q}_p)$ and ABV parameters for $\operatorname{GL}(n, \mathbb{R})$. $+\delta$ $F : (\mathfrak{g}, K)$ -mod $\longrightarrow \mathbb{H}$ -mod

Following Arakawa-Suzuki, if X is any $U(\mathfrak{g})$ module, there is a natural $\mathbb{H} = S(V^{\vee}) \otimes \mathbb{C}[W]$ action on

$$X\otimes \overbrace{\left(\mathbb{C}^n\otimes\cdots\otimes\mathbb{C}^n\right)}^n$$

The W action is obvious. The action of e_i in $\mathbb{C}^n \simeq V^{\vee} \hookrightarrow S(V^{\vee}) \hookrightarrow \mathbb{H}$ involves X and the *i*th copy of \mathbb{C}^n : $e_i \mapsto \sum_j [E_j \text{ acting on } X] \otimes [E_j \text{ acting in } ith \text{ component}]$

where the sum is over any self-dual orthonormal basis $\{E_j\}$ of \mathfrak{g} . Commutes with $K_{\mathbb{R}}$. So get \mathbb{H} action on

$$F(X) := \operatorname{Hom}_{K_{\mathbb{R}}}(1, X \otimes \overbrace{(\mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n)}^n)$$

$$F : (\mathfrak{g}, K) \operatorname{-mod} \longrightarrow \mathbb{H}\operatorname{-mod}$$

$$F(X) := \operatorname{Hom}_{K_{\mathbb{R}}}(1, X \otimes \overbrace{(\mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n)}^n)$$

Fairly easy to see (roughly) that F maps standard modules to standard modules (or zero). To see that F maps irreducible to irreducibles (or zero), need some relationship between

geometry of K orbits on G/B (Beilinson-Bernstein)

and

geometry of G^{\vee} orbits on unramified *p*-adic Langlands parameters (Kazhdan-Lusztig, Lusztig)

Not so natural.

ABV TO THE RESCUE

$$F : (\mathfrak{g}, K) \operatorname{-mod} \longrightarrow \mathbb{H}\operatorname{-mod}$$
$$F(X) := \operatorname{Hom}_{K_{\mathbb{R}}} (1, X \otimes \overbrace{(\mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n)}^n)$$

Fairly easy to see (roughly) that F maps standard modules to standard modules (or zero). To see that F maps irreducible to irreducibles (or zero), need some relationship between

geometry of G^{\vee} orbits on the Adams-Barbasch-Vogan space.

and

geometry of G^{\vee} orbits on unramified *p*-adic Langlands parameters (Kazhdan-Lusztig, Lusztig)

Ciubotaru-T: Natural relationship exists.

From geometry conclude

decomposition numbers for $\mathbb H$ modules

are a subset of

decomposition numbers for (\mathfrak{g}, K) modules.

(This is a real version of a result of Lusztig and Zelvinsky for category \mathcal{O} .) Since

 $F : (\mathfrak{g}, K) \operatorname{-mod} \longrightarrow \mathbb{H}\operatorname{-mod}$

sends standard modules to the "right" standard modules (or zero), conclude F sends irreducibles to irreducibles (or zero).

IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS IV. CHARACTER-MULTIPLICITY DUALITY

DAVID A. VOGAN, JR.

THEOREM 13.13. Let G be a real reductive group, and $B = \{cl(\gamma_1), \ldots, cl(\gamma_r)\}$ a block of regular characters of G having nonsingular infinitesimal character. Let G be a second reductive group, and $\tilde{B} = \{cl(\gamma_1), \ldots, cl(\gamma_r)\}$ a block for \tilde{G} ; and assume that the bijection $\gamma_i \rightarrow \tilde{\gamma}_i$ satisfies conditions (a)–(d) of Theorem 11.9. Then the inverse of the Kazhdan-Lusztig matrix $(P_{\phi\gamma})$ (Lemma 12.15) is the matrix (a) $(P_{\phi\gamma})^{-1} = ((-1)^{l'(\phi)-l'(\gamma)}P_{\gamma\phi}^{-}$.

$$G^{\mathsf{C}} = \check{G}^0 A N. \tag{16.6c}$$

This verifies a conjecture of P. Sally that \check{G}^0AN may be regarded as a complex simple Lie group; I am grateful to him for supplying this example.

WHERE WE ARE

In context of $\operatorname{GL}(n)$ and real infinitesimal char, trying to prove

Theorem

Suppose X' is an irreducible \mathbb{H} module admitting an invariant form. Then there exists an irreducible (\mathfrak{g}, K) module X admitting an invariant form such that F(X) = X'. Moreover if

$$\langle \ , \ \rangle_X = \sum_i a_i \cdot \langle \ , \ \rangle_{Z_i} \ : \ \widehat{K} \to \mathbb{W}$$

then

$$\langle \ , \ \rangle_{F(X)} = \sum_{i} a_i \cdot \langle \ , \ \rangle_{F(Z_i)} \ : \ \widehat{W} \to \mathbb{W}.$$

In particular if X is unitary, then so it F(X).

using

$$F(X) := \operatorname{Hom}_{K_{\mathbb{R}}}(1, X \otimes \overbrace{(\mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n)}^n)$$

Given $\operatorname{GL}(n,\mathbb{R})$ invariant form $\langle \ , \ \rangle$ on X, take invariant form $(\ , \)$ on \mathbb{C}^n and build invariant form

$$\langle \ , \ \rangle \otimes (\ , \)^{\otimes n}$$
 on $X \otimes (\mathbb{C}^n)^{\otimes n}$.

Formal consequence of the definition of the \mathbb{H} action shows that this is an \mathbb{H} -invariant form and descends to one on

$$F(X) := \operatorname{Hom}_{K_{\mathbb{R}}} \left(1, X \otimes \overbrace{\left(\mathbb{C}^{n} \otimes \cdots \mathbb{C}^{n}\right)}^{n} \right)$$

Jantzen filtrations are preserved by F, etc.

Tiny problem: No $GL(n, \mathbb{R})$ invariant form exists on \mathbb{C}^n .

▶ go to invt form

 $\sigma_c :=$

antiholomorphic involution of ${\cal G}$ defining compact real form

DEFINITION

A Hermitian form \langle , \rangle on a (\mathfrak{g}, K) module X is <u>c-invariant</u> if $\langle Y \cdot u, v \rangle = \langle u, -\sigma_c(Y) \cdot v \rangle \qquad Y \in \mathfrak{g};$

$$\langle k\cdot u,v\rangle = \langle u,k^{-1}\cdot v\rangle \qquad k\in K_{\mathbb R}.$$

Minor miracle: c-invariant forms exist and can be canonically normalized. This is the starting point of ALTV to complete Vogan's strategy \bigcirc voganstrategy

 \mathbb{H} has natural conjugate linear antiautomorphism τ_c :

$$\tau_c(t_w) = t_{w^{-1}}, \quad w \in W,$$

$$\tau_c(\omega) = \overline{\omega}, \quad \omega \in V^{\vee}.$$

A Hermitian form \langle , \rangle on a \mathbb{H} module X is <u>c-invariant</u> if

$$\langle Y \cdot u, v \rangle = \langle u, -\tau_c(Y) \cdot v \rangle \qquad Y \in \mathbb{H}$$

Again they exist and are canonical (Barbasch-Ciubotaru).

Given canonical σ_c -invariant form \langle , \rangle^c on (\mathfrak{g}, K) module X and $(,)^c$ on \mathbb{C}^n , build σ_c -invariant form

$$\langle , \rangle \otimes (,)^{\otimes n}$$
 on $X \otimes (\mathbb{C}^n)^{\otimes n}$.

Formal consequence of the definition of the \mathbb{H} action shows that this is an τ_c -invariant \mathbb{H} form and descends to one on

$$F(X) := \operatorname{Hom}_{K_{\mathbb{R}}} \left(1, X \otimes \overbrace{(\mathbb{C}^n \otimes \cdots \mathbb{C}^n)}^n \right)$$

Easy analysis: Jantzen filtrations are preserved by F, etc.

Now we can follow ALTV to prove a version of the main result for c-invariant forms.

Theorem

In the setting of GL(n), suppose X' is an irreducible \mathbb{H} module with real infinitesimal character. Then there exists an irreducible (\mathfrak{g}, K) module X such that F(X) = X'. Moreover the signature characters of the canonical c-invariant forms on X and F(X) are related as follows: if

$$\langle , \rangle_X^c = \sum_i a_i \cdot \langle , \rangle_{Z_i}^c$$

then

$$\langle , \rangle_{F(X)}^{c} = \sum_{i} a_{i} \cdot \langle , \rangle_{F(Z_{i})}^{c}$$

In particular if X is unitary, then so it F(X).

Useless unless we can say something about invariant forms.

FROM *c*-forms to σ -invariant forms

Back to the real case. Recall we had σ_c (defining compact real form) and σ (defining $G_{\mathbb{R}}$). Differ by the Cartan involution for $G_{\mathbb{R}}$

$$\theta = \sigma \circ \sigma_c^{-1}.$$

How can you build a σ -invariant form \langle , \rangle on X

$$\langle Y \cdot u, v \rangle = \langle u, -\sigma(Y) \cdot v \rangle$$

from a σ_c -invariant form \langle , \rangle^c on X

$$\langle Y \cdot u, v \rangle^c = \langle u, -\sigma_c(Y) \cdot v \rangle^c$$
?

Twist by θ : The former exists iff $X \simeq X^{\theta}$; and if you fix $T: X \to X^{\theta}$, define

$$\langle u, v \rangle = \langle u, T(v) \rangle^c.$$

Trivial to deduce the σ invariance from the σ_c invariance. So really should be keeping track of this information everywhere. Always possible to choose "fundamental" δ (automorphism of G preserving K) inner to θ that also preserves a based root datum $(\Pi \subset R \subset X, \Pi^{\vee} \subset R^{\vee} \subset X^{\vee})$. Consider representations of the extended group $G^{\delta} = G \rtimes \{1, \delta\}$, that is $(\mathfrak{g}, K^{\delta})$ modules.

For $(\mathfrak{g}, K^{\delta})$ module X, can translate canonical c-invariant form into $G_{\mathbb{R}}$ invariant form.

On the Hecke algebra side, δ also gives an automorphism of \mathbb{H} . Consider modules for "extended" algebra $\mathbb{H}^{\delta} = \mathbb{H} \rtimes \{1, \delta\}$.

Same formalism shows that action of δ relates *c*-invariant forms on \mathbb{H}^{δ} modules to honest invariant forms.

BACK TO GL(N) TO FINISH THE PROOF

Redo the functors for groups and algebras extended by fundamental automorphism δ :

$$F : (\mathfrak{g}, K^{\delta}) \operatorname{-mod} \longrightarrow \mathbb{H}^{\delta} \operatorname{-mod}$$

The new results of Lusztig-Vogan imply

```
decomposition numbers for \mathbb{H}^{\delta} modules
```

are related to a subset of

decomposition numbers for $(\mathfrak{g}, K^{\delta})$ modules.

So the functors once again have good properties, preserve Jantzen filtrations, etc.

The rest is just following your nose....

BUT STILL NOTHING ABOUT THE ORBIT METHOD...

Happy Birthday!