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Introduction 1

G : a connected reductive algebraic group defined over R

• study some aspects of invariant harmonic analysis on G (R)
involved in endoscopic transfer

• transfer: first for orbital integrals [geometric side], then
look for interpretation of the dual transfer in terms of traces
[spectral side]

part of broader theme involving stable conjugacy, packets
of representations, stabilization of the Arthur-Selberg trace
formula, ...

concerned here with explicit structure, formulas useful
in applications
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Structure 2

Setting has more than G alone

• start with quasi-split data: G ∗ quasi-split group over R

fix [harmlessly] an R-splitting spl∗ = (B∗,T ∗, {Xα})
... Γ = Gal(C/R) = {1, σ} preserves each component

• then have connected complex dual group G∨ and
dual splitting spl∨ = (B, T , {Xα∨})
that is preserved by the real Weil group WR

here WR acts on G∨ and spl∨ through WR → Γ
then L-group LG := G∨ oWR

[from WR action: toral chars with special symms for geom
side of transfer, shifts in inf char for spectral side, etc]
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Structure 3

G as inner form of a quasi-split G ∗

• consider pair (G , η), where isom η : G → G ∗ is inner twist
i.e. the automorphism η σ(η)−1 of G ∗ is inner

inner class of (G , η) consists of (G , η′) with η′η−1 inner
[inner class is what matters in constructions here]

• t(G ) := set of [stable] conjugacy classes of maximal tori
defined over R in G

t(G ) as lattice: class(T ) 4 class(T ′)⇔ maximal R-split
subtorus ST of T is G (R)-conjugate to a subtorus of ST ′

Proposition: η embeds t(G ) in t(G ∗) as an initial segment
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Structure 4

Endoscopic group H1 comes from certain dual data [SED]

• semisimple element s in G∨
H∨ := Cent(s,G∨)0

subgroup H of LG that is split extension of WR by H∨ ...

extract L-action, L-group LH and thus dual quasi-split
group H over R, pass to z-extension H1
[1→ Z1 → H1 → H → 1, with Z1 central induced torus]

SED ez : (s,H,H) and (H1, ξ1), where

LH1
ξ1
↗

H
↘
incl

LG

• transfer involves H1(R) and G (R), for each inner form
(G , η) of G ∗ [funct. says ...]
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Related pairs 5

Geometric comparisons for H1(R) and G (R)

•
t(H1) t(G )

↘ ↙
t(H) −→ t(G ∗)

via maps on maximal tori: (i) z-extension H1 → H
(ii) admissible homs TH → TG ∗ [defn SED, Steinberg thm],
(iii) inner twist η : G → G ∗

or as Γ-equivariant maps on semisimple conjugacy classes in
complex points of the groups. Strongly reg class in G or G ∗:
centralizer of element is torus. Strongly G -reg class in H1
or H: image of class is strongly regular in G ∗

• the very regular set in H1(R)× G (R) : pairs (γ1, δ) with
δ strongly regular in G (R), γ1 strongly G -regular in H1(R)
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Related pairs 6

Related pairs of points

• very regular pair (γ1, δ) is related if there is δ∗ in G ∗(R)
for which γ1 −→ γ −→ δ∗ ←− δ
[alt: γ1 is an image/norm of δ]

• generalize to all semisimple pairs (γ1, δ), then related
(γ1, δ) is equisingular if Cent(γ,H)

0 is an inner form
of Cent(δ,G )0 ...

outside equisingular set: e.g. related pairs (u1, u),
with u1, u regular unipotent in H1(R),G (R) respectively
if G is quasi-split, or more generally (γ1, δ) regular ...

but need transfer factors ∆(γ1, δ) only on very regular set
to fully define transfer of test functions on geometric side,
then others via limit thms etc, all local fields of char zero ...
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Related pairs 7

Related pairs of representations

• arrange pairs (π1,π) on spectral side
via Langlands/Arthur parameters

L: consider continuous homs w 7→ ϕ(w) = ϕ0(w)× w
of WR into LG = G∨ oWR,
require image of ϕ0 lie in semisimple set, bounded
mod center; G∨ acts by conjugation on such homs,
essentially tempered parameter is [relevant] G∨-conj. class

• related pairs: back to SED, require (π1,π) have related
parameters (ϕ1, ϕ) [ϕ1(WR) ⊂ ξ1(H), ϕ ∼ ξ−11 ◦ ϕ1]

very regular related pair (π1,π): also require
Cent(ϕ(C×),G∨) abelian, then also Cent(ϕ1(C

×),H∨)
abelian ... regular infinitesimal chars
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Related pairs 8

Extending ...

• transfer factors first for very regular related pairs (π1,π)
of ess. tempered representations

extend to all ess. tempered; then recapture (for given pair
test functions) geom side from ess. temp spectral side

extension uses a coherent continuation for parameters,
correct for packets, including relevance

• A: consider G∨-conj. classes of continuous homs
ψ = (ϕ, ρ) : WR × SL(2,C)→ LG , with ϕ as before ...

M∨ := Cent(ϕ(C×),G∨) is Levi in G∨, contains image of ρ
M := subgroup of LG generated by M∨ and image of ψ
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Related pairs 9

Some pairs of Arthur parameters

• call ψ u-regular if image of ρ contains reg unip elt of M∨;
ess tempered ψ = (ϕ, triv) is u-regular ⇔ ϕ regular

consider pairs (ψ1,ψ) related (as before) and with ψ
u-regular, then ψ1 also u-regular; components ϕ1, ϕ
are equi-singular in approp sense

• structure ofM : extract L-action and L-group LM
M∨ is Levi ⇒ natural isomorphisms LM →M

M∗ := quasi-split group over R dual to LM
M∗ shares elliptic maximal torus with G ⇔
there is elt ofM acting as −1 on all roots of spl∨
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Related pairs 10

Cuspidal-elliptic setting

• elliptic parameter ψ [Arthur]: identity component
of centralizer in G∨ of Image(ψ) is central in G∨

[ess tempered case: only parameters for discrete series]

elliptic u-regular ψ points to packets constructed by
Adams-Johnson, plus either discrete series or limit of
discrete series packets, same inf char

• G cuspidal: has elliptic maximal torus
SED ez elliptic: identity comp of Γ-invariants in the center
of H∨ is central in G∨... call this cuspidal-elliptic setting

Proposition: in cusp-ell setting have elliptic u-regular
related pairs (ψ1,ψ), and only in this setting
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Test functions, transfer factors 11

Test functions, measures

• on G (R) : Harish-Chandra Schwartz functions, then
C∞
c (G (R)), also subspaces of K -finite ...

on H1(R) : corresponding types of test functions but
modulo Z1(R) = Ker(H1(R)→ H(R)),
SED ez determines character v1 on Z1(R) : require
translation action of Z1(R) on test functions is via (v1)−1

• use test measures fdg and f1dh1 to remove dependence of
transfer on choice of Haar measures dg , dh1

compatible haar measures on tori associated to very regular
related pair of points (γ1, δ) ... via T1 → TH → T
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Test functions, transfer factors 12

Transfer factors

• (γ1, δ), (γ′1, δ
′) very regular related pairs of points,

define certain canonical relative factor ∆(γ1, δ;γ
′
1, δ
′)

as product of three terms: ∆ = ∆I .∆II .∆III
[all depend only on stable conj cls γ1,γ

′
1, and conj cls δ, δ′]

terms ∆I , ..,∆III each have two additional dependences that
cancel in product; only ∆III genuinely relative, measures
position in stable class, other terms make this canonical

(π1,π), (π′1,π
′) very regular related ess temp pairs, define

canonical relative factor ∆(π1,π;π′1,π
′) as product of three

... [all depend only on packets of π1,π
′
1, and on π,π′]

• geom, spec terms have same structure and dependences
⇒ canonical ∆(γ1, δ;π1,π) also
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Test functions, transfer factors 13

Compatibility

• absolute factors ∆(γ1, δ) and ∆(π1,π) :
require for all above pairs

∆(γ1, δ)/∆(γ′1, δ
′) = ∆(γ1, δ;γ

′
1, δ
′)

∆(π1,π)/∆(π′1,π
′) = ∆(π1,π;π′1,π

′)

compatible factors ∆(γ1, δ) and ∆(π1,π) : for some, and
thence all, pairs (γ1, δ), (π1,π) we have

∆(γ1, δ)/∆(π1,π) = ∆(γ1, δ;π1,π)

• particular normalizations not needed in main theorem
used later for structure results, precise inversion results ...

data for statement of main theorem: quasisplit group,
SED, inner form, compatible factors
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Transfer results 14

Theorem

• For each test measure fdg on G (R) there exists a test
measure f1dh1 on H1(R) such that

SO(γ1, f1dh1) = ∑{δ} ∆(γ1, δ) O(δ, fdg) (1)

for all strongly G-regular γ1 in H1(R).

• Then also

St-Trace π1(f1dh1) = ∑{π} ∆(π1,π) Trace π(fdg) (2)

for all tempered irreducible representations π1 of H1(R)
such that the restriction of π1 to Z1(R) acts as v1.

• Conversely if fdg and f1dh1 satisfy (2) then they satisfy (1).
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Transfer results 15

More on (1) : SO(γ1, f1dh1) = ∑{δ} ∆(γ1, δ) O(δ, fdg)

• ∆(γ1, δ) := 0 if very regular pair (γ1, δ) is not related,
then sum on right is over str reg conjugacy classes {δ}

•
O(δ, fdg) :=

∫
Tδ(R)\G (R)

f (g−1δg)
dg
dtδ
,

where Tδ = Cent(δ,G )

•

SO(γ1, f1dh1) := ∑{γ′1}

∫
Tγ′1

(R)\G (R)
f1(h−11 γ′1h1)

dh1
dtγ′1

,

where the sum is over conjugacy classes {γ′1} in the stable
conjugacy class of γ1, compatible measure dtγ′1 on Tγ′1



Transfer results 15

More on (1) : SO(γ1, f1dh1) = ∑{δ} ∆(γ1, δ) O(δ, fdg)

• ∆(γ1, δ) := 0 if very regular pair (γ1, δ) is not related,
then sum on right is over str reg conjugacy classes {δ}

•
O(δ, fdg) :=

∫
Tδ(R)\G (R)

f (g−1δg)
dg
dtδ
,

where Tδ = Cent(δ,G )

•

SO(γ1, f1dh1) := ∑{γ′1}

∫
Tγ′1

(R)\G (R)
f1(h−11 γ′1h1)

dh1
dtγ′1

,

where the sum is over conjugacy classes {γ′1} in the stable
conjugacy class of γ1, compatible measure dtγ′1 on Tγ′1



Transfer results 15

More on (1) : SO(γ1, f1dh1) = ∑{δ} ∆(γ1, δ) O(δ, fdg)

• ∆(γ1, δ) := 0 if very regular pair (γ1, δ) is not related,
then sum on right is over str reg conjugacy classes {δ}

•
O(δ, fdg) :=

∫
Tδ(R)\G (R)

f (g−1δg)
dg
dtδ
,

where Tδ = Cent(δ,G )

•

SO(γ1, f1dh1) := ∑{γ′1}

∫
Tγ′1

(R)\G (R)
f1(h−11 γ′1h1)

dh1
dtγ′1

,

where the sum is over conjugacy classes {γ′1} in the stable
conjugacy class of γ1, compatible measure dtγ′1 on Tγ′1



Transfer results 16

More on (2): St-Trace π1(f1dh1) = ∑π ∆(π1,π) Trace π(fdg)

•
π1(f1dh1) :=

∫
Z1(R)\H1(R)

f1(h1)π1(h1)dh1

•
St-Trace π1(f1dh1) := ∑π′1

Trace π′1(f1dh1),

where the sum is over π′1 in the packet of π1

• ∆(π1,π) has been extended to all ess. tempered pairs
(π1,π). Also ∆(π1,π) := 0 if pair (π1,π) is not related,
then sum on right is over all ess tempered π
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Transfer results 17

Next steps

• geom side: begin extensions as already mentioned,
... new factors involve more general invariants, will
use "same type of structure" on spectral side

spec side: first (1) with particular normalizations ...
in general, ∆(π1,π) is a fourth root of unity, up to
constant, on all tempered related pairs

• Whittaker data for quasi-split G : G (R)-conjugacy class
of pairs (B,λ) : B = Borel subgroup defined over R,
λ = character on real points of unipotent radical of B
[harmless: G = G ∗, (B,λ) from spl∗ via add char R×]
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Transfer results 18

Normalization of transfer factors

• define compatible absolute factors ∆Wh(γ1, δ), ∆Wh(π1,π)
[quasi-split case: have compatible absolute factors ∆0
depending on spl∗; multiply each by certain ε-factor]

Proposition: For all essentially tempered related pairs
(π1,π), we have

∆Wh(π1,π) = ±1.

note: on geom side, for very regular (γ1, δ) near (1, 1), we
have the shape ∆Wh(γ1, δ) = [sign].[ε].[shift-char ]

• normalization extends to inner forms (G , η) such that
η σ(η)−1 = Int(u(σ)), where u(σ) is cocycle in G ∗sc .
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Transfer results 19

Structure on essentially tempered packets ...

• begin with cuspidal-elliptic setting, elliptic parameter ϕ

Sϕ := Cent(Image ϕ,G∨) for Langl ϕ (sim for Arthur ψ)

Example: G ∗ simply-connected semisimple, so G∨ adjoint,
recall splitting spl∨ = (B, T , {Xα∨}) for G∨. Then:
since ϕ elliptic we can arrange Sϕ = elts in T of order 6 2

• for each (G , η) with Whitt norm, consider π in packet for ϕ,
then we will identify π with a character on Sϕ ... get certain
extended packet for G ∗ as dual of quotient of Sϕ [ess temp]
In example: extended packet is exactly dual of Sϕ

will use particular case of construction from twisted setting
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Transfer results 20

Fundamental splittings

• recall: R-splitting spl∗ = (B∗,T ∗, {Xα}) for G ∗ with
dual spl∨ for G∨

for any G and T fundamental maximal torus in G :
pair (B,T ) fundamental if − σ preserves roots T in B;
there is a single stable conj. class of such pairs

fund splitting: extend fund pair (B,T ) to splitting
spl = (B,T , {Xα}) where simple triples {Xα,Hα,X−α}
are chosen (Hα = coroot) and σXα = Xσα if −σα 6= α,
σXα = εαX−α, where εα = ±1 otherwise

any two extensions of (B,T ) are conjugate under Tsc (R)
Whittaker data determines fund splitting splWh for G ∗

• back to cusp-ell setting: attach fundamental splπ [or pair]
to elliptic π via Harish-Chandra data
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Transfer results 21

Extended groups, packets

• splπ is determined uniquely up to G (R)-conjugacy

• now form extended group [K -group] of quasi-split type:
G := G0 t G1 t G2 t ... t Gn
[harmless] take (G0, η0, u0(σ)) = (G

∗, id , id)

general components of G : take cocycles uj (σ) in Tsc
representing the fibers of H1(Γ,G ∗sc )→ H1(Γ,G ∗) and
then (Gj , ηj ) with ηjσ(ηj )

−1 = Int uj (σ) [splWh = (B,T ...]

• form Π := Π0 tΠ1 tΠ2 t ... t Πn

as extended packet for [ess temp] ϕ
Π correct size ... G ∗ scss: |Π| =

∣∣H1(Γ,T )∣∣
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Transfer results 22

Invariants ...

• Example: write theorem for the case G ∗ scss
consider component Gj and rep π = πj of Gj (R) in Πj

there is unique ηπ = Int(xπ) ◦ ηj , where xπ ∈ G ∗sc = G ∗,
that transports splπj to splWh ... then
vπ(σ) := xπuj (σ)σ(xπ)−1 has ηπσ(ηπ)

−1 = Int vπ(σ)

inv(π) := class of cocycle vπ(σ) in H1(Γ,T )
π 7→ inv(π) : well-defined, bijective Π→ H1(Γ,T )

• spl∨ = (spl∗)∨ and spl∗ → splWh provide T → T∨

under which Sϕ isom to (T∨)Γ; write sT for image of s

recall Tate-Nakayama duality provides perfect pairing

〈−,−〉tn : H1(Γ,T )× (T∨)Γ → {±1}
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Transfer results 23

Apply to transfer

• now have perfect pairing Π× Sϕ → {±1}
given by

(π, s) 7→ 〈π, s〉 := 〈inv(π), sT 〉tn

note: s 7→ 〈π, s〉 trivial char when π is unique generic
in Π for given Whittaker data

• for s ∈ Sϕ : construct elliptic SED es = (s, ...), with
Hs := subgroup of LG generated by Cent(s,G∨)0

and the image of ϕ,
along with a preferred related pair (ϕs , ϕ)

use Whitt. norm for transfer from attached endoscopic
group H (s)1 to G
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Transfer results 24

• Theorem (strong basepoint property):

∆Wh(πs ,π) = 〈π, s〉
Corollary:

Trace π(fdg) =
∣∣Sϕ

∣∣−1 ∑s∈Sϕ
〈π, s〉 St-Trace πs (f

(s)
1 dh(s)1 )

thm for any G of quasi-split type [drop G ∗ = G ∗sc ] and ϕ
ess bded parameter : replace Sϕ by quotient, extend defn
pairing 〈π, ∗〉 ... need uniform decomp of unit princ series

• general inner forms: can arrange in extended groups but
lack natural basepoint; pick bp (G , η) and use Kaletha’s norm
of transfer factors on this group [rigidify {η}, refine EDS ez ]

then can norm all factors for extended group and get variant
of quasi-split structure; ... but need Kaletha’s cohom theory
to identify explicitly all constants in transfer

dstad
Highlight

dstad
Highlight

dstad
Highlight



Transfer results 24

• Theorem (strong basepoint property):

∆Wh(πs ,π) = 〈π, s〉
Corollary:

Trace π(fdg) =
∣∣Sϕ

∣∣−1 ∑s∈Sϕ
〈π, s〉 St-Trace πs (f

(s)
1 dh(s)1 )

thm for any G of quasi-split type [drop G ∗ = G ∗sc ] and ϕ
ess bded parameter : replace Sϕ by quotient, extend defn
pairing 〈π, ∗〉 ... need uniform decomp of unit princ series

• general inner forms: can arrange in extended groups but
lack natural basepoint; pick bp (G , η) and use Kaletha’s norm
of transfer factors on this group [rigidify {η}, refine EDS ez ]

then can norm all factors for extended group and get variant
of quasi-split structure; ... but need Kaletha’s cohom theory
to identify explicitly all constants in transfer

dstad
Highlight

dstad
Highlight

dstad
Highlight



Transfer results 25

Data attached to u-regular parameter

• back to cusp-ell setting, method for spectral factors
extends: now take ψ elliptic u-regular Arthur param

transport explicit data for ψ to elliptic T in G ∗

[as for s, use spl∨ dual spl∗, spl∗ → splWh = (B,T , {Xα})]

• explicit data: have ψ = (ϕ, ρ) and ξM : LM →M
there is an (almost) canonical form:
ϕ(z) = zµzσMµ × z for z ∈ C× and
ϕ(wσ) = e2πiλξM (wσ), where wσ → σ and w2σ = −1

µ,λ ∈ X∗(T )⊗C have several special properties ...
these determine a character on M∗(R) and inner forms,
also particular (s-)elliptic parameter [M∗ →]
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Transfer results 26

Attached packets

• M∗ as subgroup of G ∗ generated by T and coroots for M∨

as roots of T in G ∗ is quasi-split Levi group
[in Cart-stable parabolic of G ∗, Cart = Int(t0), t0 ∈ T (R)]

Arthur packet for inner form (G , η): use any η′ inner to η
with (η′)−1 : T → G defined over R to transport data for
ψ to certain character data for G , gather reps so defined

character data: for irred ess unitary repn cohom induced
from character on M ′(R), where M ′ is twist of M∗ by η′

... this is packet defined by Adams-Johnson

also get discrete series or limit packet, same inf char
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Transfer results 27

Transfer for these packets ...

• now Sψ = Γ-invariants in Center(M∨) ⊆ Γ-invariants in T
example: extended group G of quasi-split type, scss

attach Mπ, splπ, qπ = q(Mπ) to π ∈ Π

inv(π) well-defined up to cocycles generated by roots of
M∨ as coroots for T , so that 〈π, s〉 := 〈inv(π), s〉tn well-def

extend relative spectral factors, recover identities
from Adams-Johnson, Arthur, Kottwitz results ...
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Twisted setting 28

KS setup, briefly

• same approach to examine twisted setting

quasi-split data now includes R-automorphism θ∗ of G ∗

that preserves R-splitting spl∗, finite order
[also dual datum for tw char v on real pts any inner form]

• inner form (G , η, θ) : includes R-automorphism θ of G such
that η transports θ to θ∗ up to inner automorphism

inner class of (G , η, θ) : (G , η′, θ′), where η′ inner form of η,
θ coincides with θ′ up to inner autom by element of G (R)

• transfer: stable analysis on endo gp H1(R) related to
θ-twisted invariant analysis on G (R) [(θ,v)-twisted]
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Twisted setting 29

Cuspidal-elliptic case, geom side

• point correspondences now via T → (T )θ∗ ←→ TH ←− T1
norm for (G ∗, θ∗) is canonical; not for general (G , η, θ) but ...

• Exercise: in cuspidal-elliptic setting (G cuspidal, H1 elliptic
again) examine nontriviality of elliptic very regular
contributions to each side of θ-twisted endo transfer

• geom side: call δ ∈ G (R) θ-elliptic if Int(δ) ◦ θ preserves
a pair (B,T ), where T is elliptic

for ell very reg contribution: call very regular pair (γ1, δ)
elliptic if γ1 is elliptic

Proposition: there exists an elliptic related very regular pair if
and only if G (R) contains a θ-elliptic elt ... then "full" ell csp
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Twisted setting 30

spectral side

• contribution from ess tempered elliptic (ds) packets
quasi—split data (G ∗, θ∗): pick θ∗-stable Whitt. data

θ∗ has dual θ∨, extend to Lθ which acts on parameters,
interested only those ϕ (conj class) preserved by Lθ,
i.e. S twϕ = {s ∈ G∨ : Lθ ◦ ϕ = Int(s) ◦ ϕ} is nonempty

• attached pkt Π∗ is preserved by π → π ◦ θ∗ and has
nonempty fixed point set (e.g. generic) ... "twist-packet"

• (G , η, θ) inner form: attached packet Π is preserved by
π → π ◦ θ but twist-packet may be empty

• Proposition: there exists nonempty ds twist-packet if and
only if G (R) has a θ-elliptic elt ... and then all ds twist-pkts
nonempty
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Twisted setting 31

• Proof of second proposition via Harish-Chandra theory
for discrete series. For first proposition use following:

Lemma: ∃ θ-elliptic elt ⇔ there is (G , η′, θ′) in the inner
class of (G , η, θ) such that θ′ preserves a fundamental
splitting and η′ transports θ′ to θ∗

• Application: for elliptic analysis, may assume θ preserves
a fundamental splitting that is transported by η to splWh
[have fund Whittaker splitting splWh preserved by θ∗]

then uniquely defined norm, also proceed as before for
spectral factors [Mezo, Waldspurger for spec transf exists],
compatibility results ... �
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