Transfer results for real groups

Diana Shelstad

May 20, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ${\it G}:$ a connected reductive algebraic group defined over ${\mathbb R}$
 - study some aspects of invariant harmonic analysis on $G(\mathbb{R})$ involved in endoscopic transfer

Introduction 1

${\it G}:$ a connected reductive algebraic group defined over ${\mathbb R}$

- study some aspects of invariant harmonic analysis on $G(\mathbb{R})$ involved in endoscopic transfer
- transfer: first for orbital integrals [geometric side], then look for interpretation of the dual transfer in terms of traces [spectral side]

part of broader theme involving stable conjugacy, packets of representations, stabilization of the Arthur-Selberg trace formula, ...

concerned here with explicit structure, formulas useful in applications

Setting has more than G alone

• start with quasi-split data: G^* quasi-split group over $\mathbb R$

fix [harmlessly] an **R**-splitting $spl^* = (B^*, T^*, \{X_{\alpha}\})$... $\Gamma = Gal(\mathbb{C}/\mathbb{R}) = \{1, \sigma\}$ preserves each component

Setting has more than G alone

• start with quasi-split data: G^* quasi-split group over $\mathbb R$

fix [harmlessly] an **R**-splitting $spl^* = (B^*, T^*, \{X_{\alpha}\})$... $\Gamma = Gal(\mathbb{C}/\mathbb{R}) = \{1, \sigma\}$ preserves each component

 then have connected complex dual group G[∨] and dual splitting spl[∨] = (B, T, {X_{α[∨]}}) that is preserved by the real Weil group W_R

here $W_{\mathbb{R}}$ acts on G^{\vee} and spl^{\vee} through $W_{\mathbb{R}} \to \Gamma$ then *L*-group ${}^{L}G := G^{\vee} \rtimes W_{\mathbb{R}}$

[from $W_{\mathbb{R}}$ action: toral chars with special symms for geom side of transfer, shifts in inf char for spectral side, etc]

G as inner form of a quasi-split G^*

• consider pair (G, η) , where isom $\eta : G \to G^*$ is inner twist *i.e.* the automorphism $\eta \ \sigma(\eta)^{-1}$ of G^* is inner

inner class of (G, η) consists of (G, η') with $\eta' \eta^{-1}$ inner [inner class is what matters in constructions here]

G as inner form of a quasi-split G^*

• consider pair (G, η) , where isom $\eta : G \to G^*$ is inner twist *i.e.* the automorphism $\eta \ \sigma(\eta)^{-1}$ of G^* is inner

inner class of (G, η) consists of (G, η') with $\eta' \eta^{-1}$ inner [inner class is what matters in constructions here]

 t(G) := set of [stable] conjugacy classes of maximal tori defined over R in G

t(G) as lattice: $class(T) \preccurlyeq class(T') \Leftrightarrow$ maximal \mathbb{R} -split subtorus S_T of T is $G(\mathbb{R})$ -conjugate to a subtorus of $S_{T'}$

Proposition: η embeds t(G) in $t(G^*)$ as an initial segment

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Endoscopic group H_1 comes from certain dual data [SED]

• semisimple element s in
$$G^{\vee}$$

 $H^{\vee} := Cent(s, G^{\vee})^{0}$
subgroup \mathcal{H} of ${}^{L}G$ that is split extension of $W_{\mathbb{R}}$ by H^{\vee} ...
extract L-action, L-group ${}^{L}H$ and thus dual quasi-split
group H over \mathbb{R} , pass to z-extension H_{1}
 $[1 \rightarrow Z_{1} \rightarrow H_{1} \rightarrow H \rightarrow 1$, with Z_{1} central induced torus]
 ${}^{L}H_{1}$
SED \mathfrak{e}_{z} : (s, \mathcal{H}, H) and (H_{1}, ξ_{1}) , where \mathcal{H}
 $incl$

Endoscopic group H_1 comes from certain dual data [SED]

- semisimple element s in G^{\vee} $H^{\vee} := Cent(s, G^{\vee})^0$ subgroup \mathcal{H} of ^LG that is split extension of $W_{\mathbb{R}}$ by H^{\vee} ... extract L-action, L-group ${}^{L}H$ and thus dual guasi-split group H over \mathbb{R} , pass to z-extension H_1 $[1 \rightarrow Z_1 \rightarrow H_1 \rightarrow H \rightarrow 1$, with Z_1 central induced torus] LH_1 **SED** \mathfrak{e}_z : (s, \mathcal{H}, H) and (H_1, ξ_1) , where \mathcal{H} incl
- transfer involves $H_1(\mathbb{R})$ and $G(\mathbb{R})$, for each inner form (G, η) of G^* [funct. says ...]

Geometric comparisons for $H_1(\mathbb{R})$ and $G(\mathbb{R})$

•
$$t(H_1)$$
 (G) $t(G)$

via maps on maximal tori: (i) z-extension $H_1 \rightarrow H$ (ii) admissible homs $T_H \rightarrow T_{G^*}$ [defn SED, Steinberg thm], (iii) inner twist $\eta : G \rightarrow G^*$

or as Γ -equivariant maps on semisimple conjugacy classes in complex points of the groups. Strongly reg class in G or G^* : centralizer of element is torus. Strongly G-reg class in H_1 or H: image of class is strongly regular in G^*

Geometric comparisons for $H_1(\mathbb{R})$ and $G(\mathbb{R})$

•
$$t(H_1)$$
 (G) $t(G)$

via maps on maximal tori: (i) z-extension $H_1 \rightarrow H$ (ii) admissible homs $T_H \rightarrow T_{G^*}$ [defn SED, Steinberg thm], (iii) inner twist $\eta: G \to G^*$

or as Γ -equivariant maps on semisimple conjugacy classes in complex points of the groups. Strongly reg class in G or G^* : centralizer of element is torus. Strongly G-reg class in H_1 or H: image of class is strongly regular in G^*

• the very regular set in $H_1(\mathbb{R}) \times G(\mathbb{R})$: pairs (γ_1, δ) with δ strongly regular in $G(\mathbb{R})$, γ_1 strongly G-regular in $H_1(\mathbb{R})$ ・ロト (四) (日) (日) (日) (日)

Related pairs of points

very regular pair (γ₁, δ) is related if there is δ* in G*(ℝ) for which γ₁ → γ → δ* ← δ
 [alt: γ₁ is an image/norm of δ]

Related pairs of points

- very regular pair (γ_1, δ) is related if there is δ^* in $G^*(\mathbb{R})$ for which $\gamma_1 \longrightarrow \gamma \longrightarrow \delta^* \longleftarrow \delta$ [alt: γ_1 is an image/norm of δ]
- generalize to all semisimple pairs (γ_1, δ) , then related (γ_1, δ) is equisingular if $Cent(\gamma, H)^0$ is an inner form of $Cent(\delta, G)^0$...

outside equisingular set: e.g. related pairs (u_1, u) , with u_1 , u regular unipotent in $H_1(\mathbb{R})$, $G(\mathbb{R})$ respectively if G is quasi-split, or more generally (γ_1, δ) regular ...

but need transfer factors $\Delta(\gamma_1, \delta)$ only on very regular set to fully define transfer of test functions on geometric side, then others via limit thms etc, all local fields of char zero ... ◆□ → ◆ 三 → ▲ 三 → のへぐ

Related pairs of representations

• arrange pairs (π_1, π) on spectral side via Langlands/Arthur parameters

L: consider continuous homs $w \mapsto \varphi(w) = \varphi_0(w) \times w$ of $W_{\mathbb{R}}$ into ${}^LG = G^{\vee} \rtimes W_{\mathbb{R}}$, require image of φ_0 lie in semisimple set, bounded mod center; G^{\vee} acts by conjugation on such homs, essentially tempered parameter is [relevant] G^{\vee} -conj. class

Related pairs of representations

• arrange pairs (π_1, π) on spectral side via Langlands/Arthur parameters

L: consider continuous homs $w \mapsto \varphi(w) = \varphi_0(w) \times w$ of $W_{\mathbb{R}}$ into ${}^L G = G^{\vee} \rtimes W_{\mathbb{R}}$, require image of φ_0 lie in semisimple set, bounded mod center; G^{\vee} acts by conjugation on such homs, essentially tempered parameter is [relevant] G^{\vee} -conj. class

• related pairs: back to SED, require (π_1, π) have related parameters (φ_1, φ) $[\varphi_1(W_{\mathbb{R}}) \subset \xi_1(\mathcal{H}), \ \varphi \sim \xi_1^{-1} \circ \varphi_1]$

very regular related pair (π_1, π) : also require $Cent(\varphi(\mathbb{C}^{\times}), G^{\vee})$ abelian, then also $Cent(\varphi_1(\mathbb{C}^{\times}), H^{\vee})$ abelian ... regular infinitesimal chars

Extending ...

• transfer factors first for very regular related pairs (π_1, π) of ess. tempered representations

extend to all ess. tempered; then recapture (for given pair test functions) geom side from ess. temp spectral side

extension uses a coherent continuation for parameters, correct for packets, including relevance

Extending ...

 transfer factors first for very regular related pairs (π₁, π) of ess. tempered representations

extend to all ess. tempered; then recapture (for given pair test functions) geom side from ess. temp spectral side

extension uses a coherent continuation for parameters, correct for packets, including relevance

• A: consider G^{\vee} -conj. classes of continuous homs $\psi = (\varphi, \rho) : W_{\mathbb{R}} \times SL(2, \mathbb{C}) \to {}^{L}G$, with φ as before ...

 $M^{\vee} := Cent(\varphi(\mathbb{C}^{\times}), G^{\vee})$ is Levi in G^{\vee} , contains image of ρ $\mathcal{M} :=$ subgroup of ${}^{L}G$ generated by M^{\vee} and image of ψ

Some pairs of Arthur parameters

 call ψ u-regular if image of ρ contains reg unip elt of M[∨]; ess tempered ψ = (φ, triv) is u-regular ⇔ φ regular

consider pairs (ψ_1, ψ) related (as before) and with ψ *u*-regular, then ψ_1 also *u*-regular; components φ_1, φ are equi-singular in approp sense

Some pairs of Arthur parameters

 call ψ u-regular if image of ρ contains reg unip elt of M[∨]; ess tempered ψ = (φ, triv) is u-regular ⇔ φ regular

consider pairs (ψ_1, ψ) related (as before) and with ψ *u*-regular, then ψ_1 also *u*-regular; components φ_1, φ are equi-singular in approp sense

structure of *M* : extract *L*-action and *L*-group ^{*L*}*M M*[∨] is Levi ⇒ *natural* isomorphisms ^{*L*}*M* → *M*

 $M^* :=$ quasi-split group over \mathbb{R} dual to LM M^* shares elliptic maximal torus with $G \Leftrightarrow$ there is elt of \mathcal{M} acting as -1 on all roots of spl^{\vee}

Cuspidal-elliptic setting

 elliptic parameter ψ [Arthur]: identity component of centralizer in G^V of Image(ψ) is central in G^V [ess tempered case: only parameters for discrete series]

elliptic *u*-regular ψ points to packets constructed by Adams-Johnson, plus either discrete series or limit of discrete series packets, same inf char

Cuspidal-elliptic setting

 elliptic parameter ψ [Arthur]: identity component of centralizer in G^V of Image(ψ) is central in G^V [ess tempered case: only parameters for discrete series]

elliptic *u*-regular ψ points to packets constructed by Adams-Johnson, plus either discrete series or limit of discrete series packets, same inf char

G cuspidal: has elliptic maximal torus
 SED ε_z elliptic: identity comp of Γ-invariants in the center of H^V is central in G^V... call this cuspidal-elliptic setting

Proposition: in cusp-ell setting have elliptic *u*-regular related pairs (ψ_1, ψ) , and only in this setting

Test functions, measures

• on $G(\mathbb{R})$: Harish-Chandra Schwartz functions, then $C_c^{\infty}(G(\mathbb{R}))$, also subspaces of *K*-finite ...

on $H_1(\mathbb{R})$: corresponding types of test functions but modulo $Z_1(\mathbb{R}) = Ker(H_1(\mathbb{R}) \rightarrow H(\mathbb{R}))$, SED e_z determines character ϖ_1 on $Z_1(\mathbb{R})$: require translation action of $Z_1(\mathbb{R})$ on test functions is via $(\varpi_1)^{-1}$

Test functions, measures

• on $G(\mathbb{R})$: Harish-Chandra Schwartz functions, then $C_c^{\infty}(G(\mathbb{R}))$, also subspaces of *K*-finite ...

on $H_1(\mathbb{R})$: corresponding types of test functions but modulo $Z_1(\mathbb{R}) = Ker(H_1(\mathbb{R}) \rightarrow H(\mathbb{R}))$, SED e_z determines character ϖ_1 on $Z_1(\mathbb{R})$: require translation action of $Z_1(\mathbb{R})$ on test functions is via $(\varpi_1)^{-1}$

 use test measures *fdg* and *f*₁*dh*₁ to remove dependence of transfer on choice of Haar measures *dg*, *dh*₁

compatible haar measures on tori associated to very regular related pair of points (γ_1, δ) ... via $T_1 \rightarrow T_H \rightarrow T$

Transfer factors

• $(\gamma_1, \delta), (\gamma'_1, \delta')$ very regular related pairs of points, define certain canonical relative factor $\Delta(\gamma_1, \delta; \gamma'_1, \delta')$ as product of three terms: $\Delta = \Delta_I \Delta_{II} \Delta_{III}$ [all depend only on stable conj cls γ_1, γ'_1 , and conj cls δ, δ']

terms Δ_I , ..., Δ_{III} each have two additional dependences that cancel in product; only Δ_{III} genuinely relative, measures position in stable class, other terms make this canonical

 $(\pi_1, \pi), (\pi'_1, \pi')$ very regular related ess temp pairs, define canonical relative factor $\Delta(\pi_1, \pi; \pi'_1, \pi')$ as product of three ... [all depend only on packets of π_1, π'_1 , and on π, π']

Transfer factors

• $(\gamma_1, \delta), (\gamma'_1, \delta')$ very regular related pairs of points, define certain canonical relative factor $\Delta(\gamma_1, \delta; \gamma'_1, \delta')$ as product of three terms: $\Delta = \Delta_I \Delta_{II} \Delta_{III}$ [all depend only on stable conj cls γ_1, γ'_1 , and conj cls δ, δ']

terms Δ_I , ..., Δ_{III} each have two additional dependences that cancel in product; only Δ_{III} genuinely relative, measures position in stable class, other terms make this canonical

 $(\pi_1, \pi), (\pi'_1, \pi')$ very regular related ess temp pairs, define canonical relative factor $\Delta(\pi_1, \pi; \pi'_1, \pi')$ as product of three ... [all depend only on packets of π_1, π'_1 , and on π, π']

• geom, spec terms have same structure and dependences \Rightarrow canonical $\Delta(\gamma_1, \delta; \pi_1, \pi)$ also

Compatibility

• absolute factors $\Delta(\gamma_1, \delta)$ and $\Delta(\pi_1, \pi)$: require for all above pairs

$$\Delta(\gamma_1, \delta) / \Delta(\gamma'_1, \delta') = \Delta(\gamma_1, \delta; \gamma'_1, \delta') \Delta(\pi_1, \pi) / \Delta(\pi'_1, \pi') = \Delta(\pi_1, \pi; \pi'_1, \pi')$$

compatible factors $\Delta(\gamma_1, \delta)$ and $\Delta(\pi_1, \pi)$: for some, and thence all, pairs (γ_1, δ) , (π_1, π) we have

$$\Delta(\gamma_1, \delta) / \Delta(\pi_1, \pi) = \Delta(\gamma_1, \delta; \pi_1, \pi)$$

Compatibility

• absolute factors $\Delta(\gamma_1, \delta)$ and $\Delta(\pi_1, \pi)$: require for all above pairs

$$\Delta(\gamma_1, \delta) / \Delta(\gamma'_1, \delta') = \Delta(\gamma_1, \delta; \gamma'_1, \delta') \Delta(\pi_1, \pi) / \Delta(\pi'_1, \pi') = \Delta(\pi_1, \pi; \pi'_1, \pi')$$

compatible factors $\Delta(\gamma_1, \delta)$ and $\Delta(\pi_1, \pi)$: for some, and thence all, pairs (γ_1, δ) , (π_1, π) we have

$$\Delta(\gamma_1,\delta)/\Delta(\pi_1,\pi) = \Delta(\gamma_1,\delta;\pi_1,\pi)$$

 particular normalizations not needed in main theorem used later for structure results, precise inversion results ...

data for statement of main theorem: quasisplit group, SED, inner form, compatible factors

Theorem

 For each test measure fdg on G(ℝ) there exists a test measure f₁dh₁ on H₁(ℝ) such that

$$SO(\gamma_1, f_1 dh_1) = \sum_{\{\delta\}} \Delta(\gamma_1, \delta) O(\delta, fdg)$$
(1)

for all strongly *G*-regular γ_1 in $H_1(\mathbb{R})$.

Theorem

 For each test measure fdg on G(R) there exists a test measure f₁dh₁ on H₁(R) such that

$$SO(\gamma_1, f_1 dh_1) = \sum_{\{\delta\}} \Delta(\gamma_1, \delta) \ O(\delta, fdg)$$
(1)

for all strongly G-regular γ_1 in $H_1(\mathbb{R})$.

• Then also

St-Trace
$$\pi_1(f_1dh_1) = \sum_{\{\pi\}} \Delta(\pi_1, \pi)$$
 Trace $\pi(fdg)$ (2)

for all tempered irreducible representations π_1 of $H_1(\mathbb{R})$ such that the restriction of π_1 to $Z_1(\mathbb{R})$ acts as ω_1 .

Theorem

 For each test measure fdg on G(ℝ) there exists a test measure f₁dh₁ on H₁(ℝ) such that

$$SO(\gamma_1, f_1 dh_1) = \sum_{\{\delta\}} \Delta(\gamma_1, \delta) \ O(\delta, fdg)$$
(1)

for all strongly G-regular γ_1 in $H_1(\mathbb{R})$.

• Then also

St-Trace
$$\pi_1(f_1dh_1) = \sum_{\{\pi\}} \Delta(\pi_1, \pi)$$
 Trace $\pi(fdg)$ (2)

for all tempered irreducible representations π_1 of $H_1(\mathbb{R})$ such that the restriction of π_1 to $Z_1(\mathbb{R})$ acts as ω_1 .

• Conversely if fdg and f_1dh_1 satisfy (2) then they satisfy (1).

More on (1) : $SO(\gamma_1, f_1 dh_1) = \sum_{\{\delta\}} \Delta(\gamma_1, \delta) O(\delta, fdg)$

 Δ(γ₁, δ) := 0 if very regular pair (γ₁, δ) is not related, then sum on right is over str reg conjugacy classes {δ}

More on (1) : $SO(\gamma_1, f_1 dh_1) = \sum_{\{\delta\}} \Delta(\gamma_1, \delta) O(\delta, fdg)$

 Δ(γ₁, δ) := 0 if very regular pair (γ₁, δ) is not related, then sum on right is over str reg conjugacy classes {δ}

 $O(\delta, \mathit{fdg}) := \int_{\mathcal{T}_{\delta}(\mathbb{R}) \setminus G(\mathbb{R})} f(g^{-1} \delta g) \frac{dg}{dt_{\delta}},$ where $\mathcal{T}_{\delta} = \mathit{Cent}(\delta, G)$

More on (1) : $SO(\gamma_1, f_1 dh_1) = \sum_{\{\delta\}} \Delta(\gamma_1, \delta) O(\delta, fdg)$

• $\Delta(\gamma_1, \delta) := 0$ if very regular pair (γ_1, δ) is not related, then sum on right is over str reg conjugacy classes $\{\delta\}$

$$O(\delta, fdg) := \int_{T_{\delta}(\mathbb{R}) \setminus G(\mathbb{R})} f(g^{-1} \delta g) \frac{dg}{dt_{\delta}},$$

where $T_{\delta} = Cent(\delta, G)$

$$SO(\gamma_1, f_1 dh_1) := \sum_{\{\gamma_1'\}} \int_{\mathcal{T}_{\gamma_1'}(\mathbb{R}) \setminus G(\mathbb{R})} f_1(h_1^{-1} \gamma_1' h_1) \frac{dh_1}{dt_{\gamma_1'}},$$

where the sum is over conjugacy classes $\{\gamma'_1\}$ in the stable conjugacy class of γ_1 , compatible measure $dt_{\gamma'_1}$ on $T_{\gamma'_1}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

More on (2): St-Trace $\pi_1(f_1dh_1) = \sum_{\pi} \Delta(\pi_1, \pi)$ Trace $\pi(fdg)$

$$\pi_1(f_1dh_1) := \int_{Z_1(\mathbb{R}) \setminus H_1(\mathbb{R})} f_1(h_1) \pi_1(h_1) dh_1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

More on (2): St-Trace $\pi_1(f_1dh_1) = \sum_{\pi} \Delta(\pi_1, \pi)$ Trace $\pi(fdg)$

$$\pi_1(f_1dh_1) := \int_{Z_1(\mathbb{R}) \setminus H_1(\mathbb{R})} f_1(h_1) \pi_1(h_1) dh_1$$

St-Trace
$$\pi_1(\mathit{f}_1\mathit{dh}_1) := \sum_{\pi_1'}$$
 Trace $\pi_1'(\mathit{f}_1\mathit{dh}_1)$,

where the sum is over π'_1 in the packet of π_1

More on (2): St-Trace $\pi_1(f_1dh_1) = \sum_{\pi} \Delta(\pi_1, \pi)$ Trace $\pi(fdg)$

$$\pi_1(f_1dh_1) := \int_{Z_1(\mathbb{R}) \setminus H_1(\mathbb{R})} f_1(h_1) \pi_1(h_1) dh_1$$

St-Trace
$$\pi_1(f_1dh_1):=\sum_{\pi_1'}$$
 Trace $\pi_1'(f_1dh_1)$,

where the sum is over π'_1 in the packet of π_1

 Δ(π₁, π) has been extended to all ess tempered pairs (π₁, π). Also Δ(π₁, π) := 0 if pair (π₁, π) is not related, then sum on right is over all ess tempered π

Next steps

geom side: begin extensions as already mentioned,
 ... new factors involve more general invariants, will use "same type of structure" on spectral side

spec side: first (1) with particular normalizations ... in general, $\Delta(\pi_1, \pi)$ is a fourth root of unity, up to constant, on all tempered related pairs

Next steps

geom side: begin extensions as already mentioned,
 ... new factors involve more general invariants, will use "same type of structure" on spectral side

spec side: first (1) with particular normalizations ... in general, $\Delta(\pi_1, \pi)$ is a fourth root of unity, up to constant, on all tempered related pairs

Whittaker data for quasi-split G: G(ℝ)-conjugacy class of pairs (B, λ) : B = Borel subgroup defined over ℝ, λ = character on real points of unipotent radical of B [harmless: G = G*, (B, λ) from spl* via add char ℝ*]

Normalization of transfer factors

 define compatible absolute factors Δ_{Wh}(γ₁, δ), Δ_{Wh}(π₁, π) [quasi-split case: have compatible absolute factors Δ₀ depending on *spl*^{*}; multiply each by certain ε-factor]

Proposition: For all essentially tempered related pairs (π_1, π) , we have

$$\Delta_{Wh}(\pi_1,\pi)=\pm 1.$$

note: on geom side, for very regular (γ_1, δ) near (1, 1), we have the shape $\Delta_{Wh}(\gamma_1, \delta) = [sign].[\varepsilon].[shift-char]$

Normalization of transfer factors

 define compatible absolute factors Δ_{Wh}(γ₁, δ), Δ_{Wh}(π₁, π) [quasi-split case: have compatible absolute factors Δ₀ depending on *spl*^{*}; multiply each by certain ε-factor]

Proposition: For all essentially tempered related pairs (π_1, π) , we have

$$\Delta_{Wh}(\pi_1,\pi)=\pm 1.$$

note: on geom side, for very regular (γ_1, δ) near (1, 1), we have the shape $\Delta_{Wh}(\gamma_1, \delta) = [sign].[\varepsilon].[shift-char]$

• normalization extends to inner forms (G, η) such that $\eta \ \sigma(\eta)^{-1} = Int(u(\sigma))$, where $u(\sigma)$ is cocycle in G_{sc}^* .

Structure on essentially tempered packets ...

• begin with cuspidal-elliptic setting, elliptic parameter φ

 $S_{\varphi} := Cent(Image \ \varphi, G^{\vee})$ for Langl φ (sim for Arthur ψ)

Example: G^* simply-connected semisimple, so G^{\vee} adjoint, recall splitting $spl^{\vee} = (\mathcal{B}, \mathcal{T}, \{X_{\alpha^{\vee}}\})$ for G^{\vee} . Then: since φ elliptic we can arrange $S_{\varphi} = \text{elts in } \mathcal{T}$ of order ≤ 2

Structure on essentially tempered packets ...

• begin with cuspidal-elliptic setting, elliptic parameter φ

 $S_{\varphi} := Cent(Image \ \varphi, G^{\vee})$ for Langl φ (sim for Arthur ψ)

Example: G^* simply-connected semisimple, so G^{\vee} adjoint, recall splitting $spl^{\vee} = (\mathcal{B}, \mathcal{T}, \{X_{\alpha^{\vee}}\})$ for G^{\vee} . Then: since φ elliptic we can arrange $S_{\varphi} = \text{elts in } \mathcal{T}$ of order ≤ 2

for each (G, η) with Whitt norm, consider π in packet for φ, then we will identify π with a character on S_φ ... get certain extended packet for G* as dual of quotient of S_φ [ess temp]
 In example: extended packet is exactly dual of S_φ

will use particular case of construction from twisted setting

Fundamental splittings

• recall: \mathbb{R} -splitting $spl^* = (B^*, T^*, \{X_{\alpha}\})$ for G^* with dual spl^{\vee} for G^{\vee}

for any G and T fundamental maximal torus in G : pair (B, T) fundamental if $-\sigma$ preserves roots T in B; there is a single stable conj. class of such pairs

fund splitting: extend fund pair (B, T) to splitting $spl = (B, T, \{X_{\alpha}\})$ where simple triples $\{X_{\alpha}, H_{\alpha}, X_{-\alpha}\}$ are chosen $(H_{\alpha} = \text{coroot})$ and $\sigma X_{\alpha} = X_{\sigma\alpha}$ if $-\sigma \alpha \neq \alpha$, $\sigma X_{\alpha} = \varepsilon_{\alpha} X_{-\alpha}$, where $\varepsilon_{\alpha} = \pm 1$ otherwise

any two extensions of (B, T) are conjugate under $T_{sc}(\mathbb{R})$ Whittaker data determines fund splitting spl_{Wh} for G^*

Fundamental splittings

• recall: \mathbb{R} -splitting $spl^* = (B^*, T^*, \{X_{\alpha}\})$ for G^* with dual spl^{\vee} for G^{\vee}

for any G and T fundamental maximal torus in G : pair (B, T) fundamental if $-\sigma$ preserves roots T in B; there is a single stable conj. class of such pairs

fund splitting: extend fund pair (B, T) to splitting $spl = (B, T, \{X_{\alpha}\})$ where simple triples $\{X_{\alpha}, H_{\alpha}, X_{-\alpha}\}$ are chosen $(H_{\alpha} = \text{coroot})$ and $\sigma X_{\alpha} = X_{\sigma\alpha}$ if $-\sigma \alpha \neq \alpha$, $\sigma X_{\alpha} = \varepsilon_{\alpha} X_{-\alpha}$, where $\varepsilon_{\alpha} = \pm 1$ otherwise

any two extensions of (B, T) are conjugate under $T_{sc}(\mathbb{R})$ Whittaker data determines fund splitting spl_{Wh} for G^*

• back to cusp-ell setting: attach fundamental spl_{π} [or pair] to elliptic π via Harish-Chandra data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Extended groups, packets

• spl_{π} is determined uniquely up to $G(\mathbb{R})$ -conjugacy

Extended groups, packets

- spl_{π} is determined uniquely up to $G(\mathbb{R})$ -conjugacy
- now form extended group [*K*-group] of quasi-split type: **G** := $G_0 \sqcup G_1 \sqcup G_2 \sqcup ... \sqcup G_n$ [harmless] take $(G_0, \eta_0, u_0(\sigma)) = (G^*, id, id)$

general components of **G** : take cocycles $u_j(\sigma)$ in T_{sc} representing the fibers of $H^1(\Gamma, G_{sc}^*) \rightarrow H^1(\Gamma, G^*)$ and then (G_j, η_j) with $\eta_j \sigma(\eta_j)^{-1} = Int \ u_j(\sigma) \ [spl_{Wh} = (B, T...]$

Extended groups, packets

- spl_{π} is determined uniquely up to $G(\mathbb{R})$ -conjugacy
- now form extended group [*K*-group] of quasi-split type: **G** := $G_0 \sqcup G_1 \sqcup G_2 \sqcup ... \sqcup G_n$ [harmless] take $(G_0, \eta_0, u_0(\sigma)) = (G^*, id, id)$

general components of **G** : take cocycles $u_j(\sigma)$ in T_{sc} representing the fibers of $H^1(\Gamma, G_{sc}^*) \to H^1(\Gamma, G^*)$ and then (G_j, η_j) with $\eta_j \sigma(\eta_j)^{-1} = Int \ u_j(\sigma) \ [spl_{Wh} = (B, T...]$

• form $\Pi := \Pi_0 \sqcup \Pi_1 \sqcup \Pi_2 \sqcup ... \sqcup \Pi_n$ as extended packet for [ess temp] φ Π correct size ... G^* scss: $|\Pi| = |H^1(\Gamma, T)|$

Invariants ...

• Example: write theorem for the case G^* scss consider component G_j and rep $\pi = \pi_j$ of $G_j(\mathbb{R})$ in Π_j

there is unique $\eta_{\pi} = Int(x_{\pi}) \circ \eta_{j}$, where $x_{\pi} \in G_{sc}^{*} = G^{*}$, that transports $spl_{\pi_{j}}$ to spl_{Wh} ... then $v_{\pi}(\sigma) := x_{\pi}u_{j}(\sigma)\sigma(x_{\pi})^{-1}$ has $\eta_{\pi}\sigma(\eta_{\pi})^{-1} = Int v_{\pi}(\sigma)$ $inv(\pi) :=$ class of cocycle $v_{\pi}(\sigma)$ in $H^{1}(\Gamma, T)$

 $\pi \mapsto inv(\pi)$: well-defined, bijective $\Pi \to H^1(\Gamma, T)$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

Invariants ...

• Example: write theorem for the case G^* scss consider component G_i and rep $\pi = \pi_i$ of $G_i(\mathbb{R})$ in Π_i

there is unique $\eta_{\pi} = Int(x_{\pi}) \circ \eta_{j}$, where $x_{\pi} \in G_{sc}^{*} = G^{*}$, that transports $spl_{\pi_{j}}$ to spl_{Wh} ... then $v_{\pi}(\sigma) := x_{\pi}u_{j}(\sigma)\sigma(x_{\pi})^{-1}$ has $\eta_{\pi}\sigma(\eta_{\pi})^{-1} = Int v_{\pi}(\sigma)$

 $inv(\pi) := class of cocycle v_{\pi}(\sigma) in H^1(\Gamma, T)$ $\pi \mapsto inv(\pi) : well-defined, bijective \Pi \to H^1(\Gamma, T)$

• $spl^{\vee} = (spl^*)^{\vee}$ and $spl^* \to spl_{Wh}$ provide $\mathcal{T} \to \mathcal{T}^{\vee}$ under which S_{φ} isom to $(\mathcal{T}^{\vee})^{\Gamma}$; write $s_{\mathcal{T}}$ for image of s

recall Tate-Nakayama duality provides perfect pairing

$$\langle -, - \rangle_{tn} : H^1(\Gamma, T) \times (T^{\vee})^{\Gamma} \to \{\pm 1\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Apply to transfer

• now have perfect pairing $\Pi \times S_{\varphi} \to \{\pm 1\}$ given by $(\pi, s) \mapsto \langle \pi, s \rangle := \langle inv(\pi), s_T \rangle_{tn}$

note: $s \mapsto \langle \pi, s \rangle$ trivial char when π is unique generic in Π for given Whittaker data

Apply to transfer

• now have perfect pairing $\Pi \times S_{\varphi} \to \{\pm 1\}$ given by $(\pi, s) \mapsto \langle \pi, s \rangle := \langle inv(\pi), s_T \rangle_{tn}$

note: $s \mapsto \langle \pi, s \rangle$ trivial char when π is unique generic in Π for given Whittaker data

 for s ∈ S_φ: construct elliptic SED e_s = (s,...), with *H*_s := subgroup of ^LG generated by Cent(s, G[∨])⁰ and the image of φ, along with a preferred related pair (φ_s, φ)

use Whitt. norm for transfer from attached endoscopic group $H_1^{(s)}$ to **G**

Theorem (strong basepoint property):

 $\Delta_{Wh}(\pi_s,\pi) = \langle \pi,s \rangle$

Corollary:

$$\textit{Trace } \pi(\textit{fdg}) = \left| \textit{S}_{\varphi} \right|^{-1} \sum\nolimits_{s \in \textit{S}_{\varphi}} \ \langle \pi, s \rangle \ \textit{St-Trace } \pi_{s}(\textit{f}_{1}^{(s)}\textit{dh}_{1}^{(s)})$$

thm for any G of quasi-split type [drop $G^* = G_{sc}^*$] and φ ess bded parameter : replace S_{φ} by quotient, extend defn pairing $\langle \pi, * \rangle$... need uniform decomp of unit princ series

Theorem (strong basepoint property):

 $\Delta_{Wh}(\pi_s,\pi) = \langle \pi,s \rangle$

Corollary:

$$\textit{Trace } \pi(\textit{fdg}) = \left| \textit{S}_{\varphi} \right|^{-1} \sum\nolimits_{s \in \textit{S}_{\varphi}} \ \langle \pi, s \rangle \ \textit{St-Trace } \pi_{s}(\textit{f}_{1}^{(s)}\textit{dh}_{1}^{(s)})$$

thm for any G of quasi-split type [drop $G^* = G_{sc}^*$] and φ ess bded parameter : replace S_{φ} by quotient, extend defn pairing $\langle \pi, * \rangle$... need uniform decomp of unit princ series

 general inner forms: can arrange in extended groups but lack natural basepoint; pick bp (G, η) and use Kaletha's norm of transfer factors on this group [rigidify {η}, refine EDS e_z]

then can norm all factors for extended group and get variant of quasi-split structure; ... but need Kaletha's cohom theory to identify explicitly all constants in transfer

Data attached to *u*-regular parameter

• back to cusp-ell setting, method for spectral factors extends: now take ψ elliptic *u*-regular Arthur param

transport explicit data for ψ to elliptic T in G^* [as for s, use spl^{\vee} dual spl^* , $spl^* \to spl_{Wh} = (B, T, \{X_{\alpha}\})$]

Data attached to *u*-regular parameter

• back to cusp-ell setting, method for spectral factors extends: now take ψ elliptic *u*-regular Arthur param

transport explicit data for ψ to elliptic T in G^* [as for s, use spl^{\vee} dual spl^* , $spl^* \to spl_{Wh} = (B, T, \{X_{\alpha}\})$]

• explicit data: have $\psi = (\varphi, \rho)$ and $\xi_M : {}^LM \to \mathcal{M}$ there is an (almost) canonical form: $\varphi(z) = z^{\mu} \overline{z}^{\sigma_M \mu} \times z$ for $z \in \mathbb{C}^{\times}$ and $\varphi(w_{\sigma}) = e^{2\pi i \lambda} \xi_M(w_{\sigma})$, where $w_{\sigma} \to \sigma$ and $w_{\sigma}^2 = -1$

 $\mu, \lambda \in X_*(\mathcal{T}) \otimes \mathbb{C}$ have several special properties ... these determine a character on $M^*(\mathbb{R})$ and inner forms, also particular (s-)elliptic parameter $[M^* \rightarrow]$

Attached packets

M^{*} as subgroup of *G*^{*} generated by *T* and coroots for *M*[∨] as roots of *T* in *G*^{*} is quasi-split Levi group
 [in *Cart*-stable parabolic of *G*^{*}, *Cart* = *Int*(*t*₀), *t*₀ ∈ *T*(ℝ)]

Arthur packet for inner form (G, η) : use any η' inner to η with $(\eta')^{-1}: T \to G$ defined over \mathbb{R} to transport data for ψ to certain *character data* for G, gather reps so defined

character data: for irred ess unitary repn cohom induced from character on $M'(\mathbb{R})$, where M' is twist of M^* by η' ... this is packet defined by Adams-Johnson

also get discrete series or limit packet, same inf char

Transfer for these packets ...

 now S_ψ = Γ-invariants in Center(M[∨]) ⊆ Γ-invariants in T example: extended group G of quasi-split type, scss

attach M_{π} , spl_{π} , $q_{\pi} = q(M_{\pi})$ to $\pi \in \Pi$ $inv(\pi)$ well-defined up to cocycles generated by roots of M^{\vee} as coroots for T, so that $\langle \pi, s \rangle := \langle inv(\pi), s \rangle_{tn}$ well-def

extend relative spectral factors, recover identities from Adams-Johnson, Arthur, Kottwitz results ...

KS setup, briefly

same approach to examine twisted setting

quasi-split data now includes \mathbb{R} -automorphism θ^* of G^* that preserves \mathbb{R} -splitting *spl*^{*}, finite order [also dual datum for tw char ϖ on real pts any inner form]

KS setup, briefly

same approach to examine twisted setting

quasi-split data now includes \mathbb{R} -automorphism θ^* of G^* that preserves \mathbb{R} -splitting *spl*^{*}, finite order [also dual datum for tw char ϖ on real pts any inner form]

 inner form (G, η, θ) : includes R-automorphism θ of G such that η transports θ to θ* up to inner automorphism

inner class of $(G, \eta, \theta) : (G, \eta', \theta')$, where η' inner form of η , θ coincides with θ' up to inner autom by element of $G(\mathbb{R})$

- ロ ト - 4 回 ト - 4 □ - 4

KS setup, briefly

same approach to examine twisted setting

quasi-split data now includes \mathbb{R} -automorphism θ^* of G^* that preserves \mathbb{R} -splitting *spl*^{*}, finite order [also dual datum for tw char ϖ on real pts any inner form]

 inner form (G, η, θ) : includes R-automorphism θ of G such that η transports θ to θ* up to inner automorphism

inner class of $(G, \eta, \theta) : (G, \eta', \theta')$, where η' inner form of η , θ coincides with θ' up to inner autom by element of $G(\mathbb{R})$

• transfer: stable analysis on endo gp $H_1(\mathbb{R})$ related to θ -twisted invariant analysis on $G(\mathbb{R})$ [(θ, ω) -twisted]

Cuspidal-elliptic case, geom side

• point correspondences now via $T \to (T)_{\theta^*} \longleftrightarrow T_H \longleftarrow T_1$ norm for (G^*, θ^*) is canonical; not for general (G, η, θ) but ...

Cuspidal-elliptic case, geom side

- point correspondences now via $T \to (T)_{\theta^*} \longleftrightarrow T_H \longleftarrow T_1$ norm for (G^*, θ^*) is canonical; not for general (G, η, θ) but ...
- Exercise: in cuspidal-elliptic setting (G cuspidal, H₁ elliptic again) examine nontriviality of elliptic very regular contributions to each side of θ-twisted endo transfer

Cuspidal-elliptic case, geom side

- point correspondences now via $T \to (T)_{\theta^*} \longleftrightarrow T_H \longleftarrow T_1$ norm for (G^*, θ^*) is canonical; not for general (G, η, θ) but ...
- Exercise: in cuspidal-elliptic setting (G cuspidal, H₁ elliptic again) examine nontriviality of elliptic very regular contributions to each side of θ-twisted endo transfer
- geom side: call $\delta \in G(\mathbb{R}) \ \theta$ -elliptic if $Int(\delta) \circ \theta$ preserves a pair (B, T), where T is elliptic

for ell very reg contribution: call very regular pair (γ_1, δ) elliptic if γ_1 is elliptic

Proposition: there exists an elliptic related very regular pair if and only if $G(\mathbb{R})$ contains a θ -elliptic elt ... then "full" ell csp

spectral side

• contribution from ess tempered elliptic (ds) packets quasi-split data (G^*, θ^*) : pick θ^* -stable Whitt. data

 θ^* has dual θ^{\vee} , extend to ${}^{L}\theta$ which acts on parameters, interested only those φ (conj class) preserved by ${}^{L}\theta$, *i.e.* $S_{\varphi}^{tw} = \{s \in G^{\vee} : {}^{L}\theta \circ \varphi = Int(s) \circ \varphi\}$ is nonempty

spectral side

• contribution from ess tempered elliptic (ds) packets quasi-split data (G^*, θ^*) : pick θ^* -stable Whitt. data

 θ^* has dual θ^{\vee} , extend to ${}^{L}\theta$ which acts on parameters, interested only those φ (conj class) preserved by ${}^{L}\theta$, *i.e.* $S_{\varphi}^{tw} = \{s \in G^{\vee} : {}^{L}\theta \circ \varphi = Int(s) \circ \varphi\}$ is nonempty

• attached pkt Π^* is preserved by $\pi \to \pi \circ \theta^*$ and has nonempty fixed point set (e.g. generic) ... "twist-packet"

spectral side

• contribution from ess tempered elliptic (ds) packets quasi-split data (G^*, θ^*) : pick θ^* -stable Whitt. data

 θ^* has dual θ^{\vee} , extend to ${}^L\theta$ which acts on parameters, interested only those φ (conj class) preserved by ${}^L\theta$, *i.e.* $S_{\varphi}^{tw} = \{s \in G^{\vee} : {}^L\theta \circ \varphi = Int(s) \circ \varphi\}$ is nonempty

- attached pkt Π^{*} is preserved by π → π ∘ θ^{*} and has nonempty fixed point set (e.g. generic) ... "twist-packet"
- (G, η, θ) inner form: attached packet Π is preserved by $\pi \to \pi \circ \theta$ but twist-packet may be empty

spectral side

• contribution from ess tempered elliptic (ds) packets quasi-split data (G^*, θ^*) : pick θ^* -stable Whitt. data

 θ^* has dual θ^{\vee} , extend to ${}^L\theta$ which acts on parameters, interested only those φ (conj class) preserved by ${}^L\theta$, *i.e.* $S_{\varphi}^{tw} = \{s \in G^{\vee} : {}^L\theta \circ \varphi = Int(s) \circ \varphi\}$ is nonempty

- attached pkt Π^{*} is preserved by π → π ∘ θ^{*} and has nonempty fixed point set (e.g. generic) ... "twist-packet"
- (G, η, θ) inner form: attached packet Π is preserved by $\pi \to \pi \circ \theta$ but twist-packet may be empty
- Proposition: there exists nonempty ds twist-packet if and only if G(R) has a θ-elliptic elt ... and then all ds twist-pkts nonempty

• **Proof** of second proposition via Harish-Chandra theory for discrete series. For first proposition use following:

Lemma: $\exists \theta$ -elliptic elt \Leftrightarrow there is (G, η', θ') in the inner class of (G, η, θ) such that θ' preserves a fundamental splitting and η' transports θ' to θ^*

• **Proof** of second proposition via Harish-Chandra theory for discrete series. For first proposition use following:

Lemma: $\exists \theta$ -elliptic elt \Leftrightarrow there is (G, η', θ') in the inner class of (G, η, θ) such that θ' preserves a fundamental splitting and η' transports θ' to θ^*

• **Application:** for elliptic analysis, may assume θ preserves a fundamental splitting that is transported by η to spl_{Wh} [have fund Whittaker splitting spl_{Wh} preserved by θ^*]

then uniquely defined norm, also proceed as before for spectral factors [Mezo, Waldspurger for spec transf exists], compatibility results ...