Transfer results for real groups

Diana Shelstad

May 20, 2014
G : a connected reductive algebraic group defined over \mathbb{R}

- study some aspects of invariant harmonic analysis on $G(\mathbb{R})$ involved in endoscopic transfer

Introduction

G : a connected reductive algebraic group defined over \mathbb{R}

- study some aspects of invariant harmonic analysis on $G(\mathbb{R})$ involved in endoscopic transfer
- transfer: first for orbital integrals [geometric side], then look for interpretation of the dual transfer in terms of traces [spectral side]
part of broader theme involving stable conjugacy, packets of representations, stabilization of the Arthur-Selberg trace formula, ...
concerned here with explicit structure, formulas useful in applications

Structure

Setting has more than G alone

- start with quasi-split data: G^{*} quasi-split group over \mathbb{R}
fix [harmlessly] an \mathbb{R}-splitting sp/* $=\left(B^{*}, T^{*},\left\{X_{\alpha}\right\}\right)$
$\ldots \Gamma=\operatorname{Gal}(\mathbb{C} / \mathbb{R})=\{1, \sigma\}$ preserves each component

Structure

Setting has more than G alone

- start with quasi-split data: G^{*} quasi-split group over \mathbb{R}
fix [harmlessly] an \mathbb{R}-splitting sp/* $=\left(B^{*}, T^{*},\left\{X_{\alpha}\right\}\right)$
$\ldots \Gamma=\operatorname{Gal}(\mathbb{C} / \mathbb{R})=\{1, \sigma\}$ preserves each component
- then have connected complex dual group G^{\vee} and dual splitting $s p /^{\vee}=\left(\mathcal{B}, \mathcal{T},\left\{X_{\alpha \vee}\right\}\right)$ that is preserved by the real Neil group $W_{\mathbb{R}}$
here $W_{\mathbb{R}}$ acts on G^{\vee} and $s p I^{\vee}$ through $W_{\mathbb{R}} \rightarrow \Gamma$ then L-group ${ }^{L} G:=G^{\vee} \rtimes W_{\mathbb{R}}$
[from $W_{\mathbb{R}}$ action: horal chars with special symms for geom side of transfer, shifts in inf char for spectral side, etc]

Structure 3

G as inner form of a quasi-split G^{*}

- consider pair (G, η), where isom $\eta: G \rightarrow G^{*}$ is inner twist i.e. the automorphism $\eta \sigma(\eta)^{-1}$ of G^{*} is inner inner class of (G, η) consists of $\left(G, \eta^{\prime}\right)$ with $\eta^{\prime} \eta^{-1}$ inner [inner class is what matters in constructions here]

Structure 3

G as inner form of a quasi-split G^{*}

- consider pair (G, η), where isom $\eta: G \rightarrow G^{*}$ is inner twist i.e. the automorphism $\eta \sigma(\eta)^{-1}$ of G^{*} is inner
inner class of (G, η) consists of $\left(G, \eta^{\prime}\right)$ with $\eta^{\prime} \eta^{-1}$ inner [inner class is what matters in constructions here]
- $t(G):=$ set of [stable] conjugacy classes of maximal tori defined over \mathbb{R} in G
$t(G)$ as lattice: $\operatorname{class}(T) \preccurlyeq \operatorname{class}\left(T^{\prime}\right) \Leftrightarrow$ maximal \mathbb{R}-split subtorus S_{T} of T is $G(\mathbb{R})$-conjugate to a subtorus of $S_{T^{\prime}}$

Proposition: η embeds $t(G)$ in $t\left(G^{*}\right)$ as an initial segment

Endoscopic group H_{1} comes from certain dual data [SED]

- semisimple element s in G^{\vee} $H^{\vee}:=\operatorname{Cent}\left(s, G^{\vee}\right)^{0}$
subgroup \mathcal{H} of ${ }^{L} G$ that is split extension of $W_{\mathbb{R}}$ by H^{\vee}...
extract L-action, L-group ${ }^{L} H$ and thus dual quasi-split group H over \mathbb{R}, pass to z-extension H_{1} [$1 \rightarrow Z_{1} \rightarrow H_{1} \rightarrow H \rightarrow 1$, with Z_{1} central induced torus]

$$
{ }^{L} H_{1}
$$

$\operatorname{SED} \mathfrak{e}_{z}: \quad(s, \mathcal{H}, H)$ and $\left(H_{1}, \xi_{1}\right)$, where \mathcal{H}

Endoscopic group H_{1} comes from certain dual data [SED]

- semisimple element s in G^{\vee} $H^{\vee}:=\operatorname{Cent}\left(s, G^{\vee}\right)^{0}$
subgroup \mathcal{H} of ${ }^{L} G$ that is split extension of $W_{\mathbb{R}}$ by H^{\vee}...
extract L-action, L-group ${ }^{L} H$ and thus dual quasi-split group H over \mathbb{R}, pass to z-extension H_{1}
[$1 \rightarrow Z_{1} \rightarrow H_{1} \rightarrow H \rightarrow 1$, with Z_{1} central induced torus]

GED $\mathfrak{e}_{z}: \quad(s, \mathcal{H}, H)$ and $\left(H_{1}, \xi_{1}\right)$, where \mathcal{H}
incl

$$
{ }^{L} G
$$

- transfer involves $H_{1}(\mathbb{R})$ and $G(\mathbb{R})$, for each inner form (G, η) of $G^{*} \quad$ [funct. says ...]

Related pairs 5

Geometric comparisons for $H_{1}(\mathbb{R})$ and $G(\mathbb{R})$

via maps on maximal tori: (i) z-extension $H_{1} \rightarrow H$
(ii) admissible homs $T_{H} \rightarrow T_{G^{*}}$ [defn SED, Steinberg thm],
(iii) inner twist $\eta: G \rightarrow G^{*}$
or as Γ-equivariant maps on semisimple conjugacy classes in complex points of the groups. Strongly reg class in G or G^{*} : centralizer of element is torus. Strongly G-reg class in H_{1} or H : image of class is strongly regular in G^{*}

Related pairs 5

Geometric comparisons for $H_{1}(\mathbb{R})$ and $G(\mathbb{R})$

via maps on maximal tori: (i) z-extension $H_{1} \rightarrow H$
(ii) admissible homs $T_{H} \rightarrow T_{G^{*}}$ [defn SED, Steinberg thm],
(iii) inner twist $\eta: G \rightarrow G^{*}$
or as Γ-equivariant maps on semisimple conjugacy classes in complex points of the groups. Strongly reg class in G or G^{*} : centralizer of element is torus. Strongly G-reg class in H_{1} or H : image of class is strongly regular in G^{*}

- the very regular set in $H_{1}(\mathbb{R}) \times G(\mathbb{R})$: pairs $\left(\gamma_{1}, \delta\right)$ with δ strongly regular in $G(\mathbb{R}), \gamma_{1}$ strongly G-regular in $H_{1}(\mathbb{R})$

Related pairs 6

Related pairs of points

- very regular pair $\left(\gamma_{1}, \delta\right)$ is related if there is δ^{*} in $G^{*}(\mathbb{R})$ for which $\gamma_{1} \longrightarrow \gamma \longrightarrow \delta^{*} \longleftarrow \delta$ [alt: γ_{1} is an image/norm of δ]

Related pairs

Related pairs of points

- very regular pair $\left(\gamma_{1}, \delta\right)$ is related if there is δ^{*} in $G^{*}(\mathbb{R})$ for which $\gamma_{1} \longrightarrow \gamma \longrightarrow \delta^{*} \longleftarrow \delta$ [alt: γ_{1} is an image/norm of δ]
- generalize to all semisimple pairs $\left(\gamma_{1}, \delta\right)$, then related $\left(\gamma_{1}, \delta\right)$ is equisingular if $\operatorname{Cent}(\gamma, H)^{0}$ is an inner form of $\operatorname{Cent}(\delta, G)^{0} \ldots$
outside equisingular set: e.g. related pairs $\left(u_{1}, u\right)$, with u_{1}, u regular unipotent in $H_{1}(\mathbb{R}), G(\mathbb{R})$ respectively if G is quasi-split, or more generally $\left(\gamma_{1}, \delta\right)$ regular ...
but need transfer factors $\Delta\left(\gamma_{1}, \delta\right)$ only on very regular set to fully define transfer of test functions on geometric side, then others via limit thms etc, all local fields of char zero ...

Related pairs 7

Related pairs of representations

- arrange pairs $\left(\pi_{1}, \pi\right)$ on spectral side via Langlands/Arthur parameters

L : consider continuous homs $w \mapsto \varphi(w)=\varphi_{0}(w) \times w$ of $W_{\mathbb{R}}$ into ${ }^{L} G=G^{\vee} \rtimes W_{\mathbb{R}}$, require image of φ_{0} lie in semisimple set, bounded mod center; G^{\vee} acts by conjugation on such homs, essentially tempered parameter is [relevant] G^{\vee}-conj. class

Related pairs 7

Related pairs of representations

- arrange pairs $\left(\pi_{1}, \pi\right)$ on spectral side via Langlands/Arthur parameters

L : consider continuous homs $w \mapsto \varphi(w)=\varphi_{0}(w) \times w$ of $W_{\mathbb{R}}$ into ${ }^{L} G=G^{\vee} \rtimes W_{\mathbb{R}}$,
require image of φ_{0} lie in semisimple set, bounded mod center; G^{\vee} acts by conjugation on such homs, essentially tempered parameter is [relevant] G^{\vee}-conj. class

- related pairs: back to SED, require $\left(\pi_{1}, \pi\right)$ have related parameters $\left(\varphi_{1}, \varphi\right) \quad\left[\varphi_{1}\left(W_{\mathbb{R}}\right) \subset \xi_{1}(\mathcal{H}), \varphi \sim \xi_{1}^{-1} \circ \varphi_{1}\right]$
very regular related pair $\left(\pi_{1}, \pi\right)$: also require $\operatorname{Cent}\left(\varphi\left(\mathbb{C}^{\times}\right), G^{\vee}\right)$ abelian, then also $\operatorname{Cent}\left(\varphi_{1}\left(\mathbb{C}^{\times}\right), H^{\vee}\right)$ abelian ... regular infinitesimal chars

Related pairs 8

Extending ...

- transfer factors first for very regular related pairs $\left(\pi_{1}, \pi\right)$ of ess. tempered representations
extend to all ess. tempered; then recapture (for given pair test functions) geom side from ess. temp spectral side
extension uses a coherent continuation for parameters, correct for packets, including relevance

Related pairs

Extending ...

- transfer factors first for very regular related pairs $\left(\pi_{1}, \pi\right)$ of ess. tempered representations
extend to all ess. tempered; then recapture (for given pair test functions) geom side from ess. temp spectral side
extension uses a coherent continuation for parameters, correct for packets, including relevance
- A: consider G^{\vee}-conj. classes of continuous homs $\psi=(\varphi, \rho): W_{\mathbb{R}} \times S L(2, \mathbb{C}) \rightarrow{ }^{L} G$, with φ as before \ldots
$M^{\vee}:=\operatorname{Cent}\left(\varphi\left(\mathbb{C}^{\times}\right), G^{\vee}\right)$ is Levi in G^{\vee}, contains image of ρ $\mathcal{M}:=$ subgroup of ${ }^{L} G$ generated by M^{\vee} and image of ψ

Related pairs 9

Some pairs of Arthur parameters

- call ψu-regular if image of ρ contains reg unip elt of M^{\vee}; ess tempered $\psi=(\varphi$, triv $)$ is u-regular $\Leftrightarrow \varphi$ regular consider pairs $\left(\psi_{1}, \psi\right)$ related (as before) and with ψ u-regular, then ψ_{1} also u-regular; components φ_{1}, φ are equi-singular in approp sense

Related pairs

Some pairs of Arthur parameters

- call ψu-regular if image of ρ contains reg unip elt of M^{\vee}; ess tempered $\psi=(\varphi$, triv $)$ is u-regular $\Leftrightarrow \varphi$ regular
consider pairs $\left(\psi_{1}, \psi\right)$ related (as before) and with ψ u-regular, then ψ_{1} also u-regular; components φ_{1}, φ are equi-singular in approp sense
- structure of \mathcal{M} : extract L-action and L-group ${ }^{L} M$ M^{\vee} is Levi \Rightarrow natural isomorphisms ${ }^{L} M \rightarrow \mathcal{M}$
$M^{*}:=$ quasi-split group over \mathbb{R} dual to ${ }^{L} M$
M^{*} shares elliptic maximal torus with $G \Leftrightarrow$ there is elt of \mathcal{M} acting as -1 on all roots of $s p l^{\vee}$

Related pairs 10

Cuspidal-elliptic setting

- elliptic parameter ψ [Arthur]: identity component of centralizer in G^{\vee} of $\operatorname{Image}(\psi)$ is central in G^{\vee} [ess tempered case: only parameters for discrete series]
elliptic u-regular ψ points to packets constructed by Adams-Johnson, plus either discrete series or limit of discrete series packets, same inf char

Related pairs 10

Cuspidal-elliptic setting

- elliptic parameter ψ [Arthur]: identity component of centralizer in G^{\vee} of $\operatorname{Image}(\psi)$ is central in G^{\vee} [ess tempered case: only parameters for discrete series]
elliptic u-regular ψ points to packets constructed by Adams-Johnson, plus either discrete series or limit of discrete series packets, same inf char
- G cuspidal: has elliptic maximal torus SED \mathfrak{e}_{z} elliptic: identity comp of Γ-invariants in the center of H^{\vee} is central in G^{\vee}... call this cuspidal-elliptic setting

Proposition: in cusp-ell setting have elliptic u-regular related pairs $\left(\psi_{1}, \psi\right)$, and only in this setting

Test functions, transfer factors

Test functions, measures

- on $G(\mathbb{R})$: Harish-Chandra Schwartz functions, then $C_{c}^{\infty}(G(\mathbb{R}))$, also subspaces of K-finite ...
on $H_{1}(\mathbb{R})$: corresponding types of test functions but modulo $Z_{1}(\mathbb{R})=\operatorname{Ker}\left(H_{1}(\mathbb{R}) \rightarrow H(\mathbb{R})\right)$,
SED \mathfrak{e}_{z} determines character ω_{1} on $Z_{1}(\mathbb{R})$: require translation action of $Z_{1}(\mathbb{R})$ on test functions is via $\left(\omega_{1}\right)^{-1}$

Test functions, transfer factors

Test functions, measures

- on $G(\mathbb{R})$: Harish-Chandra Schwartz functions, then $C_{c}^{\infty}(G(\mathbb{R}))$, also subspaces of K-finite ...
on $H_{1}(\mathbb{R})$: corresponding types of test functions but modulo $Z_{1}(\mathbb{R})=\operatorname{Ker}\left(H_{1}(\mathbb{R}) \rightarrow H(\mathbb{R})\right)$,
SED \mathfrak{e}_{z} determines character ω_{1} on $Z_{1}(\mathbb{R})$: require translation action of $Z_{1}(\mathbb{R})$ on test functions is via $\left(\omega_{1}\right)^{-1}$
- use test measures $f d g$ and $f_{1} d h_{1}$ to remove dependence of transfer on choice of Haar measures $d g, d h_{1}$
compatible haar measures on tori associated to very regular related pair of points $\left(\gamma_{1}, \delta\right) \ldots$ via $T_{1} \rightarrow T_{H} \rightarrow T$

Test functions, transfer factors

Transfer factors

- $\left(\gamma_{1}, \delta\right),\left(\gamma_{1}^{\prime}, \delta^{\prime}\right)$ very regular related pairs of points, define certain canonical relative factor $\Delta\left(\gamma_{1}, \delta ; \gamma_{1}^{\prime}, \delta^{\prime}\right)$ as product of three terms: $\Delta=\Delta_{I} \cdot \Delta_{I /} \cdot \Delta_{I / I}$ [all depend only on stable conj cls $\gamma_{1}, \gamma_{1}^{\prime}$, and conj cls δ, δ^{\prime}]
terms $\Delta_{/,}, . . \Delta_{I / I}$ each have two additional dependences that cancel in product; only $\Delta_{\text {III }}$ genuinely relative, measures position in stable class, other terms make this canonical
$\left(\pi_{1}, \pi\right),\left(\pi_{1}^{\prime}, \pi^{\prime}\right)$ very regular related ess temp pairs, define canonical relative factor $\Delta\left(\pi_{1}, \pi ; \pi_{1}^{\prime}, \pi^{\prime}\right)$ as product of three \ldots [all depend only on packets of $\pi_{1}, \pi_{1}^{\prime}$, and on π, π^{\prime}]

Transfer factors

- $\left(\gamma_{1}, \delta\right),\left(\gamma_{1}^{\prime}, \delta^{\prime}\right)$ very regular related pairs of points, define certain canonical relative factor $\Delta\left(\gamma_{1}, \delta ; \gamma_{1}^{\prime}, \delta^{\prime}\right)$ as product of three terms: $\Delta=\Delta_{I} \cdot \Delta_{I I} \cdot \Delta_{I / I}$ [all depend only on stable conj cls $\gamma_{1}, \gamma_{1}^{\prime}$, and conj cls δ, δ^{\prime}]
terms $\Delta_{I}, . ., \Delta_{I / I}$ each have two additional dependences that cancel in product; only $\Delta_{\text {III }}$ genuinely relative, measures position in stable class, other terms make this canonical
$\left(\pi_{1}, \pi\right),\left(\pi_{1}^{\prime}, \pi^{\prime}\right)$ very regular related ess temp pairs, define canonical relative factor $\Delta\left(\pi_{1}, \pi ; \pi_{1}^{\prime}, \pi^{\prime}\right)$ as product of three ... [all depend only on packets of $\pi_{1}, \pi_{1}^{\prime}$, and on π, π^{\prime}]
- geom, spec terms have same structure and dependences
\Rightarrow canonical $\Delta\left(\gamma_{1}, \delta ; \pi_{1}, \pi\right)$ also

Test functions, transfer factors

Compatibility

- absolute factors $\Delta\left(\gamma_{1}, \delta\right)$ and $\Delta\left(\pi_{1}, \pi\right)$:
require for all above pairs

$$
\begin{aligned}
\Delta\left(\gamma_{1}, \delta\right) / \Delta\left(\gamma_{1}^{\prime}, \delta^{\prime}\right) & =\Delta\left(\gamma_{1}, \delta ; \gamma_{1}^{\prime}, \delta^{\prime}\right) \\
\Delta\left(\pi_{1}, \pi\right) / \Delta\left(\pi_{1}^{\prime}, \pi^{\prime}\right) & =\Delta\left(\pi_{1}, \pi ; \pi_{1}^{\prime}, \pi^{\prime}\right)
\end{aligned}
$$

compatible factors $\Delta\left(\gamma_{1}, \delta\right)$ and $\Delta\left(\pi_{1}, \pi\right)$: for some, and thence all, pairs $\left(\gamma_{1}, \delta\right),\left(\pi_{1}, \pi\right)$ we have

$$
\Delta\left(\gamma_{1}, \delta\right) / \Delta\left(\pi_{1}, \pi\right)=\Delta\left(\gamma_{1}, \delta ; \pi_{1}, \pi\right)
$$

Test functions, transfer factors

Compatibility

- absolute factors $\Delta\left(\gamma_{1}, \delta\right)$ and $\Delta\left(\pi_{1}, \pi\right)$: require for all above pairs

$$
\begin{aligned}
\Delta\left(\gamma_{1}, \delta\right) / \Delta\left(\gamma_{1}^{\prime}, \delta^{\prime}\right) & =\Delta\left(\gamma_{1}, \delta ; \gamma_{1}^{\prime}, \delta^{\prime}\right) \\
\Delta\left(\pi_{1}, \pi\right) / \Delta\left(\pi_{1}^{\prime}, \pi^{\prime}\right) & =\Delta\left(\pi_{1}, \pi ; \pi_{1}^{\prime}, \pi^{\prime}\right)
\end{aligned}
$$

compatible factors $\Delta\left(\gamma_{1}, \delta\right)$ and $\Delta\left(\pi_{1}, \pi\right)$: for some, and thence all, pairs $\left(\gamma_{1}, \delta\right),\left(\pi_{1}, \pi\right)$ we have

$$
\Delta\left(\gamma_{1}, \delta\right) / \Delta\left(\pi_{1}, \pi\right)=\Delta\left(\gamma_{1}, \delta ; \pi_{1}, \pi\right)
$$

- particular normalizations not needed in main theorem used later for structure results, precise inversion results ...
data for statement of main theorem: quasisplit group, SED, inner form, compatible factors

Transfer results

Theorem

- For each test measure fdg on $G(\mathbb{R})$ there exists a test measure $f_{1} d h_{1}$ on $H_{1}(\mathbb{R})$ such that

$$
\begin{equation*}
S O\left(\gamma_{1}, f_{1} d h_{1}\right)=\sum_{\{\delta\}} \Delta\left(\gamma_{1}, \delta\right) O(\delta, f d g) \tag{1}
\end{equation*}
$$

for all strongly G-regular γ_{1} in $H_{1}(\mathbb{R})$.

Transfer results

Theorem

- For each test measure fdg on $G(\mathbb{R})$ there exists a test measure $f_{1} d h_{1}$ on $H_{1}(\mathbb{R})$ such that

$$
\begin{equation*}
S O\left(\gamma_{1}, f_{1} d h_{1}\right)=\sum_{\{\delta\}} \Delta\left(\gamma_{1}, \delta\right) O(\delta, f d g) \tag{1}
\end{equation*}
$$

for all strongly G-regular γ_{1} in $H_{1}(\mathbb{R})$.

- Then also

$$
\begin{equation*}
\text { St-Trace } \pi_{1}\left(f_{1} d h_{1}\right)=\sum_{\{\pi\}} \Delta\left(\pi_{1}, \pi\right) \text { Trace } \pi(f d g) \tag{2}
\end{equation*}
$$

for all tempered irreducible representations π_{1} of $H_{1}(\mathbb{R})$ such that the restriction of π_{1} to $Z_{1}(\mathbb{R})$ acts as ω_{1}.

Theorem

- For each test measure fdg on $G(\mathbb{R})$ there exists a test measure $f_{1} d h_{1}$ on $H_{1}(\mathbb{R})$ such that

$$
\begin{equation*}
S O\left(\gamma_{1}, f_{1} d h_{1}\right)=\sum_{\{\delta\}} \Delta\left(\gamma_{1}, \delta\right) O(\delta, f d g) \tag{1}
\end{equation*}
$$

for all strongly G-regular γ_{1} in $H_{1}(\mathbb{R})$.

- Then also

$$
\begin{equation*}
\text { St-Trace } \pi_{1}\left(f_{1} d h_{1}\right)=\sum_{\{\pi\}} \Delta\left(\pi_{1}, \pi\right) \text { Trace } \pi(f d g) \tag{2}
\end{equation*}
$$

for all tempered irreducible representations π_{1} of $H_{1}(\mathbb{R})$ such that the restriction of π_{1} to $Z_{1}(\mathbb{R})$ acts as ω_{1}.

- Conversely if $f d g$ and $f_{1} d h_{1}$ satisfy (2) then they satisfy (1).

Transfer results

More on (1): $S O\left(\gamma_{1}, f_{1} d h_{1}\right)=\sum_{\{\delta\}} \Delta\left(\gamma_{1}, \delta\right) O(\delta, f d g)$

- $\Delta\left(\gamma_{1}, \delta\right):=0$ if very regular pair $\left(\gamma_{1}, \delta\right)$ is not related, then sum on right is over str reg conjugacy classes $\{\delta\}$

Transfer results

More on (1): $S O\left(\gamma_{1}, f_{1} d h_{1}\right)=\sum_{\{\delta\}} \Delta\left(\gamma_{1}, \delta\right) O(\delta, f d g)$

- $\Delta\left(\gamma_{1}, \delta\right):=0$ if very regular pair $\left(\gamma_{1}, \delta\right)$ is not related, then sum on right is over str reg conjugacy classes $\{\delta\}$

$$
O(\delta, f d g):=\int_{T_{\delta}(\mathbb{R}) \backslash G(\mathbb{R})} f\left(g^{-1} \delta g\right) \frac{d g}{d t_{\delta}},
$$

where $T_{\delta}=\operatorname{Cent}(\delta, G)$

Transfer r ס) $O(\delta, f d g)$

More on (1): $S O\left(\gamma_{1}, f_{1} d h_{1}\right)=\sum_{\{\delta\}} \Delta\left(\gamma_{1}, \delta\right) O(\delta, f d g)$

- $\Delta\left(\gamma_{1}, \delta\right):=0$ if very regular pair $\left(\gamma_{1}, \delta\right)$ is not related, then sum on right is over str reg conjugacy classes $\{\delta\}$

$$
O(\delta, f d g):=\int_{T_{\delta}(\mathbb{R}) \backslash G(\mathbb{R})} f\left(g^{-1} \delta g\right) \frac{d g}{d t_{\delta}}
$$

where $T_{\delta}=\operatorname{Cent}(\delta, G)$

$$
S O\left(\gamma_{1}, f_{1} d h_{1}\right):=\sum_{\left\{\gamma_{1}^{\prime}\right\}} \int_{T_{\gamma_{1}^{\prime}}(\mathbb{R}) \backslash G(\mathbb{R})} f_{1}\left(h_{1}^{-1} \gamma_{1}^{\prime} h_{1}\right) \frac{d h_{1}}{d t_{\gamma_{1}^{\prime}}}
$$

where the sum is over conjugacy classes $\left\{\gamma_{1}^{\prime}\right\}$ in the stable conjugacy class of γ_{1}, compatible measure $d t_{\gamma_{1}^{\prime}}$ on $T_{\gamma_{1}^{\prime}}$

Transfer results 16

More on (2): St-Trace $\pi_{1}\left(f_{1} d h_{1}\right)=\sum_{\pi} \Delta\left(\pi_{1}, \pi\right)$ Trace $\pi(f d g)$

$$
\pi_{1}\left(f_{1} d h_{1}\right):=\int_{Z_{1}(\mathbb{R}) \backslash H_{1}(\mathbb{R})} f_{1}\left(h_{1}\right) \pi_{1}\left(h_{1}\right) d h_{1}
$$

Transfer results

More on (2): St-Trace $\pi_{1}\left(f_{1} d h_{1}\right)=\sum_{\pi} \Delta\left(\pi_{1}, \pi\right)$ Trace $\pi(f d g)$

$$
\pi_{1}\left(f_{1} d h_{1}\right):=\int_{Z_{1}(\mathbb{R}) \backslash H_{1}(\mathbb{R})} f_{1}\left(h_{1}\right) \pi_{1}\left(h_{1}\right) d h_{1}
$$

$$
\text { St-Trace } \pi_{1}\left(f_{1} d h_{1}\right):=\sum_{\pi_{1}^{\prime}} \text { Trace } \pi_{1}^{\prime}\left(f_{1} d h_{1}\right)
$$

where the sum is over π_{1}^{\prime} in the packet of π_{1}

More on (2): St-Trace $\pi_{1}\left(f_{1} d h_{1}\right)=\sum_{\pi} \Delta\left(\pi_{1}, \pi\right)$ Trace $\pi(f d g)$

$$
\pi_{1}\left(f_{1} d h_{1}\right):=\int_{Z_{1}(\mathbb{R}) \backslash H_{1}(\mathbb{R})} f_{1}\left(h_{1}\right) \pi_{1}\left(h_{1}\right) d h_{1}
$$

$$
\text { St-Trace } \pi_{1}\left(f_{1} d h_{1}\right):=\sum_{\pi_{1}^{\prime}} \text { Trace } \pi_{1}^{\prime}\left(f_{1} d h_{1}\right)
$$

where the sum is over π_{1}^{\prime} in the packet of π_{1}

- $\Delta\left(\pi_{1}, \pi\right)$ has been extended to all ess tempered pairs $\left(\pi_{1}, \pi\right)$. Also $\Delta\left(\pi_{1}, \pi\right):=0$ if pair $\left(\pi_{1}, \pi\right)$ is not related, then sum on right is over all ess tempered π

Transfer results

Next steps

- geom side: begin extensions as already mentioned, ... new factors involve more general invariants, will use "same type of structure" on spectral side
spec side: first (1) with particular normalizations ... in general, $\Delta\left(\pi_{1}, \pi\right)$ is a fourth root of unity, up to constant, on all tempered related pairs

Next steps

- geom side: begin extensions as already mentioned, ... new factors involve more general invariants, will use "same type of structure" on spectral side
spec side: first (1) with particular normalizations ... in general, $\Delta\left(\pi_{1}, \pi\right)$ is a fourth root of unity, up to constant, on all tempered related pairs
- Whittaker data for quasi-split $G: G(\mathbb{R})$-conjugacy class of pairs $(B, \lambda): B=$ Borel subgroup defined over \mathbb{R}, $\lambda=$ character on real points of unipotent radical of B [harmless: $G=G^{*},(B, \lambda)$ from $s p^{*}$ via add char \mathbb{R}^{\times}]

Normalization of transfer factors

- define compatible absolute factors $\Delta_{W h}\left(\gamma_{1}, \delta\right), \Delta_{W h}\left(\pi_{1}, \pi\right)$ [quasi-split case: have compatible absolute factors Δ_{0} depending on sp/*; multiply each by certain ε-factor]

Proposition: For all essentially tempered related pairs
$\left(\pi_{1}, \pi\right)$, we have

$$
\Delta_{W h}\left(\pi_{1}, \pi\right)= \pm 1
$$

note: on geom side, for very regular $\left(\gamma_{1}, \delta\right)$ near $(1,1)$, we have the shape $\Delta_{W h}\left(\gamma_{1}, \delta\right)=[$ sign $] .[\varepsilon]$.[shift-char]

Transfer results

Normalization of transfer factors

- define compatible absolute factors $\Delta_{W h}\left(\gamma_{1}, \delta\right), \Delta_{W h}\left(\pi_{1}, \pi\right)$ [quasi-split case: have compatible absolute factors Δ_{0} depending on $s l^{*}$; multiply each by certain ε-factor]

Proposition: For all essentially tempered related pairs $\left(\pi_{1}, \pi\right)$, we have

$$
\Delta_{W h}\left(\pi_{1}, \pi\right)= \pm 1
$$

note: on geom side, for very regular $\left(\gamma_{1}, \delta\right)$ near $(1,1)$, we have the shape $\Delta_{W h}\left(\gamma_{1}, \delta\right)=[$ sign].[$\varepsilon]$.[shift-char]

- normalization extends to inner forms (G, η) such that $\eta \sigma(\eta)^{-1}=\operatorname{Int}(u(\sigma))$, where $u(\sigma)$ is cocycle in $G_{s c}^{*}$.

Structure on essentially tempered packets ...

- begin with cuspidal-elliptic setting, elliptic parameter φ

$$
S_{\varphi}:=\operatorname{Cent}\left(\text { Image } \varphi, G^{\vee}\right) \text { for Langl } \varphi(\text { sim for Arthur } \psi)
$$

Example: G^{*} simply-connected semisimple, so G^{\vee} adjoint, recall splitting $s p I^{\vee}=\left(\mathcal{B}, \mathcal{T},\left\{X_{\alpha^{\vee}}\right\}\right)$ for G^{\vee}. Then: since φ elliptic we can arrange $S_{\varphi}=$ elts in \mathcal{T} of order $\leqslant 2$

Structure on essentially tempered packets ...

- begin with cuspidal-elliptic setting, elliptic parameter φ

$$
S_{\varphi}:=\operatorname{Cent}\left(\text { Image } \varphi, G^{\vee}\right) \text { for Langl } \varphi(\text { sim for Arthur } \psi)
$$

Example: G^{*} simply-connected semisimple, so G^{\vee} adjoint, recall splitting $s p I^{\vee}=\left(\mathcal{B}, \mathcal{T},\left\{X_{\alpha^{\vee}}\right\}\right)$ for G^{\vee}. Then: since φ elliptic we can arrange $S_{\varphi}=$ elts in \mathcal{T} of order $\leqslant 2$

- for each (G, η) with Whitt norm, consider π in packet for φ, then we will identify π with a character on $S_{\varphi} \ldots$ get certain extended packet for G^{*} as dual of quotient of S_{φ} [ess temp] In example: extended packet is exactly dual of S_{φ}
will use particular case of construction from twisted setting

Transfer results 20

Fundamental splittings

- recall: \mathbb{R}-splitting sp/* $=\left(B^{*}, T^{*},\left\{X_{\alpha}\right\}\right)$ for G^{*} with dual $s p I^{\vee}$ for G^{\vee}
for any G and T fundamental maximal torus in G : pair (B, T) fundamental if $-\sigma$ preserves roots T in B; there is a single stable conj. class of such pairs
fund splitting: extend fund pair (B, T) to splitting $s p l=\left(B, T,\left\{X_{\alpha}\right\}\right)$ where simple triples $\left\{X_{\alpha}, H_{\alpha}, X_{-\alpha}\right\}$ are chosen ($H_{\alpha}=$ coroot $)$ and $\sigma X_{\alpha}=X_{\sigma \alpha}$ if $-\sigma \alpha \neq \alpha$, $\sigma X_{\alpha}=\varepsilon_{\alpha} X_{-\alpha}$, where $\varepsilon_{\alpha}= \pm 1$ otherwise
any two extensions of (B, T) are conjugate under $T_{s c}(\mathbb{R})$ Whittaker data determines fund splitting splWh for G^{*}

Transfer results 20

Fundamental splittings

- recall: \mathbb{R}-splitting sp/* $=\left(B^{*}, T^{*},\left\{X_{\alpha}\right\}\right)$ for G^{*} with dual $s p I^{\vee}$ for G^{\vee}
for any G and T fundamental maximal torus in G : pair (B, T) fundamental if $-\sigma$ preserves roots T in B; there is a single stable conj. class of such pairs
fund splitting: extend fund pair (B, T) to splitting $s p l=\left(B, T,\left\{X_{\alpha}\right\}\right)$ where simple triples $\left\{X_{\alpha}, H_{\alpha}, X_{-\alpha}\right\}$ are chosen ($H_{\alpha}=$ coroot $)$ and $\sigma X_{\alpha}=X_{\sigma \alpha}$ if $-\sigma \alpha \neq \alpha$, $\sigma X_{\alpha}=\varepsilon_{\alpha} X_{-\alpha}$, where $\varepsilon_{\alpha}= \pm 1$ otherwise
any two extensions of (B, T) are conjugate under $T_{s c}(\mathbb{R})$ Whittaker data determines fund splitting spl${ }_{W h}$ for G^{*}
- back to cusp-ell setting: attach fundamental $s p l_{\pi}$ [or pair] to elliptic π via Harish-Chandra data

Transfer results

Extended groups, packets

- $s p l_{\pi}$ is determined uniquely up to $G(\mathbb{R})$-conjugacy

Transfer results

Extended groups, packets

- $s p l_{\pi}$ is determined uniquely up to $G(\mathbb{R})$-conjugacy
- now form extended group [K-group] of quasi-split type: $\mathbf{G}:=G_{0} \sqcup G_{1} \sqcup G_{2} \sqcup \ldots \sqcup G_{n}$ [harmless] take $\left(G_{0}, \eta_{0}, u_{0}(\sigma)\right)=\left(G^{*}, i d, i d\right)$
general components of \mathbf{G} : take cocycles $u_{j}(\sigma)$ in $T_{\text {sc }}$ representing the fibers of $H^{1}\left(\Gamma, G_{s c}^{*}\right) \rightarrow H^{1}\left(\Gamma, G^{*}\right)$ and then $\left(G_{j}, \eta_{j}\right)$ with $\eta_{j} \sigma\left(\eta_{j}\right)^{-1}=\operatorname{Int} u_{j}(\sigma) \quad\left[s \rho_{W h}=(B, T \ldots]\right.$

Transfer results

Extended groups, packets

- $s p l_{\pi}$ is determined uniquely up to $G(\mathbb{R})$-conjugacy
- now form extended group [K-group] of quasi-split type: $\mathbf{G}:=G_{0} \sqcup G_{1} \sqcup G_{2} \sqcup \ldots \sqcup G_{n}$ [harmless] take $\left(G_{0}, \eta_{0}, u_{0}(\sigma)\right)=\left(G^{*}, i d, i d\right)$
general components of \mathbf{G} : take cocycles $u_{j}(\sigma)$ in $T_{\text {sc }}$ representing the fibers of $H^{1}\left(\Gamma, G_{s c}^{*}\right) \rightarrow H^{1}\left(\Gamma, G^{*}\right)$ and then $\left(G_{j}, \eta_{j}\right)$ with $\eta_{j} \sigma\left(\eta_{j}\right)^{-1}=\operatorname{Int} u_{j}(\sigma) \quad\left[s p /{ }_{W h}=(B, T \ldots]\right.$
- form $\Pi:=\Pi_{0} \sqcup \Pi_{1} \sqcup \Pi_{2} \sqcup \ldots \sqcup \Pi_{n}$ as extended packet for [ess temp] φ Π correct size $\ldots G^{*}$ scss: $|\Pi|=\left|H^{1}(\Gamma, T)\right|$

Transfer results

Invariants ...

- Example: write theorem for the case G^{*} scss consider component G_{j} and rep $\pi=\pi_{j}$ of $G_{j}(\mathbb{R})$ in Π_{j} there is unique $\eta_{\pi}=\operatorname{Int}\left(x_{\pi}\right) \circ \eta_{j}$, where $x_{\pi} \in G_{s c}^{*}=G^{*}$, that transports $s p l_{\pi_{j}}$ to $s p l_{W h} \ldots$ then
$v_{\pi}(\sigma):=x_{\pi} u_{j}(\sigma) \sigma\left(x_{\pi}\right)^{-1}$ has $\eta_{\pi} \sigma\left(\eta_{\pi}\right)^{-1}=\operatorname{Int} v_{\pi}(\sigma)$
$\operatorname{inv}(\pi):=$ class of cocycle $v_{\pi}(\sigma)$ in $H^{1}(\Gamma, T)$
$\pi \mapsto \operatorname{inv}(\pi)$: well-defined, bijective $\Pi \rightarrow H^{1}(\Gamma, T)$

Invariants ...

- Example: write theorem for the case G^{*} scss consider component G_{j} and rep $\pi=\pi_{j}$ of $G_{j}(\mathbb{R})$ in Π_{j} there is unique $\eta_{\pi}=\operatorname{Int}\left(x_{\pi}\right) \circ \eta_{j}$, where $x_{\pi} \in G_{s c}^{*}=G^{*}$, that transports $s p l_{\pi_{j}}$ to $s p l_{W h} \ldots$ then
$v_{\pi}(\sigma):=x_{\pi} u_{j}(\sigma) \sigma\left(x_{\pi}\right)^{-1}$ has $\eta_{\pi} \sigma\left(\eta_{\pi}\right)^{-1}=\operatorname{Int} v_{\pi}(\sigma)$
$\operatorname{inv}(\pi):=$ class of cocycle $v_{\pi}(\sigma)$ in $H^{1}(\Gamma, T)$
$\pi \mapsto \operatorname{inv}(\pi):$ well-defined, bijective $\Pi \rightarrow H^{1}(\Gamma, T)$
- $s p I^{\vee}=\left(s p I^{*}\right)^{\vee}$ and $s p I^{*} \rightarrow s p I_{W h}$ provide $\mathcal{T} \rightarrow T^{\vee}$ under which S_{φ} isom to $\left(T^{\vee}\right)^{\Gamma}$; write s_{T} for image of s recall Tate-Nakayama duality provides perfect pairing

$$
\langle-,-\rangle_{t n}: H^{1}(\Gamma, T) \times\left(T^{\vee}\right)^{\Gamma} \rightarrow\{ \pm 1\}
$$

Transfer results 23

Apply to transfer

- now have perfect pairing $\Pi \times S_{\varphi} \rightarrow\{ \pm 1\}$ given by

$$
(\pi, s) \mapsto\langle\pi, s\rangle:=\left\langle\operatorname{inv}(\pi), s_{T}\right\rangle_{t n}
$$

note: $s \mapsto\langle\pi, s\rangle$ trivial char when π is unique generic in Π for given Whittaker data

Transfer results 23

Apply to transfer

- now have perfect pairing $\Pi \times S_{\varphi} \rightarrow\{ \pm 1\}$ given by

$$
(\pi, s) \mapsto\langle\pi, s\rangle:=\left\langle i n v(\pi), s_{T}\right\rangle_{t n}
$$

note: $s \mapsto\langle\pi, s\rangle$ trivial char when π is unique generic in Π for given Whittaker data

- for $s \in S_{\varphi}$: construct elliptic SED $\mathfrak{e}_{s}=(s, \ldots)$, with $\mathcal{H}_{s}:=$ subgroup of ${ }^{L} G$ generated by $\operatorname{Cent}\left(s, G^{\vee}\right)^{0}$ and the image of φ, along with a preferred related pair $\left(\varphi_{s}, \varphi\right)$
use Whitt. norm for transfer from attached endoscopic group $H_{1}^{(s)}$ to \mathbf{G}

Transfer results 24

- Theorem (strong basepoint property):

$$
\Delta_{W h}\left(\pi_{s}, \pi\right)=\langle\pi, s\rangle
$$

Corollary:
Trace $\pi(f d g)=\left|S_{\varphi}\right|^{-1} \sum_{s \in S_{\varphi}}\langle\pi, s\rangle$ St-Trace $\pi_{s}\left(f_{1}^{(s)} d h_{1}^{(s)}\right)$
thm for any G of quasi-split type [drop $G^{*}=G_{s c}^{*}$] and φ ess bded parameter : replace S_{φ} by quotient, extend defn pairing $\langle\pi, *\rangle \ldots$ need uniform decomp of unit princ series

T

- Theorem (strong basepoint property):

$$
\Delta_{W h}\left(\pi_{s}, \pi\right)=\langle\pi, s\rangle
$$

Corollary:
Trace $\pi(f d g)=\left|S_{\varphi}\right|^{-1} \sum_{s \in S_{\varphi}}\langle\pi, s\rangle$ St-Trace $\pi_{s}\left(f_{1}^{(s)} d h_{1}^{(s)}\right)$
thm for any G of quasi-split type $\left[\operatorname{drop} G^{*}=G_{s c}^{*}\right]$ and φ ess bded parameter : replace S_{φ} by quotient, extend defn pairing $\langle\pi, *\rangle$... need uniform decomp of unit princ series

- general inner forms: can arrange in extended groups but lack natural basepoint; pick bp (G, η) and use Kaletha's norm of transfer factors on this group [rigidify $\{\eta\}$, refine EDS \mathfrak{e}_{z}] then can norm all factors for extended group and get variant of quasi-split structure; ... but need Kaletha's cohom theory to identify explicitly all constants in transfer

Transfer results 25

Data attached to u-regular parameter

- back to cusp-ell setting, method for spectral factors extends: now take ψ elliptic u-regular Arthur param
transport explicit data for ψ to elliptic T in G^{*} [as for s, use $s p l^{\vee}$ dual $s p l^{*}, s p l^{*} \rightarrow s p /{ }_{W h}=\left(B, T,\left\{X_{\alpha}\right\}\right)$]

Transfer results 25

Data attached to u-regular parameter

- back to cusp-ell setting, method for spectral factors extends: now take ψ elliptic u-regular Arthur param
transport explicit data for ψ to elliptic T in G^{*} [as for s, use $s p l^{\vee}$ dual $s p l^{*}, s p I^{*} \rightarrow s p l_{W h}=\left(B, T,\left\{X_{\alpha}\right\}\right)$]
- explicit data: have $\psi=(\varphi, \rho)$ and $\xi_{M}:{ }^{L} M \rightarrow \mathcal{M}$ there is an (almost) canonical form:
$\varphi(z)=z^{\mu} \bar{z}^{\sigma_{M} \mu} \times z$ for $z \in \mathbb{C}^{\times}$and
$\varphi\left(w_{\sigma}\right)=e^{2 \pi i \lambda} \xi_{M}\left(w_{\sigma}\right)$, where $w_{\sigma} \rightarrow \sigma$ and $w_{\sigma}^{2}=-1$
$\mu, \lambda \in X_{*}(\mathcal{T}) \otimes \mathbb{C}$ have several special properties \ldots these determine a character on $M^{*}(\mathbb{R})$ and inner forms, also particular (s-)elliptic parameter

Transfer results 26

Attached packets

- M^{*} as subgroup of G^{*} generated by T and coroots for M^{\vee} as roots of T in G^{*} is quasi-split Levi group [in Cart-stable parabolic of G^{*}, Cart $=\operatorname{Int}\left(t_{0}\right), t_{0} \in T(\mathbb{R})$]

Arthur packet for inner form (G, η) : use any η^{\prime} inner to η with $\left(\eta^{\prime}\right)^{-1}: T \rightarrow G$ defined over \mathbb{R} to transport data for ψ to certain character data for G, gather reps so defined
character data: for irred ess unitary repn cohom induced from character on $M^{\prime}(\mathbb{R})$, where M^{\prime} is twist of M^{*} by η^{\prime}
... this is packet defined by Adams-Johnson
also get discrete series or limit packet, same inf char

Transfer results 27

Transfer for these packets ...

- now $S_{\psi}=\Gamma$-invariants in $\operatorname{Center}\left(M^{\vee}\right) \subseteq \Gamma$-invariants in T example: extended group \mathbf{G} of quasi-split type, scss
attach $M_{\pi}, s l_{\pi}, q_{\pi}=q\left(M_{\pi}\right)$ to $\pi \in \Pi$ $\operatorname{inv}(\pi)$ well-defined up to cocycles generated by roots of M^{\vee} as coroots for T, so that $\langle\pi, s\rangle:=\langle\operatorname{inv}(\pi), s\rangle_{t n}$ well-def
extend relative spectral factors, recover identities from Adams-Johnson, Arthur, Kottwitz results ...

Twisted setting 28

KS setup, briefly

- same approach to examine twisted setting
quasi-split data now includes \mathbb{R}-automorphism θ^{*} of G^{*} that preserves \mathbb{R}-splitting $\left.s p\right|^{*}$, finite order [also dual datum for tw char $\mathcal{\omega}$ on real pts any inner form]

Twisted setting 28

KS setup, briefly

- same approach to examine twisted setting
quasi-split data now includes \mathbb{R}-automorphism θ^{*} of G^{*} that preserves \mathbb{R}-splitting spl*, finite order [also dual datum for tw char $\mathcal{\omega}$ on real pts any inner form]
- inner form (G, η, θ) : includes \mathbb{R}-automorphism θ of G such that η transports θ to θ^{*} up to inner automorphism
inner class of $(G, \eta, \theta):\left(G, \eta^{\prime}, \theta^{\prime}\right)$, where η^{\prime} inner form of η, θ coincides with θ^{\prime} up to inner autom by element of $G(\mathbb{R})$

Twisted setting 28

KS setup, briefly

- same approach to examine twisted setting
quasi-split data now includes \mathbb{R}-automorphism θ^{*} of G^{*} that preserves \mathbb{R}-splitting spl*, finite order [also dual datum for tw char $\mathcal{\omega}$ on real pts any inner form]
- inner form (G, η, θ) : includes \mathbb{R}-automorphism θ of G such that η transports θ to θ^{*} up to inner automorphism
inner class of $(G, \eta, \theta):\left(G, \eta^{\prime}, \theta^{\prime}\right)$, where η^{\prime} inner form of η, θ coincides with θ^{\prime} up to inner autom by element of $G(\mathbb{R})$
- transfer: stable analysis on endo $g p H_{1}(\mathbb{R})$ related to θ-twisted invariant analysis on $G(\mathbb{R}) \quad[(\theta, \omega)$-twisted $]$

Twisted setting 29

Cuspidal-elliptic case, geom side

- point correspondences now via $T \rightarrow(T)_{\theta^{*}} \longleftrightarrow T_{H} \longleftarrow T_{1}$ norm for $\left(G^{*}, \theta^{*}\right)$ is canonical; not for general (G, η, θ) but ...

Cuspidal-elliptic case, geom side

- point correspondences now via $T \rightarrow(T)_{\theta^{*}} \longleftrightarrow T_{H} \longleftarrow T_{1}$ norm for $\left(G^{*}, \theta^{*}\right)$ is canonical; not for general (G, η, θ) but ...
- Exercise: in cuspidal-elliptic setting (G cuspidal, H_{1} elliptic again) examine nontriviality of elliptic very regular contributions to each side of θ-twisted endo transfer

Cuspidal-elliptic case, geom side

- point correspondences now via $T \rightarrow(T)_{\theta^{*}} \longleftrightarrow T_{H} \longleftarrow T_{1}$ norm for $\left(G^{*}, \theta^{*}\right)$ is canonical; not for general (G, η, θ) but ...
- Exercise: in cuspidal-elliptic setting (G cuspidal, H_{1} elliptic again) examine nontriviality of elliptic very regular contributions to each side of θ-twisted endo transfer
- geom side: call $\delta \in G(\mathbb{R}) \theta$-elliptic if $\operatorname{Int}(\delta) \circ \theta$ preserves a pair (B, T), where T is elliptic
for ell very reg contribution: call very regular pair $\left(\gamma_{1}, \delta\right)$ elliptic if γ_{1} is elliptic

Proposition: there exists an elliptic related very regular pair if and only if $G(\mathbb{R})$ contains a θ-elliptic elt ... then "full" ell csp

Twisted setting

spectral side

- contribution from ess tempered elliptic (ds) packets quasi-split data $\left(G^{*}, \theta^{*}\right)$: pick θ^{*}-stable Whitt. data θ^{*} has dual θ^{\vee}, extend to ${ }^{L} \theta$ which acts on parameters, interested only those φ (conj class) preserved by ${ }^{L} \theta$, i.e. $S_{\varphi}^{t w}=\left\{s \in G^{\vee}:{ }^{L} \theta \circ \varphi=\operatorname{Int}(s) \circ \varphi\right\}$ is nonempty

Twisted setting 30

spectral side

- contribution from ess tempered elliptic (ds) packets quasi-split data $\left(G^{*}, \theta^{*}\right)$: pick θ^{*}-stable Whitt. data θ^{*} has dual θ^{\vee}, extend to ${ }^{L} \theta$ which acts on parameters, interested only those φ (conj class) preserved by ${ }^{L} \theta$, i.e. $S_{\varphi}^{t w}=\left\{s \in G^{\vee}:{ }^{L} \theta \circ \varphi=\operatorname{Int}(s) \circ \varphi\right\}$ is nonempty
- attached pkt Π^{*} is preserved by $\pi \rightarrow \pi \circ \theta^{*}$ and has nonempty fixed point set (e.g. generic) ... "twist-packet"

spectral side

- contribution from ess tempered elliptic (ds) packets quasi-split data $\left(G^{*}, \theta^{*}\right)$: pick θ^{*}-stable Whitt. data θ^{*} has dual θ^{\vee}, extend to ${ }^{L} \theta$ which acts on parameters, interested only those φ (conj class) preserved by ${ }^{L} \theta$, i.e. $S_{\varphi}^{t w}=\left\{s \in G^{\vee}:{ }^{L} \theta \circ \varphi=\operatorname{Int}(s) \circ \varphi\right\}$ is nonempty
- attached pkt Π^{*} is preserved by $\pi \rightarrow \pi \circ \theta^{*}$ and has nonempty fixed point set (e.g. generic) ... "twist-packet"
- (G, η, θ) inner form: attached packet Π is preserved by $\pi \rightarrow \pi \circ \theta$ but twist-packet may be empty

spectral side

- contribution from ess tempered elliptic (ds) packets quasi-split data $\left(G^{*}, \theta^{*}\right)$: pick θ^{*}-stable Whitt. data θ^{*} has dual θ^{\vee}, extend to ${ }^{L} \theta$ which acts on parameters, interested only those φ (conj class) preserved by ${ }^{L} \theta$, i.e. $S_{\varphi}^{t w}=\left\{s \in G^{\vee}:{ }^{L} \theta \circ \varphi=\operatorname{Int}(s) \circ \varphi\right\}$ is nonempty
- attached pkt Π^{*} is preserved by $\pi \rightarrow \pi \circ \theta^{*}$ and has nonempty fixed point set (e.g. generic) ... "twist-packet"
- (G, η, θ) inner form: attached packet Π is preserved by $\pi \rightarrow \pi \circ \theta$ but twist-packet may be empty
- Proposition: there exists nonempty ds twist-packet if and only if $G(\mathbb{R})$ has a θ-elliptic elt ... and then all ds twist-pkts nonempty
- Proof of second proposition via Harish-Chandra theory for discrete series. For first proposition use following:

Lemma: $\exists \theta$-elliptic elt \Leftrightarrow there is $\left(G, \eta^{\prime}, \theta^{\prime}\right)$ in the inner class of (G, η, θ) such that θ^{\prime} preserves a fundamental splitting and η^{\prime} transports θ^{\prime} to θ^{*}

- Proof of second proposition via Harish-Chandra theory for discrete series. For first proposition use following:

Lemma: $\exists \theta$-elliptic elt \Leftrightarrow there is $\left(G, \eta^{\prime}, \theta^{\prime}\right)$ in the inner class of (G, η, θ) such that θ^{\prime} preserves a fundamental splitting and η^{\prime} transports θ^{\prime} to θ^{*}

- Application: for elliptic analysis, may assume θ preserves a fundamental splitting that is transported by η to splWh [have fund Whittaker splitting $s p /{ }_{W h}$ preserved by θ^{*}]
then uniquely defined norm, also proceed as before for spectral factors [Mezo, Waldspurger for spec transf exists], compatibility results ...

