Generalized Amitsur-Levitski Theorem and Equations for Sheets in a Reductive Complex Lie Algebra

Bertram Kostant, MIT

Representations of Reductive Groups
Dedicated to David Vogan's 60th Birthday
May 22, 2014

Summary

My talk will connect various areas of Lie theory, polynomial identities, and representation theory.

I connect an old result of mine on a Lie algebra generalization of the Amitsur-Levitski Theorem with equations for sheets and tie this into recent results of Kostant-Wallach on the variety of singular elements in a reductive Lie algebra.

References

[1] B. Kostant, A Theorem of Frobenius, a Theorem of Amitsur-Levitski and Cohomology Theory, J. Mech and Mech., 7 (1958): 2, Indiana University, 237-264.
[2] B. Kostant, Lie Group Representations on Polynomial Rings, American J. Math, 85 (1963), No. 1, 327-404.
[3] B. Kostant, Eigenvalues of a Laplacian and Commutative Lie Subalgebras, Topology, 13, (1965), 147-159.
[4] B. Kostant, A Lie Algebra Generalization of the Amitsur-Levitski Theorem, Adv. In Math., 40, (1981):2, 155-175.
[5] B. Kostant (joint with N. Wallach), On the algebraic set of singular elements in a complex simple Lie algebra, in:
Representation Theory and Mathematical Physics, Conference in honor of Gregg Zuckerman's 60th Birthday, Contemp. Math.,557, Amer. Math. Soc., 2009, pp. 215-230.

1. The Amitsur-Levitski Theorem

Let me start with some results from the Amitsur-Levitski Theorem in reference [4].

Let R be an associative ring and for any $k \in \mathbb{Z}$ and x_{i}, \ldots, x_{k}, in
R. One defines an alternating sum of products

$$
\left[\left[x_{1}, \ldots x_{k}\right]\right]=\sum_{\sigma \in \text { Sym } k} \operatorname{sg}(\sigma) x_{\sigma(1)} \cdots x_{\sigma(k)}
$$

One says that R satisfies the standard identity of degree k if $\left[\left[x_{1}, \ldots, x_{k}\right]\right]=0$ for any choice of the $x_{i} \in R$. Of course, R is commutative if and only if it satisfies the standard identity of degree 2.

Now for any $n \in \mathbb{Z}$ and field F, let $M(n, F)$ be the algebra of $n \times n$ matrices over F. The following states the famous Amitsur-Levitski theorem.

Theorem 1.

$M(n, F)$ satisfies the standard identity of degree $2 n$.

Remark 1. By restricting to matrix units, for a proof it suffices to take $F=\mathbb{C}$.

Without any knowledge that it was a known theorem, we came upon Theorem 1 (in my paper ref.[1]) a long time ago, from the point of Lie algebra cohomology. In fact, the result follows from the fact that if $\mathfrak{g}=M(n, \mathbb{C})$, then the restriction to \mathfrak{g} of the primitive cohomology class of degree $2 n+1$ of $M(n+1, \mathbb{C})$ to \mathfrak{g} vanishes.

Of course $\mathfrak{g}_{1} \subset \mathfrak{g}$, where $\mathfrak{g}_{1}=\operatorname{Lie} S O(n, \mathbb{C})$. Assume n is even.
One proves that the restriction to \mathfrak{g}_{1} of the primitive class of degree $2 n-1$ (highest primitive class) of \mathfrak{g} vanishes on \mathfrak{g}_{1}. This leads to a new standard identity, namely,

Theorem 2.

$$
\left[\left[x_{1}, \ldots, x_{2 n-2}\right]\right]=0
$$

for any choice of $x_{i} \in \mathfrak{g}_{1}$, i.e., any choice of skew-symmetric matrices.
Remark 2. Theorem 2 is immediately evident when $n=2$.
Theorems 1 and 2 suggest that standard identities can be viewed as a subject in Lie theory. The next theorem offers support for this idea.

Let \mathfrak{r} be a complex reductive Lie algebra and let

$$
\pi: \mathfrak{r} \rightarrow \operatorname{End} V
$$

be a finite-dimensional complex completely reducible representation. If $w \in \mathfrak{r}$ is nilpotent, then $\pi(w)^{k}=0$ for some $k \in \mathbb{Z}$.

Let $\varepsilon(\pi)$ be the minimal integer k such that $\pi(w)^{k}=0$ for all nilpotent $w \in \mathfrak{r}$.

In case π is irreducible, one can easily give a formula for $\varepsilon(\pi)$ in terms of the highest weight. If \mathfrak{g} (resp. \mathfrak{g}_{1}) is given as above, and π (resp. π_{1}) is the defining representation, then $\varepsilon(\pi)=n$ and $\varepsilon\left(\pi_{1}\right)=n-1$.

Consequently, the following theorem generalizes Theorems 1 and 2 (ref.[4]).

Theorem 3.

Let \mathfrak{r} be a complex reductive Lie algebra and let π be as above. Then for any $x_{i} \in \mathfrak{r}, i=1, \ldots, 2 \varepsilon(\pi)$, one has

$$
\left[\left[\hat{x}_{1}, \ldots, \hat{x}_{2 \varepsilon(\pi)}\right]\right]=0
$$

where $\hat{x}_{i}=\pi\left(x_{i}\right)$.
Henceforth \mathfrak{g}, until mentioned otherwise, will be an arbitrary reductive complex finite-dimensional Lie algebra. Let $T(\mathfrak{g})$ be the tensor algebra over \mathfrak{g} and let $S(\mathfrak{g}) \subset T(\mathfrak{g})$ resp.
$A(g) \subset T(\mathfrak{g}))$ be the subspace of symmetric (resp. alternating) tensors in $T(\mathfrak{g})$. The natural grading on $T(\mathfrak{g})$ restricts to a grading on $S(\mathfrak{g})$ and $A(\mathfrak{g})$.

In particular, where multiplication is tensor product one notes the following:

Proposition 1.

$A^{j}(\mathfrak{g})$ is the span of $\left[\left[x_{1}, \ldots, x_{j}\right]\right]$ over all choices of $x_{i}, i=1, \ldots, j$, in \mathfrak{g}.

Now let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}. Then $U(\mathfrak{g})$ is the quotient algebra of $T(\mathfrak{g})$ so that there is an algebra epimorphism

$$
\tau: T(\mathfrak{g}) \rightarrow U(\mathfrak{g}) .
$$

Let $Z=\operatorname{Cent} \mathrm{U}(\mathfrak{g})$ and let $E \subset U(\mathfrak{g})$ be the graded subspace spanned by all powers $e^{j}, j=1, \ldots$, where $e \in \mathfrak{g}$ is nilpotent.

In (ref. [2], Theorem 21), where tensor product identifies with multiplication, we proved

$$
U(\mathfrak{g})=Z \otimes E .
$$

And, in [4],(Theorem 3.4.) we proved the following.

Theorem 4.

For any $k \in \mathbb{Z}$ one has

$$
\tau\left(A^{2 k}(\mathfrak{g}) \subset E^{k}\right.
$$

Theorem 3 is then an immediate consequence of Theorem 4.

Indeed, using the notation of Theorem 3, let $\pi_{U}: U(\mathfrak{g}) \rightarrow$ End V be the algebra extension of π to $U(\mathfrak{g})$. One then has

Theorem 5.

If $E^{k} \subset \operatorname{Ker} \pi_{U}$, then

$$
\left[\left[\hat{x}_{1}, \ldots, \hat{x}_{2 k}\right]\right]=0
$$

for any $x_{i}, \ldots, x_{2 k}$ in \mathfrak{g}.
The Poincaré-Birkhoff-Witt theorem says that the restriction $\tau: S(\mathfrak{g}) \rightarrow U(\mathfrak{g})$ is a linear isomorphism.

Consequently, given any $t \in T(\mathfrak{g})$, there exists a unique element \bar{t} in $S(\mathfrak{g})$ such that

$$
\tau(t)=\tau(\bar{t})
$$

Let $A^{\text {even }}(\mathfrak{g})$ be the span of alternating tensors of even degree. Restricting to $A^{\text {even }}(\mathfrak{g})$, one has a \mathfrak{g}-module map

$$
\Gamma_{T}: A^{\text {even }}(\mathfrak{g}) \rightarrow S(\mathfrak{g})
$$

defined so that if $a \in A^{\text {even }}(\mathfrak{g})$, then

$$
\tau(a)=\tau\left(\Gamma_{T}(a)\right)
$$

Now the (commutative) symmetric algebra $P(\mathfrak{g})$ over g and exterior algebra $\wedge \mathfrak{g}$ are quotient algebras of $T(\mathfrak{g})$. The restriction of the quotient map clearly induces \mathfrak{g}-module isomorphisms

$$
\begin{gathered}
\tau_{S}: S(\mathfrak{g}) \rightarrow P(\mathfrak{g}) \\
\tau_{A}: A^{\text {even }}(\mathfrak{g}) \rightarrow \wedge^{\text {even }} \mathfrak{g}
\end{gathered}
$$

where $\wedge^{\text {even }} \mathfrak{g}$ is the commutative subalgebra of $\wedge \mathfrak{g}$ spanned by elements of even degree.

We may complete the commutative diagram defining

$$
\Gamma: \wedge^{\text {even }} \mathfrak{g} \rightarrow P(\mathfrak{g})
$$

so that on $A^{\text {even }}(\mathfrak{g})$ one has

$$
\tau_{S} \circ \Gamma_{T}=\Gamma \circ \tau_{A} .
$$

Since we have shown that $U(\mathfrak{g})=Z \otimes E$, one notes that for $k \in \mathbb{Z}$, one has

$$
\Gamma: \wedge^{2 k} \mathfrak{g} \rightarrow P^{k}(\mathfrak{g})
$$

The Killing form extends to a nonsingular symmetric bilinear form on $P(\mathfrak{g})$ and $\wedge \mathfrak{g}$. This enables us to identify $P(\mathfrak{g})$ with the algebra of polynomial functions on \mathfrak{g} and to identify $\wedge \mathfrak{g}$ with its dual space $\wedge \mathfrak{g}^{*}$ where \mathfrak{g}^{*} is the dual space to \mathfrak{g}.

2. Sheets

Let $R^{k}(\mathfrak{g})$ be the image of $\Gamma: \wedge^{2 k} \mathfrak{g} \rightarrow P^{k}(\mathfrak{g})$
so that $R^{k}(\mathfrak{g})$ is a \mathfrak{g}-module of homogeneous polynomial functions of degree k on \mathfrak{g}.

The significance of $R^{k}(\mathfrak{g})$ has to do with the dimensions of $\operatorname{Ad} \mathfrak{g}$ adjoint (= coadjoint) orbits. Any such orbit is symplectic and hence is even dimensional.

For $j \in \mathbb{Z}$, let $\mathfrak{g}^{(2 j)}=\{x \in \mathfrak{g} \mid \operatorname{dim}[\mathfrak{g}, x]=2 j\}$.
We recall that a $2 j \mathfrak{g}$-sheet is an irreducible component of $\mathfrak{g}^{(2 j)}$. Let $\operatorname{Var} R^{k}(\mathfrak{g})=\left\{x \in \mathfrak{g} \mid p(x)=0, \quad \forall p \in R^{k}(\mathfrak{g})\right\}$.

Theorem 6 [see[4] Prop. 3.2.]

One has

$$
\operatorname{Var} R^{k}(\mathfrak{g})=\cup_{2 j<2 k} \mathfrak{g}^{(2 j)}
$$

or $\operatorname{Var} R^{k}(\mathfrak{g})$ is the set of all $2 j \mathfrak{g}$-sheets for $j<k$.
Let γ be the transpose of Γ. Thus

$$
\gamma: P(\mathfrak{g}) \rightarrow \wedge^{\text {even }} \mathfrak{g}
$$

and one has for $p \in P(\mathfrak{g})$ and $u \in \wedge \mathfrak{g}$,

$$
(\gamma(p), u)=(p, \Gamma(u))
$$

One also notes

$$
\gamma: P^{k}(\mathfrak{g}) \rightarrow \wedge^{2 k} \mathfrak{g} .
$$

A proof of Theorem 6 depends on establishing some nice algebraic properties of γ. Since we have, via the Killing form, identified \mathfrak{g} with its dual, then $\wedge \mathfrak{g}$ is the underlying space for a standard cochain complex $(\wedge \mathfrak{g}, d)$ where d is the coboundary operator of degree +1 .

In particular if $x \in \mathfrak{g}$, then $d x \in \wedge^{2} \mathfrak{g}$.
Identifying \mathfrak{g} here with $P^{1}(\mathfrak{g})$, one has a map

$$
P^{1}(\mathfrak{g}) \rightarrow \wedge^{2} \mathfrak{g}
$$

Theorem 7.

The map $\gamma: P(\mathfrak{g}) \rightarrow \wedge^{\text {even }} \mathfrak{g}$ is the homomorphism of commutative algebras extending $P^{1}(\mathfrak{g}) \rightarrow \wedge^{2} \mathfrak{g}$.

In particular, for any $x \in \mathfrak{g}$,

$$
\gamma\left(x^{k}\right)=(-d x)^{k}
$$

The connection with Theorem 6 follows next.

Proposition 2.

Let $x \in \mathfrak{g}$. Then $x \in \mathfrak{g}^{(2 k)}$ if and only if k is maximal, such that $(d x)^{k} \neq 0$, in which case there is a scalar $c \in \mathbb{C}^{\times}$such that

$$
(d x)^{k}=c w_{1} \wedge \cdots \wedge w_{2 k}
$$

where $w_{i}, i=1, \ldots, 2 k$, is a basis of $[x, \mathfrak{g}$.
Proofs of Theorem 7 and Proposition 2 are given in [ref. [4], as Theorem 1.4 and Proposition 1.3].

Now we wish to explicitly describe the \mathfrak{g}-module $R^{k}(\mathfrak{g})$. Details are in ref [4] Section 1.2.

Let $J=P(\mathfrak{g})^{\mathfrak{g}}$ so that J is the ring of Ad \mathfrak{g} polynomial invariants. Let Diff $P(\mathfrak{g})$ be the algebra of differential operators on $P(\mathfrak{g})$ with constant coefficients.

One then has an algebra isomorphism

$$
P(\mathfrak{g}) \rightarrow \operatorname{Diff} P(\mathfrak{g}), \quad q \mapsto \partial_{q}
$$

where for $p, q, f \in P(\mathfrak{g})$, one has

$$
\left(\partial_{q} p, f\right)=(p, q f)
$$

and ∂_{x}, for $x \in \mathfrak{g}$, is the partial derivative defined by x.

Let $J_{+} \subset J$ be the J-ideal of all $p \in J$ with zero constant term and let

$$
H=\left\{q \in P(\mathfrak{g}) \mid \partial_{p} q=0 \quad \forall p \in J_{+}\right\} .
$$

H is a graded \mathfrak{g}-module whose elements are called harmonic polynomials. Then one knows (see ref.[2], Theorem 11) that, where the tensor product is realized by polynomial multiplication,

$$
P(\mathfrak{g})=J \otimes H .
$$

It is immediate from $\left(\partial_{q} p, f\right)=(p, q f)$ that H is the orthocomplement of the ideal $J_{+} P(\mathfrak{g})$ in $P(\mathfrak{g})$.

However since γ is an algebra homomorphism, one has

$$
J_{+} P(\mathfrak{g}) \subset \operatorname{Ker} \gamma
$$

since one easily has that $J_{+} \subset \operatorname{Ker} \gamma$.
This is clear since

$$
\begin{aligned}
\gamma\left(J_{+}\right) & \subset d(\wedge \mathfrak{g}) \cap(\wedge \mathfrak{g})^{\mathfrak{g}} \\
& =0
\end{aligned}
$$

But then $(\gamma(p), u)=(p, \Gamma(u))$ implies the following theorem.

Theorem 8.

For any $k \in \mathbb{Z}$ one has

$$
R^{k}(\mathfrak{g}) \subset H
$$

Let $\operatorname{Sym}(2 k, 2)$ be the subgroup of the symmetric group $\operatorname{Sym}(2 \mathrm{k})$ defined by
$\operatorname{Sym}(2 k, 2)=\{\sigma \in \operatorname{Sym}(2 k) \mid \sigma$ permutes the set of unordered pairs $\{(1,2),(3,4), \ldots,((2 k-1), 2 k)\}\}$. That is, if
$\sigma \in \operatorname{Sym}(2 k, 2)$ and $1 \leq i \leq k$, there exists $1 \leq j \leq k$, such that as unordered sets

$$
(\sigma(2 i-1), \sigma(2 i))=((2 j-1), 2 j)
$$

It is clear that $\operatorname{Sym}(2 k, 2)$ is a subgroup of order $2^{k} \cdot k!$. Let $\Pi(k)$ be a cross-section of the set of left cosets of $\operatorname{Sym}(2 k, 2)$ in $\operatorname{Sym}(2 k)$ so that one has a disjoint union

$$
\operatorname{Sym}(2 k)=\cup \nu \operatorname{Sym}(2 k, 2)
$$

indexed by $\nu \in \Pi(k)$.
Remark 3. One notes that the cardinality of $\Pi(k)$ is $(2 k-1)(2 k-3) \cdots 1$ and the correspondence

$$
\nu \mapsto((\nu(1), \nu(2)),(\nu(3), \nu(4)), \ldots,(\nu((2 k-1)), \nu(2 k)))
$$

sets up a bijection of $\Pi(k)$ with the set of all partitions of $(1,2, \ldots, 2 k)$ into a union of subsets each of which has two elements.

We also observe that $\Pi(k)$ may be chosen, and will be chosen, such that $\operatorname{sg} \nu=1$ for all $\nu \in \Pi(k)$.

This is clear since the $s g$ character is not trivial on $\operatorname{Sym}(k, 2)$ for $k \geq 1$.

The following is a restatement of some results in [4], Section 3.2, especially (3.25) and (3.29).

Theorem 9.

For any $k \in \mathbb{Z}$ there exists a nonzero scalar c_{k}, such that for any $x_{i} i=1, \ldots, 2 k$, in \mathfrak{g}

$$
\Gamma\left(x_{1} \wedge \cdots \wedge x_{2 k}\right)=c_{k} \sum_{\nu \in \Pi(k)}\left[x_{\nu(1)}, x_{\nu(2)}\right] \cdots\left[x_{\nu(2 k-1)}, x_{\nu(2 k)}\right] .
$$

Furthermore, the homogeneous polynomial of degree k on the right side of the equation above is harmonic, and $R^{k}(\mathfrak{g})$ is the span of all such polynomials for an arbitrary choice of the x_{i}.

We now come to the next section.

3. The Case $\mathfrak{h}=R$

Let \mathfrak{h} be a Cartan sublgebra of \mathfrak{g} and let $\ell=\operatorname{dim} \mathfrak{h}$, so $\ell=\operatorname{rank} \mathfrak{g}$. Let Δ be the set of roots of $(\mathfrak{h}, \mathfrak{g})$ and let $\Delta_{+} \subset \Delta$ be a choice of positive roots.
Let $r=\operatorname{card} \Delta_{+}$, so that $n=\ell+2 r$, where we fix $n=\operatorname{dim} \mathfrak{g}$.
We assume a well ordering is defined on Δ_{+}. For any $\varphi \in \Delta$, let e_{φ} be a corresponding root vector. The choices will be normalized only insofar as $\left(e_{\varphi}, e_{-\varphi}\right)=1$ for all $\varphi \in \Delta$.

From Proposition 2 stated earlier, one recovers the well-known fact that $\mathfrak{g}^{(2 k)}=0$ for $k>r$, and $\mathfrak{g}^{(2 r)}$ is the set of all regular elements in \mathfrak{g}.

One also notes then that the earlier statement $(\gamma(p), u)=(p, \Gamma(u))$ implies that $\operatorname{Var} R^{r}(\mathfrak{g})$ reduces to 0 if $k>r$, whereas Theorem 6 implies that
$\operatorname{Var} R^{r}(\mathfrak{g})$ is the set of all singular elements in \mathfrak{g}.
The paper (ref [5] (joint with Nolan Wallach) is mainly devoted to a study of a special construction of $R^{r}(\mathfrak{g})$ and a determination of its remarkable \mathfrak{g}-module structure.

It is a classic theorem of C. Chevalley that J is a polynomial ring in ℓ homogeneous generators p_{i}, so that we can write

$$
J=\mathbb{C}\left[p_{1}, \ldots, p_{\ell}\right]
$$

Let $d_{i}=\operatorname{deg} p_{i}$. Then if we put $m_{i}=d_{i}-1$, the m_{i} are referred to as the exponents of \mathfrak{g}, and one knows that

$$
\sum_{i=1}^{\ell} m_{i}=r
$$

Now, henceforth assume \mathfrak{g} is simple, so that the adjoint representation is irreducible. Let $y_{j}, j=1, \ldots, n$, be the basis of \mathfrak{g}.

One defines an $\ell \times n$ matrix $Q=Q_{i j}, i=1, \ldots, \ell, j=1, \ldots, n$ by putting

$$
Q_{i j}=\partial_{y_{j}} p_{i}
$$

Let $S_{i}, i=1, \ldots, \ell$, be the span of the entries of Q in the $i^{t h}$ row. The following proposition is immediate.

Proposition 3.

See ref [5].
$S_{i} \subset P^{m_{i}}(\mathfrak{g})$. Furthermore S_{i} is stable under the action of \mathfrak{g} and, as a \mathfrak{g}-module, S_{i} transforms according to the adjoint representation.

If V is a \mathfrak{g}-module, let $V_{\text {ad }}$ be the set of all of vectors in V which transform according to the adjoint representation. The equality $\operatorname{Sym}(2 k)=\cup \nu \operatorname{Sym}(2 k, 2)$ readily implies that
$P(\mathfrak{g})_{\text {ad }}=J \otimes H_{\text {ad }}$.
Sometime ago I proved the following result-[See [2], Section 5.4. Especially, see (5.4.6) and (5.4.7).]

Theorem 10.

The multiplicity of the adjoint representation in H_{ad} is ℓ.
Furthermore the invariants p_{i} can be chosen so that $S_{i} \subset H_{\text {ad }}$ for all i and the $S_{i}, i=1, \ldots, \ell$, are indeed the ℓ occurrences of the adjoint representation in $H_{a d}$.

Clearly there are $\binom{n}{\ell} \ell \times \ell$ minors in the matrix Q. The determinant of any of these minors is an element of $P^{r}(\mathfrak{g})$ by $\sum_{i=1}^{\ell} m_{i}=r$.

In [5] we offer a different formulation of $R^{r}(\mathfrak{g})$ by proving the following.

Theorem 11.

The determinant of any $\ell \times \ell$ minor of Q is an element of $R^{r}(\mathfrak{g})$ and indeed $R^{r}(\mathfrak{g})$ is the span of the determinants of all these minors.

The final section contains some additional results on the \mathfrak{g}-module structure of $R^{r}(\mathfrak{g})$.

We now show the \mathfrak{g}-module structure of $R^{r}(\mathfrak{g})$.

The adjoint action of \mathfrak{g} on $\wedge \mathfrak{g}$ extends to $U(\mathfrak{g})$ so that $\wedge \mathfrak{g}$ is a $U(\mathfrak{g})$-module.
If $\mathfrak{s} \subset \mathfrak{g}$ is any subpace and $k=\operatorname{dim} \mathfrak{s}$, let $[\mathfrak{s}]=\wedge^{k} \mathfrak{s}$ so that $[\mathfrak{s}]$ is a 1-dimensional subspace of $\wedge^{k} \mathfrak{g}$.
Let $M_{k} \subset \wedge^{k} \mathfrak{g}$ be the span of all [\mathfrak{s}], where \mathfrak{s} is any k-dimensional commutative Lie subalgebra of \mathfrak{g}. If no such subalgebra exists, put $M_{k}=0$. It is clear that M_{k} is a \mathfrak{g}-submodule of $\wedge^{k} \mathfrak{g}$.

Let Cas $\in Z$ be the Casimir element corresponding to the Killing form. The following theorem was proved as Theorem (5) in [3].

Theorem 12.

For any $k \in \mathbb{Z}$ let m_{k} be the maximal eigenvalue of Cas on $\wedge^{k} \mathfrak{g}$. Then $m_{k} \leq k$.

Moreover $m_{k}=k$ if and only if $M_{k} \neq 0$ in which case M_{k} is the eigenspace for the maximal eigenvalue k.

Let Φ be a subset of Δ. Let $k=\operatorname{card} \Phi$ and write, in increasing order,

$$
\Phi=\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}
$$

Let

$$
e_{\Phi}=e_{\varphi_{1}} \wedge \cdots \wedge e_{\varphi_{k}}
$$

so that $e_{\Phi} \in \wedge^{k} \mathfrak{g}$ is an (\mathfrak{h}) weight vector with weight

$$
\langle\Phi\rangle=\sum_{i=1}^{k} \varphi_{i}
$$

Let \mathfrak{n} be the Lie algebra spanned by e_{φ} for $\varphi \in \Delta_{+}$, and let \mathfrak{b} be the Borel subalgebra of \mathfrak{g}, defined by putting $\mathfrak{b}=\mathfrak{h}+\mathfrak{n}$.

Now a subset $\Phi \subset \Delta_{+}$will be called an ideal in Δ_{+}if the span, \mathfrak{n}_{Φ} of e_{φ}, for $\varphi \in \Phi$, is an ideal of \mathfrak{b}.
In such a case $\mathbb{C} e_{\Phi}$ is stable under the action of \mathfrak{b} and hence if $V_{\Phi}=U(\mathfrak{g}) \cdot e_{\Phi}$, then where $k=\operatorname{card} \Phi$,

$$
V_{\Phi} \subset \wedge^{k} \mathfrak{g}
$$

is an irreducible \mathfrak{g}-module of highest weight $\langle\Phi\rangle$ having $\mathbb{C} e_{\Phi}$ as the highest weight space. We will say that Φ is abelian if \mathfrak{n}_{Φ} is an abelian ideal of \mathfrak{b}. Let

$$
\mathcal{A}(k)=\left\{\Phi \mid \Phi \text { be an abelian ideal of cardinality } k \text { in } \Delta_{+} .\right\}
$$

The following theorem was established in [3], (see especially Theorems (7) and (8).)

Theorem 13.

If Φ, Ψ are distinct ideals in Δ_{+}, then V_{Φ} and V_{Ψ} are inequivalent (i.e., $\langle\Phi\rangle \neq\langle\Psi\rangle$).

Furthermore if $M_{k} \neq 0$, then

$$
M_{k}=\oplus_{\Phi \in \mathcal{A}(k)} V_{\Phi}
$$

so that, in particular, M_{k} is a multiplicity $1 \mathfrak{g}$-module.

We now focus on the case where $k=\ell$. Clearly $M_{\ell} \neq 0$ since \mathfrak{g}^{x} is an abelian subalgebra of dimension ℓ for any regular $x \in \mathfrak{g}$.

Let $\mathcal{I}(\ell)$ be the set of all ideals of cardinality ℓ. The following theorem, giving the remarkable structure of $R^{r}(\mathfrak{g})$ as a \mathfrak{g}-module, is one of the main results in [5].

Theorem 14. One has $\mathcal{I}(\ell)=\mathcal{A}(\ell)$ so that

$$
M_{\ell}=\oplus_{\Phi \in \mathcal{I}(\ell)} V_{\Phi}
$$

Moreover as \mathfrak{g}-modules, one has the equivalence

$$
R^{r}(\mathfrak{g}) \cong M_{\ell}
$$

so that $R^{r}(\mathfrak{g})$ is a multiplicity $1 \mathfrak{g}$-module with card $\mathcal{I}(\ell)$ irreducible components and Cas takes the value ℓ on each and every one of the $\mathcal{I}(\ell)$ distinct components.

Example. If \mathfrak{g} is of type A_{ℓ}, then the elements of $\mathcal{I}(\ell)$ can be identified with Young diagrams of size ℓ. In this case, therefore the number of irreducible components in $R^{r}(\mathfrak{g})$ is $P(\ell)$, where P here is the classical partition function.

