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Notations
G, a connected semisimple Lie group.
Θ, a Cartan involution.
K = GΘ, the maximal compact subgroup.

Ĝ, the unitary dual of G.
g0 = Lie(G), g = g0 ⊗R C.

{π ∈ Ĝ} ←→ { Irreducible unitary (g,K)-modules Xπ }.

In later part of the talk, for the sake of elliptic
representations, we turn to a linear algebraic real or
p-adic group G.
F , a real or p-adic field.
G, a connected semisimple linear algebraic group
defined over F .
G = G(F ), the group of F -rational points on G.
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Dirac operators
Let g0 = k0 + p0 be the Cartan decomposition.
(Drop the subscript for the complexification.)

U(g), the universal enveloping algebra.
Z(g), the center of U(g).
C(p), the Clifford algebra w.r.t. the Killing form B(·, ·)|p.

Let Z1, · · · , Zn be an orthogonal basis for p0. Define

D =

n∑

i=1

Zi ⊗ Zi ∈ U(g)⊗ C(p).

D is indepedent of choice of bases, K-invariant, and
satisfies

D2 = −Ωg ⊗ 1 + Ωk∆ + C,

where Ω is the Casmir element and C is a constant.
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Vogan’s conjecture
Parthasarathy’s Dirac Inequality:

D : Xπ ⊗ S → Xπ ⊗ S is self-adjoint. Thus,
〈Λ,Λ〉 ≤ 〈γ + ρc, γ + ρc〉, provided Xπ ⊗ S(γ) 6= 0.

Vogan’s conjecture: ∀z ∈ Z(g), ∃ ζ(z) ∈ Z(k∆), s.t.

z ⊗ 1− ζ(z) = Da+ bD, for some a, b ∈ U(g)⊗ C(p).

Dirac cohomology HD(Xπ) : = KerD for unitary Xπ;
HD(X) : = KerD/KerD ∩ ImD for any (g,K)-module X.

Vogan Conjecture implies: If Eγ ⊆ HD(X), then the
infinitesimal character of X is conjugate to γ + ρc.

H-Pandzic (JAMS, 2002) verified the Vogan’s conjecture.
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Kostant’s cubic Dirac operator
Kostant (Proceedings of the Schur Conference, 2003)
Let g = r⊕ s and W1, . . . ,Wl be an orthonormal basis of s.

D(g, r) =
∑

k

Wk⊗Wk−
1

2

∑

i<j<k

B([Wi,Wj ],Wk)⊗WiWjWk.

Theorem There is an ζ : Z(g)→ Z(r∆), s.t. ∀z ∈ Z(g),
z ⊗ 1− ζ(z) = Da+ aD, for some a ∈ U(g)⊗ C(s).

Moreover, ζ is determined by

Z(g)
ζ

−−−→ Z(r)

H.-C. isom
y

yH.-C. isom

S(h)W
Res
−−−→ S(hr)

Wr

The infl’l characters of X and HD(X) are conjugate.
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Dirac cohomology in other setting
Alekseev-Meinrenkein: ‘Lie theory and the Chern-Weil
homomorphism’ (Ann. Ecole. Norm. Sup. 2005)

Kumar: ‘Induction functor in non-commutative
equivariaint cohomology and Dirac cohomology’ (J.
Algebra 2005)

H-Pandzic: the symplectic Dirac operator in Lie
superalgebras (Transf. Groups 2005)

Kac-Frajria-Papi: the affine cubic Dirac operator in the
affine Lie algebras (Adv. Math. 08)

Barbasch-Ciubotaru-Trapa: the graded affine Hecke
algebras (Acta Math. 2012)

Ciubotaru-He: Weyl groups in connection with the
Springer theory (Arkiv Math. 2013)
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Calculation of Dirac cohomology
In H-Kang-Pandzic (Tran Group, 2009)
Let t ⊂ h be the Cartan subalgebras of k and g.
Let W (g, t) be the Weyl group for the root system ∆(g, t).
Set W 1(g, t) = {w ∈ W (g, t) | wρ is ∆+(k, t)-dominant}.
Then W (g, t) = W (k, t)×W (g, t)1. Set l0 = rank g− rank k.

Theorem Let Vλ be an irreducible finite-dimensional
g-module with highest weight λ.
If λ 6= Θλ, then HD(Vλ) = 0.
If λ = Θλ, then as a k module,

HD(Vλ) =
⊕

w∈W (g,t)1

2[l0/2]Ew(λ+ρ)−ρc .

Kostant: cubic Dirac cohomology, equal rank case.

Mehdi-Zierau: cubic Dirac cohomology, general case.
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Dirac cohomology of HC modules
In H-Kang-Pandzic (Tran Group, 2009)

Let q = l+ u be a θ-stable parabolic subalgebra.

The Aq(λ) is an admissible (g,K)-module defined by
cohomological parabolic induction from 1-dimensional
l-module with parameter λ.

Theorem
If λ 6= θλ, then HD(Aq(λ)) = 0.
If λ = θλ, then

HD(Aq(λ)) =
⊕

w∈W (l,t)1

2[l0/2]Ew(λ+ρ)−ρc .

Mehdi-Parthasarathy (J. Lie Theory, 2011): the
generalized Enright-Varadarajan modules Bp(λ)

Barbasch-Pandzic: certain unipotent representations
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The (g, K)-cohomology
In H-Kang-Pandzic (Tran Group, 2009)
If dim p is even, then

∧∗
p ∼= S ⊗ S∗ as K-modules.

If dim p is odd, then
∧∗

p is 2-copies of S ⊗ S∗.
Consider the complex vector space Hom(

∧∗
p, X ⊗ F ∗).

Then the complex of H∗(g,K;X ⊗ F ∗) is
HomK̃(S ⊗ S∗, X ⊗ F ∗) ∼= HomK̃(F ⊗ S,X ⊗ S).

If X is unitary, Wallach has proved that the differential of
this complex is 0. It follows that

Theorem H∗(g,K;X ⊗ F ∗) = HomK̃(HD(F ), HD(X)).

Theorem (Vogan-Zuckerman, Comp Math, 1984)
dimH∗(g,K;X ⊗ F ∗) = 2l0|W (l, t)/W (l ∩ k, t)|.
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Dirac cohomology in stages
In H-Pandzic-Renard (Repn Theory, 2006)
Let g ⊃ r ⊃ r1.
(i) D(g, r1) = D(g, r) +D∆(r, r1);
(ii) The summands D(g, r) and D∆(r, r1) anticommute.

Theorem Let V be a unitary (g,K)-module. Let t be a
Cartan subalgebra of k.
Then HD(g, t;V ) = HD(k, t;HD(g, k;V )).

HD(g, t;V ) = H(D(g, k)
∣∣
HD(k,t;V )

).

Chuah-H (Crelle’s J) used calculation of Dirac
cohomology in stages for study the geometric
quantization of coadjoint orbits and construction of
models of discrete series.
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Lie algebra cohomology
In H-Pandzic-Renard (Repn Theory, 2006)
Let G be hermitian symmetric type. Recall that
g0 = k0 + p0. Then p0 has a complex structure and
g = k+ p+ + p−.

Theorem Assume that G is hermitian symmetric.
Let q = l+ u be a θ-stable parabolic subalgebra with l ⊂ k.
If V is unitary, then

HD(g, l;V ) ∼= H∗(ū, V )⊗ Zρ(ū) ∼= H∗(u, V )⊗ Zρ(ū).

Enright calculated H∗(u, V ) for irreducible unitary highest
weight modules V with l = k and u = p+ (Crelle’s J, 1988)

By Enright’s result and calculation in stages, we obtained
all three cohomologies in the above theorem.
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CategoryO
In H-Xiao (Selecta Math, 2012)
Let p = l+ u be a parabolic subalgebra of g.
If V ∈ Op is simple, then HD(V ) ⊂ H∗(ū, V )⊗ Zρ(ū).

Actually, H±

D(g, l;V ) ⊂ H±(ū, V )⊗ Zρ(ū).

The parity condition is satisfied

Homl(H
+(ū, V ), H−(ū, V )) = 0.

It follows that

Homl(H
+
D(V ), H−

D(V )) = 0.

Theorem V ∈ Op simple module.
HD(g, l;V ) ∼= H∗(ū, V )⊗ Zρ(ū) ∼= H∗(u, V )⊗ Zρ(ū).

Moreover, HD(g, l;V ) is determined explicitly in terms of
Kazhdan-Luszting polynomials.
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Applications
In the monograph of H-Pandzic (Birkhauser, 2006)

1) Parthasarathy (Ann Math, 1972) geometric construction
of most of discrete series.
2) Atiyah-Schmid (Invent Math, 1977) geometric
construction of discrete series.
3) Gross-Kostant-Ramond-Sternberg (PNAS, 1988)
generalized Weyl Character Formula.
4) Kostant (Letters in Math Phys, 2000) Generalized
Bott-Borel-Weil Theorem.
5) Langlands (A.J. Math, 1963) the Langlands formula on
multiplicity of automorphic forms.

in H-Pandzic-Zhu (A. J. Math, 2013)
6) Littlewood (PTRS 1944) Littlewood Restriction Formulas.
7) Enright-Willenbring (Ann Math, 2004) generalized
Littlewood Restriction Formulas.
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Global characters
Suppose (π, V ) is an admissible representation of G and
f ∈ C∞

c (G). Then π(f) =
∫
G f(x)π(x)dx is of trace class.

The global character of π is the distribution

f → f̂(π) = trace (π(f)), f ∈ C∞
c (G).

There is a locally integrable function Θπ on G such that

f̂(π) =

∫

G

f(x)Θπ(x)dx, f ∈ C∞
c (G).

Θπ(x) is real-analytic on the set Greg of regular elements.
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K-characters
Suppose that V =

∑
i∈K̂

Vi is K-modules decomposition.
The series ΘK(V ) =

∑
i∈K̂

ΘK(Vi) converges to a
distribution on K, and ΘK(V ) = ΘG(V ) is real-analytic on
K ∩Greg.

Suppose that G has a compact Cartan subgroup T . Then
dim p is even and S = S+ ⊕ S−.

0→ KerD+ → X ⊗ S+ → X ⊗ S− → CoKerD+ → 0.
X⊗S+−X⊗S− = KerD+−CoKerD+ = H+

D(X)−H−

D(X).

∆G/KΘG(V ) = chH+
D(X)− chH−

D(X) on K ∩Greg. Here,

∆G/K = chS+ − chS− = ±
∏

α∈∆+
n (g,t)

(e
1

2
α − e−

1

2
α).
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Elliptic representations
F , real or p-adic field. G, is linear algebraic group defined
over F . G = G(F ), the group of F -rational points.

D(γ) = det(1− Ad(γ))g/gγ Weyl discriminant.

Note that Greg(F ) ∩Gell(F ) is an open set in G(F ).

π is elliptic if Θπ does not vanish on Greg(F ) ∩Gell(F ), i.e.,

Φπ(γ) = |D(γ)|
1

2Θπ(γ) 6= 0, for some γ ∈ Greg(F ) ∩Gell(F ).

∆G/K(γ)Θπ(γ) and Φπ(γ) has the same absolute value on
Greg(R) ∩Gell(R).

Set the Dirac index θπ = chH+
D(Xπ)− chH−

D(Xπ). Then
(Θπ,Θπ)ell = (θπ, θπ)K . Here ( ·, · )ell is defined in the next
slide. Consequently, we get

Theorem π is elliptic iff θπ 6= 0
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Orthogonal relations
The tempered elliptic representations satisfy the
orthogonal relation w.r.t.

(Θπ,Θπ′)ell = |W (G(R), Tell(R))|
−1

∫

Tell(R)

|D(γ)|Θπ(γ)Θπ′(γ)dγ.

Theorem If π, π′ are discrete series representations, then

(Θπ,Θπ′)ell = δ(π, π′)( : = dimHomG(π, π
′))

The above identity follows easily from

(Θπ,Θπ′)ell = (θπ, θπ′)K = 〈χµ, χµ′〉.
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Dirac index
G(R) ⊃ K(R) ⊃ T (R) of equal rank.
V , a simple Harish-Chandra module.

Theorem If V has regular infinitesimal character, then
θV = 0 iff HD(V ) = 0 (i.e. Hom

K̃
(H+

D, (V ), H−

D(V )) = 0).

Let b = t+ u be a Θ-stable Borel subalgebra. Then
H±

D(g, t;V ) ⊆ H±(u, V )⊗ Zρ(ū).
(It follows that H±

D(g, t;V ) ∼= H±(u, V )⊗ Zρ(ū).)

Vogan (Duke M. J., 1979) (2nd in a series of 4 papers)

HomT (H
+(u, V ), H−(u, V )) = 0.

Then the above parity condition follows from Vogan’s
theorem and the calculation in stages.

Conjecture: For any irreducible π, θπ 6= 0 iff HD(Xπ) 6= 0.

The above conjecture holds if π is tempered.
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Supertempered distributions
In the last paper of Harish-Chandra’s Collected Papers

G = G(R) ⊃ K(R) ⊃ T (R) of equal rank.

Theorem For µ ∈ T̂ (R), there is a unique supertempered
distribution Θµ, s.t.

∆Θµ(γ) =
∑

w∈WK

ǫ(w)ewµ.

If π is tempered and elliptic, then Θπ is supertemperred.

Theorem If π1, π2 are irreducible tempered elliptic
representations, then either (Θπ1

,Θπ2
)ell = 0 or

Φπ1
= ±Φπ2

.

Consequently, the discrete series together with some of
the limit of discrete series form an orthonomal basis of
the space of supertempered distributions.
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Elliptic tempered characters
In Arthur (Acta Math, 1993)

A description of classification of irreducible elliptic
tempered representations for real and p-adic groups.

Invariant elliptic orbital integrals are dual to the tempered
elliptic representations.

There is another basis consisting of virtual elliptic
characters, which is convenient for studying Fourier
transform of the weight orbital integrals. Arthur (Crelle’s
J, 1994)

Elliptic representations are important for studying the
trace formulas and automorphic forms.
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Regular infinitesimal characters
Can we classify unitary elliptic representations of G(R)?
(or classifying irreducible unitary representations with
nonzero Dirac cohomology.)

Salamanca-Riba (Duke M. J. 1998) If X is an irreducible
unitary (g,K)-module with strongly regular infinitesimal
character, then X ∼= Aq(λ).

Theorem Let G be a connected linear algebraic
semisimple Lie group with a compact Cartan subgroup.
Suppose π is an irreducible elliptic representation of G
with a regular infinitesimal character. Then Xπ

∼= Aq(λ).

Theorem Let π1, π2 be representations in above setting.
Then Xπ

∼= Xπ′ iff HD(Xπ) = HD(Xπ′).

The above statements are false if the condition on
infinitesimal character fails.
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Orbital integrals
The orbital integrals are parametrized by the set of
regular semisimple conjugacy classes in G.

Greg = {γ ∈ G | γ semisimple, the eigenvalues are distinct}.

Orbital integral Oγ(f) =
∫
G/Gγ

f(x−1γx)dx, f ∈ C∞
c (G).

Stable orbital integral SOγ(f) =
∑

γ′∈S(γ)Oγ(f).

Here S(γ) is the stable conjugacy class.
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Pseudo-coefficients
In Labesse (Math Ann, 1991)
Let π be a discrete series representation with Dirac
cohomology Eµ (HC parameter is µ+ ρc).
Set θ11 = chH+

D(11)− chH−

D(11) = chS+ − chS−.

Set fπ = θ11 · χµ
Then (fπ,Θµ′)ell = (χµ, χµ′) = dimHomK(Eµ, Eµ′).

So fπ is a pseudo-coefficient for π.

Oγ(fπ) = Θ(γ−1) if γ is elliptic.
Oγ(fπ) = 0 if γ is not elliptic.
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Endoscopic transfer
This is established by Shelstad in a series of papers.

Assume that G(R) has a compact Caratn subgroup T (R).
Let κ be an endoscopic character defining an endoscopic
group H.

Labesse (AMS, 2006) calculated f → fH so that

SOγH (f
H
µ ) = ∆(γH , γG)O

κ
γG(fµ)

for the pseudo-coefficients of discrete series fµ.
Here fHµ =

∑
w∈W (g)/W (h) a(w, µ)gwµ with a(w, µ)

depending on κ, and gµ′ are pseudo-coefficients of
discrete series for H.

The discrete series L-packets are in bijection with the
irreducible finite-dimensional representations of the same
infinitesimal character.
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The Arthur packets
For the non-tempered case, we need Arthur packets Πψ.

In Adams-Johnson (Comp Math, 1987) , they
constructed packets of non-tempered representations.
Set S = WK\W (g, t)/W (l, t).
Identify π with its character Θπ.

Theorem
∑

w∈S ǫ(w)A(wλ) is stable. Here
A(wλ) = Aq(wλ) with q depending on w.

Let (κ,H) be an endoscopic group of G which contains a
group isomorphic to L.

Theorem

Lift
∑

w∈S′

ǫ(w)A(wλ′) = ±
∑

w∈S

ǫ(w)κ(w)A(wλ).

Theorem If f 7→ fH and Θ = LiftGHΘ
′, then Θ(f) = Θ′(fH).
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The fundamental lemma
The fundamental lemma is conjectured by Langlands .

SOγH (11KH
) = ∆(γH , γG)O

κ
γG(11K).

It was proved by Shelstad (Math Ann, 1982) for G(R).

The progress was made by Waldspurger, Laumon, Ngo .

It was proved by Ngo (IHES, 2010) for p-adic groups.

Recall Labesse calculated the transfer of the
pseudo-coefficients fµ = θ11 · χµ.

Let π = Ab(λ) (λ = −ρn) be a limit of discrete series so
that the Dirac index of π is equal to θ11 ·ΘK(π) = 11K .
By the Blattner’s formula, one has decomposition
ΘK(π) =

∑
µmµχµ.

It is an interesting question to see how to match two sides
in the fundamental lemma by Labesse’s calculation.
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Hypo-elliptic representations
G(R) ⊃ K(R), not necessarily equal rank.

A representation is called hypo-elliptic if its global
character is not identically zero on the set of regular
elements in a fundamental Cartan subgroup.

Conjecture: If π ∈ Ĝ and HD(Xπ) 6= 0, then π is
hypo-elliptic.

Recall that irreducible tempered representations are
induced from tempered elliptic representations.

Conjecture: a unitary representation is either having
nonzero Dirac cohomology or induced from a unitary
representation with nonzero Dirac cohomology.

The conjecture holds for GL(n,R), GL(n,C), GL(n,H) as
well as G̃L(n,R) (the two-fold covering group of GL(n,R)).
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David, Happy Birthday!

Thank you for guiding me into the field.

Thank you for sharing your ideas and insights.

Thank you for being a great teacher and friend.
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