Elliptic Representations, Dirac Cohomology and Endoscopy

To David, with admiration

Jing-Song Huang

Department of Mathematics
Hong Kong University of Science and Technology

Talk at the Vogan Conference, MIT, May 19, 2014

Notations

- G, a connected semisimple Lie group.
Θ, a Cartan involution.
$K=G^{\Theta}$, the maximal compact subgroup.
- \widehat{G}, the unitary dual of G.
$\mathfrak{g}_{0}=\operatorname{Lie}(G), \mathfrak{g}=\mathfrak{g}_{0} \otimes_{\mathbb{R}} \mathbb{C}$.
$\{\pi \in \widehat{G}\} \longleftrightarrow\left\{\right.$ Irreducible unitary (\mathfrak{g}, K)-modules $\left.X_{\pi}\right\}$.
- In later part of the talk, for the sake of elliptic representations, we turn to a linear algebraic real or p -adic group G.
F, a real or p -adic field.
G, a connected semisimple linear algebraic group defined over F.
$G=G(F)$, the group of F-rational points on G.

Dirac operators

- Let $\mathfrak{g}_{0}=\mathfrak{k}_{0}+\mathfrak{p}_{0}$ be the Cartan decomposition.
(Drop the subscript for the complexification.)
- $U(\mathfrak{g})$, the universal enveloping algebra.
$Z(\mathfrak{g})$, the center of $U(\mathfrak{g})$.
$C(\mathfrak{p})$, the Clifford algebra w.r.t. the Killing form $\left.B(\cdot, \cdot)\right|_{\mathfrak{p}}$.
- Let Z_{1}, \cdots, Z_{n} be an orthogonal basis for \mathfrak{p}_{0}. Define

$$
D=\sum_{i=1}^{n} Z_{i} \otimes Z_{i} \in U(\mathfrak{g}) \otimes C(\mathfrak{p}) .
$$

- D is indepedent of choice of bases, K-invariant, and satisfies

$$
D^{2}=-\Omega_{\mathfrak{g}} \otimes 1+\Omega_{\mathfrak{e}_{\Delta}}+C \text {, }
$$

where Ω is the Casmir element and C is a constant.

Vogan's conjecture

- Parthasarathy's Dirac Inequality:
$D: X_{\pi} \otimes S \rightarrow X_{\pi} \otimes S$ is self-adjoint. Thus, $\langle\Lambda, \Lambda\rangle \leq\left\langle\gamma+\rho_{c}, \gamma+\rho_{c}\right\rangle$, provided $X_{\pi} \otimes S(\gamma) \neq 0$.
- Vogan's conjecture: $\forall z \in Z(\mathfrak{g}), \exists \zeta(z) \in Z\left(\mathfrak{k}_{\Delta}\right)$, s.t.

$$
z \otimes 1-\zeta(z)=D a+b D, \text { for some } a, b \in U(\mathfrak{g}) \otimes C(\mathfrak{p})
$$

- Dirac cohomology $H_{D}\left(X_{\pi}\right):=\operatorname{Ker} D$ for unitary X_{π}; $H_{D}(X):=\operatorname{Ker} D / \operatorname{Ker} D \cap \operatorname{Im} D$ for any (\mathfrak{g}, K)-module X.
- Vogan Conjecture implies: If $E_{\gamma} \subseteq H_{D}(X)$, then the infinitesimal character of X is conjugate to $\gamma+\rho_{c}$.
- H-Pandzic (JAMS, 2002) verified the Vogan's conjecture.

Kostant's cubic Dirac operator

- Kostant (Proceedings of the Schur Conference, 2003) Let $\mathfrak{g}=\mathfrak{r} \oplus \mathfrak{s}$ and W_{1}, \ldots, W_{l} be an orthonormal basis of \mathfrak{s}.

$$
D(\mathfrak{g}, \mathfrak{r})=\sum_{k} W_{k} \otimes W_{k}-\frac{1}{2} \sum_{i<j<k} B\left(\left[W_{i}, W_{j}\right], W_{k}\right) \otimes W_{i} W_{j} W_{k} .
$$

- Theorem There is an $\zeta: Z(\mathfrak{g}) \rightarrow Z\left(\mathfrak{r}_{\Delta}\right)$, s.t. $\forall z \in Z(\mathfrak{g})$,

$$
z \otimes 1-\zeta(z)=D a+a D, \text { for some } a \in U(\mathfrak{g}) \otimes C(\mathfrak{s}) .
$$

Moreover, ζ is determined by

$$
\begin{aligned}
Z(\mathfrak{g}) & \xrightarrow{\zeta}{ }^{Z(\mathfrak{r})} \\
\text { H.-C. isom } \downarrow & \\
S(\mathfrak{h})^{W} & \xrightarrow{\text { Res }} S\left(\mathfrak{h}_{\mathfrak{r}}\right)^{W_{\mathrm{r}}}
\end{aligned}
$$

- The infl'I characters of X and $H_{D}(X)$ are conjugate.

Dirac cohomology in other setting

- Alekseev-Meinrenkein: 'Lie theory and the Chern-Weil homomorphism' (Ann. Ecole. Norm. Sup. 2005)
- Kumar: 'Induction functor in non-commutative equivariaint cohomology and Dirac cohomology' (J. Algebra 2005)
- H-Pandzic: the symplectic Dirac operator in Lie superalgebras (Transf. Groups 2005)
- Kac-Frajria-Papi: the affine cubic Dirac operator in the affine Lie algebras (Adv. Math. 08)
- Barbasch-Ciubotaru-Trapa: the graded affine Hecke algebras (Acta Math. 2012)
- Ciubotaru-He: Weyl groups in connection with the Springer theory (Arkiv Math. 2013)

Calculation of Dirac cohomology

- In H-Kang-Pandzic (Tran Group, 2009)

Let $\mathfrak{t} \subset \mathfrak{h}$ be the Cartan subalgebras of \mathfrak{k} and \mathfrak{g}.
Let $W(\mathfrak{g}, \mathfrak{t})$ be the Weyl group for the root system $\Delta(\mathfrak{g}, \mathfrak{t})$.
Set $W^{1}(\mathfrak{g}, \mathfrak{t})=\left\{w \in W(\mathfrak{g}, \mathfrak{t}) \mid w \rho\right.$ is $\Delta^{+}(\mathfrak{k}, \mathfrak{t})$-dominant $\}$.
Then $W(\mathfrak{g}, \mathfrak{t})=W(\mathfrak{k}, \mathfrak{t}) \times W(\mathfrak{g}, \mathfrak{t})^{1}$. Set $l_{0}=\operatorname{rank} \mathfrak{g}-\operatorname{rank} \mathfrak{k}$.

- Theorem Let V_{λ} be an irreducible finite-dimensional \mathfrak{g}-module with highest weight λ.
If $\lambda \neq \Theta \lambda$, then $H_{D}\left(V_{\lambda}\right)=0$.
If $\lambda=\Theta \lambda$, then as a \mathfrak{k} module,

$$
H_{D}\left(V_{\lambda}\right)=\bigoplus_{w \in W(\mathfrak{g}, \mathfrak{t})^{1}} 2^{\left[l_{0} / 2\right]} E_{w(\lambda+\rho)-\rho_{c}} .
$$

- Kostant: cubic Dirac cohomology, equal rank case.
- Mehdi-Zierau: cubic Dirac cohomology, general case.

Dirac cohomology of HC modules

- In H-Kang-Pandzic (Tran Group, 2009)

Let $\mathfrak{q}=\mathfrak{l}+\mathfrak{u}$ be a θ-stable parabolic subalgebra.
The $A_{\mathfrak{q}}(\lambda)$ is an admissible (\mathfrak{g}, K)-module defined by cohomological parabolic induction from 1-dimensional \mathfrak{l}-module with parameter λ.

- Theorem

If $\lambda \neq \theta \lambda$, then $H_{D}\left(A_{\mathfrak{q}}(\lambda)\right)=0$.
If $\lambda=\theta \lambda$, then

$$
H_{D}\left(A_{\mathfrak{q}}(\lambda)\right)=\bigoplus_{w \in W(\mathrm{l}, \mathrm{t})^{1}} 2^{\left[l_{0} / 2\right]} E_{w(\lambda+\rho)-\rho_{c}} .
$$

- Mehdi-Parthasarathy (J. Lie Theory, 2011): the generalized Enright-Varadarajan modules $B_{p}(\lambda)$
- Barbasch-Pandzic: certain unipotent representations

The (\mathfrak{g}, K)-cohomology

- In H-Kang-Pandzic (Tran Group, 2009)

If $\operatorname{dim} \mathfrak{p}$ is even, then $\bigwedge^{*} \mathfrak{p} \cong S \otimes S^{*}$ as K-modules.
If $\operatorname{dim} \mathfrak{p}$ is odd, then $\bigwedge^{*} \mathfrak{p}$ is 2-copies of $S \otimes S^{*}$.
Consider the complex vector space $\operatorname{Hom}\left(\bigwedge^{*} \mathfrak{p}, X \otimes F^{*}\right)$.
Then the complex of $H^{*}\left(\mathfrak{g}, K ; X \otimes F^{*}\right)$ is

$$
\operatorname{Hom}_{\tilde{K}}\left(S \otimes S^{*}, X \otimes F^{*}\right) \cong \operatorname{Hom}_{\tilde{K}}(F \otimes S, X \otimes S) .
$$

If X is unitary, Wallach has proved that the differential of this complex is 0 . It follows that

- Theorem $H^{*}\left(\mathfrak{g}, K ; X \otimes F^{*}\right)=\operatorname{Hom}_{\tilde{K}}\left(H_{D}(F), H_{D}(X)\right)$.
- Theorem (Vogan-Zuckerman, Comp Math, 1984)

$$
\operatorname{dim} H^{*}\left(\mathfrak{g}, K ; X \otimes F^{*}\right)=2^{l_{0}}|W(\mathfrak{l}, \mathfrak{t}) / W(\mathfrak{l} \cap \mathfrak{k}, \mathfrak{t})| .
$$

Dirac cohomology in stages

- In H-Pandzic-Renard (Repn Theory, 2006)

Let $\mathfrak{g} \supset \mathfrak{r} \supset \mathfrak{r}_{1}$.
(i) $D\left(\mathfrak{g}, \mathfrak{r}_{1}\right)=D(\mathfrak{g}, \mathfrak{r})+D_{\Delta}\left(\mathfrak{r}, \mathfrak{r}_{1}\right)$;
(ii) The summands $D(\mathfrak{g}, \mathfrak{r})$ and $D_{\Delta}\left(\mathfrak{r}, \mathfrak{r}_{1}\right)$ anticommute.

- Theorem Let V be a unitary (\mathfrak{g}, K)-module. Let \mathfrak{t} be a Cartan subalgebra of \mathfrak{k}.
Then

$$
\begin{aligned}
& H_{D}(\mathfrak{g}, \mathfrak{t} ; V)=H_{D}\left(\mathfrak{k}, \mathfrak{t} ; H_{D}(\mathfrak{g}, \mathfrak{k} ; V)\right) . \\
& H_{D}(\mathfrak{g}, \mathfrak{t} ; V)=H\left(\left.D(\mathfrak{g}, \mathfrak{k})\right|_{H_{D}(\mathfrak{e}, \mathfrak{t} ; V)}\right) .
\end{aligned}
$$

- Chuah-H (Crelle's J) used calculation of Dirac cohomology in stages for study the geometric quantization of coadjoint orbits and construction of models of discrete series.

Lie algebra cohomology

- In H-Pandzic-Renard (Repn Theory, 2006)

Let G be hermitian symmetric type. Recall that $\mathfrak{g}_{0}=\mathfrak{k}_{0}+\mathfrak{p}_{0}$. Then \mathfrak{p}_{0} has a complex structure and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}^{+}+\mathfrak{p}^{-}$.

- Theorem Assume that G is hermitian symmetric. Let $\mathfrak{q}=\mathfrak{l}+\mathfrak{u}$ be a θ-stable parabolic subalgebra with $\mathfrak{l} \subset \mathfrak{k}$. If V is unitary, then

$$
H_{D}(\mathfrak{g}, \mathfrak{l} ; V) \cong H^{*}(\overline{\mathfrak{u}}, V) \otimes Z_{\rho(\overline{\mathfrak{u}})} \cong H_{*}(\mathfrak{u}, V) \otimes Z_{\rho(\overline{\mathfrak{u}})} .
$$

- Enright calculated $H^{*}(\mathfrak{u}, V)$ for irreducible unitary highest weight modules V with $\mathfrak{l}=\mathfrak{k}$ and $\mathfrak{u}=\mathfrak{p}^{+}$(Crelle's \mathbf{J}, 1988)
- By Enright's result and calculation in stages, we obtained all three cohomologies in the above theorem.

Category \mathcal{O}

- In H-Xiao (Selecta Math, 2012)

Let $\mathfrak{p}=\mathfrak{l}+\mathfrak{u}$ be a parabolic subalgebra of \mathfrak{g}.
If $V \in \mathcal{O}^{\boldsymbol{p}}$ is simple, then $H_{D}(V) \subset H^{*}(\overline{\mathfrak{u}}, V) \otimes Z_{\rho(\overline{\mathfrak{u}})}$.
Actually, $H_{D}^{ \pm}(\mathfrak{g}, \mathfrak{l} ; V) \subset H^{ \pm}(\overline{\mathfrak{u}}, V) \otimes Z_{\rho(\overline{\mathfrak{u}})}$.

- The parity condition is satisfied

$$
\operatorname{Hom}_{\mathfrak{l}}\left(H^{+}(\overline{\mathfrak{u}}, V), H^{-}(\overline{\mathfrak{u}}, V)\right)=0 .
$$

It follows that

$$
\operatorname{Hom}_{\mathfrak{l}}\left(H_{D}^{+}(V), H_{D}^{-}(V)\right)=0 .
$$

- Theorem $V \in \mathcal{O}^{\text {p }}$ simple module.

$$
H_{D}(\mathfrak{g}, \mathfrak{l} ; V) \cong H^{*}(\overline{\mathfrak{u}}, V) \otimes Z_{\rho(\overline{\mathfrak{u}})} \cong H_{*}(\mathfrak{u}, V) \otimes Z_{\rho(\overline{\mathfrak{u}})} .
$$

Moreover, $H_{D}(\mathfrak{g}, \mathfrak{l} ; V)$ is determined explicitly in terms of Kazhdan-Luszting polynomials.

Applications

- In the monograph of H-Pandzic (Birkhauser, 2006)

1) Parthasarathy (Ann Math, 1972) geometric construction of most of discrete series.
2) Atiyah-Schmid (Invent Math, 1977) geometric construction of discrete series.
3) Gross-Kostant-Ramond-Sternberg (PNAS, 1988) generalized Weyl Character Formula.
4) Kostant (Letters in Math Phys, 2000) Generalized Bott-Borel-Weil Theorem.
5) Langlands (A.J. Math, 1963) the Langlands formula on multiplicity of automorphic forms.

- in H-Pandzic-Zhu (A. J. Math, 2013)

6) Littlewood (PTRS 1944) Littlewood Restriction Formulas.
7) Enright-Willenbring (Ann Math, 2004) generalized

Littlewood Restriction Formulas.

Global characters

- Suppose (π, V) is an admissible representation of G and $f \in C_{c}^{\infty}(G)$. Then $\pi(f)=\int_{G} f(x) \pi(x) d x$ is of trace class. The global character of π is the distribution

$$
f \rightarrow \hat{f}(\pi)=\operatorname{trace}(\pi(f)), f \in C_{c}^{\infty}(G) .
$$

- There is a locally integrable function Θ_{π} on G such that

$$
\hat{f}(\pi)=\int_{G} f(x) \Theta_{\pi}(x) d x, f \in C_{c}^{\infty}(G) .
$$

- $\Theta_{\pi}(x)$ is real-analytic on the set $G_{\text {reg }}$ of regular elements.

K-characters

- Suppose that $V=\sum_{i \in \widehat{K}} V_{i}$ is K-modules decomposition. The series $\Theta_{K}(V)=\sum_{i \in \hat{K}} \Theta_{K}\left(V_{i}\right)$ converges to a distribution on K, and $\Theta_{K}(V)=\Theta_{G}(V)$ is real-analytic on $K \cap G_{\text {reg }}$.
- Suppose that G has a compact Cartan subgroup T. Then $\operatorname{dim} \mathfrak{p}$ is even and $S=S^{+} \oplus S^{-}$.

$$
\begin{gathered}
0 \rightarrow \operatorname{Ker} D^{+} \rightarrow X \otimes S^{+} \rightarrow X \otimes S^{-} \rightarrow \operatorname{CoKer} D^{+} \rightarrow 0 . \\
X \otimes S^{+}-X \otimes S^{-}=\operatorname{Ker} D^{+}-\operatorname{CoKer} D^{+}=H_{D}^{+}(X)-H_{D}^{-}(X) .
\end{gathered}
$$

- $\Delta_{G / K} \Theta_{G}(V)=\operatorname{ch} H_{D}^{+}(X)-\operatorname{ch} H_{D}^{-}(X)$ on $K \cap G_{\mathrm{reg}}$. Here,

$$
\Delta_{G / K}=\operatorname{ch} S^{+}-\operatorname{ch} S^{-}= \pm \prod_{\alpha \in \Delta_{n}^{+}(\mathfrak{g}, \mathfrak{t})}\left(e^{\frac{1}{2} \alpha}-e^{-\frac{1}{2} \alpha}\right) .
$$

Elliptic representations

- F, real or p -adic field. G, is linear algebraic group defined over F. $G=G(F)$, the group of F-rational points.
- $D(\gamma)=\operatorname{det}(1-\operatorname{Ad}(\gamma))_{\mathfrak{g} / \mathfrak{g}_{\gamma}}$ Weyl discriminant.
- Note that $G_{\text {reg }}(F) \cap G_{\text {ell }}(F)$ is an open set in $G(F)$.
- π is elliptic if Θ_{π} does not vanish on $G_{\text {reg }}(F) \cap G_{\text {ell }}(F)$, i.e., $\Phi_{\pi}(\gamma)=|D(\gamma)|^{\frac{1}{2}} \Theta_{\pi}(\gamma) \neq 0$, for some $\gamma \in G_{\text {reg }}(F) \cap G_{\text {ell }}(F)$.
- $\Delta_{G / K}(\gamma) \Theta_{\pi}(\gamma)$ and $\Phi_{\pi}(\gamma)$ has the same absolute value on $G_{\text {reg }}(\mathbb{R}) \cap G_{\text {ell }}(\mathbb{R})$.
- Set the Dirac index $\theta_{\pi}=\operatorname{ch} H_{D}^{+}\left(X_{\pi}\right)-\operatorname{ch} H_{D}^{-}\left(X_{\pi}\right)$. Then $\left(\Theta_{\pi}, \Theta_{\pi}\right)_{\text {ell }}=\left(\theta_{\pi}, \theta_{\pi}\right)_{K}$. Here $(\cdot, \cdot)_{\text {ell }}$ is defined in the next slide. Consequently, we get
- Theorem π is elliptic iff $\theta_{\pi} \neq 0$

Orthogonal relations

- The tempered elliptic representations satisfy the orthogonal relation w.r.t.

$$
\left(\Theta_{\pi}, \Theta_{\pi^{\prime}}\right)_{\mathrm{ell}}=\left|W\left(G(\mathbb{R}), T_{\mathrm{ell}}(\mathbb{R})\right)\right|^{-1} \int_{T_{\mathrm{ell}}(\mathbb{R})}|D(\gamma)| \Theta_{\pi}(\gamma) \overline{\Theta_{\pi^{\prime}}(\gamma)} d \gamma
$$

- Theorem If π, π^{\prime} are discrete series representations, then

$$
\left(\Theta_{\pi}, \Theta_{\pi^{\prime}}\right)_{\mathrm{ell}}=\delta\left(\pi, \pi^{\prime}\right)\left(:=\operatorname{dim} \operatorname{Hom}_{G}\left(\pi, \pi^{\prime}\right)\right)
$$

- The above identity follows easily from

$$
\left(\Theta_{\pi}, \Theta_{\pi^{\prime}}\right)_{\mathrm{ell}}=\left(\theta_{\pi}, \theta_{\pi^{\prime}}\right)_{K}=\left\langle\chi_{\mu}, \chi_{\mu^{\prime}}\right\rangle .
$$

Dirac index

- $G(\mathbb{R}) \supset K(\mathbb{R}) \supset T(\mathbb{R})$ of equal rank. V, a simple Harish-Chandra module.
- Theorem If V has regular infinitesimal character, then

$$
\left.\theta_{V}=0 \text { iff } H_{D}(V)=0 \text { (i.e. } \operatorname{Hom}_{\widetilde{K}}\left(H_{D}^{+},(V), H_{D}^{-}(V)\right)=0\right) .
$$

- Let $\mathfrak{b}=\mathfrak{t}+\mathfrak{u}$ be a Θ-stable Borel subalgebra. Then

$$
H_{D}^{ \pm}(\mathfrak{g}, \mathfrak{t} ; V) \subseteq H^{ \pm}(\mathfrak{u}, V) \otimes Z_{\rho(\overline{\mathfrak{u}})}
$$

(It follows that $H_{D}^{ \pm}(\mathfrak{g}, \mathfrak{t} ; V) \cong H^{ \pm}(\mathfrak{u}, V) \otimes Z_{\rho(\overline{\mathfrak{u}})}$.)

- Vogan (Duke M. J., 1979) (2nd in a series of 4 papers)

$$
\operatorname{Hom}_{T}\left(H^{+}(\mathfrak{u}, V), H^{-}(\mathfrak{u}, V)\right)=0
$$

Then the above parity condition follows from Vogan's theorem and the calculation in stages.

- Conjecture: For any irreducible $\pi, \theta_{\pi} \neq 0$ iff $H_{D}\left(X_{\pi}\right) \neq 0$.
- The above conjecture holds if π is tempered.

Supertempered distributions

- In the last paper of Harish-Chandra's Collected Papers
- $G=G(\mathbb{R}) \supset K(\mathbb{R}) \supset T(\mathbb{R})$ of equal rank.
- Theorem For $\mu \in \widehat{T(\mathbb{R})}$, there is a unique supertempered distribution Θ_{μ}, s.t.

$$
\Delta \Theta_{\mu}(\gamma)=\sum_{w \in W_{K}} \epsilon(w) e^{w \mu}
$$

- If π is tempered and elliptic, then Θ_{π} is supertemperred.
- Theorem If π_{1}, π_{2} are irreducible tempered elliptic representations, then either $\left(\Theta_{\pi_{1}}, \Theta_{\pi_{2}}\right)_{\text {ell }}=0$ or $\Phi_{\pi_{1}}= \pm \Phi_{\pi_{2}}$.
- Consequently, the discrete series together with some of the limit of discrete series form an orthonomal basis of the space of supertempered distributions.

Elliptic tempered characters

- In Arthur (Acta Math, 1993)
- A description of classification of irreducible elliptic tempered representations for real and p-adic groups.
- Invariant elliptic orbital integrals are dual to the tempered elliptic representations.
- There is another basis consisting of virtual elliptic characters, which is convenient for studying Fourier transform of the weight orbital integrals. Arthur (Crelle's J, 1994)
- Elliptic representations are important for studying the trace formulas and automorphic forms.

Regular infinitesimal characters

- Can we classify unitary elliptic representations of $G(\mathbb{R})$? (or classifying irreducible unitary representations with nonzero Dirac cohomology.)
- Salamanca-Riba (Duke M. J. 1998) If X is an irreducible unitary (\mathfrak{g}, K)-module with strongly regular infinitesimal character, then $X \cong A_{\mathfrak{q}}(\lambda)$.
- Theorem Let G be a connected linear algebraic semisimple Lie group with a compact Cartan subgroup. Suppose π is an irreducible elliptic representation of G with a regular infinitesimal character. Then $X_{\pi} \cong A_{\mathfrak{q}}(\lambda)$.
- Theorem Let π_{1}, π_{2} be representations in above setting. Then $X_{\pi} \cong X_{\pi^{\prime}}$ iff $H_{D}\left(X_{\pi}\right)=H_{D}\left(X_{\pi^{\prime}}\right)$.
- The above statements are false if the condition on infinitesimal character fails.

Orbital integrals

- The orbital integrals are parametrized by the set of regular semisimple conjugacy classes in G.
$G_{\mathrm{reg}}=\{\gamma \in G \mid \gamma$ semisimple, the eigenvalues are distinct $\}$.
- Orbital integral $\mathcal{O}_{\gamma}(f)=\int_{G / G_{\gamma}} f\left(x^{-1} \gamma x\right) d x, f \in C_{c}^{\infty}(G)$.
- Stable orbital integral $S \mathcal{O}_{\gamma}(f)=\sum_{\gamma^{\prime} \in S(\gamma)} \mathcal{O}_{\gamma}(f)$. Here $S(\gamma)$ is the stable conjugacy class.

Pseudo-coefficients

- In Labesse (Math Ann, 1991)

Let π be a discrete series representation with Dirac cohomology E_{μ} (HC parameter is $\mu+\rho_{c}$). Set $\theta_{\mathbb{I}}=\operatorname{ch} H_{D}^{+}(\mathbb{1})-\operatorname{ch} H_{D}^{-}(\mathbb{1})=\operatorname{ch} S^{+}-\operatorname{ch} S^{-}$.

- Set $f_{\pi}=\theta_{\mathbb{I}} \cdot \chi_{\mu}$

Then $\left(f_{\pi}, \Theta_{\mu^{\prime}}\right)$ ell $=\left(\chi_{\mu}, \chi_{\mu^{\prime}}\right)=\operatorname{dim} \operatorname{Hom}_{K}\left(E_{\mu}, E_{\mu^{\prime}}\right)$.
So f_{π} is a pseudo-coefficient for π.

- $\mathcal{O}_{\gamma}\left(f_{\pi}\right)=\Theta\left(\gamma^{-1}\right)$ if γ is elliptic.
$\mathcal{O}_{\gamma}\left(f_{\pi}\right)=0$ if γ is not elliptic.

Endoscopic transfer

- This is established by Shelstad in a series of papers.
- Assume that $G(\mathbb{R})$ has a compact Caratn subgroup $T(\mathbb{R})$. Let κ be an endoscopic character defining an endoscopic group H.
- Labesse (AMS, 2006) calculated $f \rightarrow f^{H}$ so that

$$
S \mathcal{O}_{\gamma_{H}}\left(f_{\mu}^{H}\right)=\Delta\left(\gamma_{H}, \gamma_{G}\right) \mathcal{O}_{\gamma_{G}}^{\kappa}\left(f_{\mu}\right)
$$

for the pseudo-coefficients of discrete series f_{μ}. Here $f_{\mu}^{H}=\sum_{w \in W(\mathfrak{g}) / W(\mathfrak{h})} a(w, \mu) g_{w \mu}$ with $a(w, \mu)$ depending on κ, and $g_{\mu^{\prime}}$ are pseudo-coefficients of discrete series for H.

- The discrete series L-packets are in bijection with the irreducible finite-dimensional representations of the same infinitesimal character.

The Arthur packets

- For the non-tempered case, we need Arthur packets Π_{ψ}.
- In Adams-Johnson (Comp Math, 1987), they constructed packets of non-tempered representations.
Set $S=W_{K} \backslash W(\mathfrak{g}, \mathfrak{t}) / W(\mathfrak{l}, \mathfrak{t})$. Identify π with its character Θ_{π}.
- Theorem $\sum_{w \in S} \epsilon(w) A(w \lambda)$ is stable. Here $A(w \lambda)=A_{\mathfrak{q}}(w \lambda)$ with \mathfrak{q} depending on w.
- Let (κ, \mathbf{H}) be an endoscopic group of \mathbf{G} which contains a group isomorphic to L.
- Theorem

$$
\text { Lift } \sum_{w \in S^{\prime}} \epsilon(w) A\left(w \lambda^{\prime}\right)= \pm \sum_{w \in S} \epsilon(w) \kappa(w) A(w \lambda) .
$$

- Theorem If $f \mapsto f^{H}$ and $\Theta=\operatorname{Lift}_{H}^{G} \Theta^{\prime}$, then $\Theta(f)=\Theta^{\prime}\left(f^{H}\right)$.

The fundamental lemma

- The fundamental lemma is conjectured by Langlands.

$$
S \mathcal{O}_{\gamma_{H}}\left(\mathbb{1}_{K_{H}}\right)=\Delta\left(\gamma_{H}, \gamma_{G}\right) \mathcal{O}_{\gamma_{G}}^{\kappa}\left(\mathbb{1}_{K}\right) .
$$

- It was proved by Shelstad (Math Ann, 1982) for $G(\mathbb{R})$.
- The progress was made by Waldspurger, Laumon, Ngo.
- It was proved by Ngo (IHES, 2010) for p-adic groups.
- Recall Labesse calculated the transfer of the pseudo-coefficients $f_{\mu}=\theta_{\mathbb{I}} \cdot \chi_{\mu}$.
- Let $\pi=A_{\mathfrak{b}}(\lambda)\left(\lambda=-\rho_{n}\right)$ be a limit of discrete series so that the Dirac index of π is equal to $\theta_{\Perp} \cdot \Theta_{K}(\pi)=\mathbb{1}_{K}$. By the Blattner's formula, one has decomposition $\Theta_{K}(\pi)=\sum_{\mu} m_{\mu} \chi_{\mu}$.
- It is an interesting question to see how to match two sides in the fundamental lemma by Labesse's calculation.

Hypo-elliptic representations

- $G(\mathbb{R}) \supset K(\mathbb{R})$, not necessarily equal rank.
- A representation is called hypo-elliptic if its global character is not identically zero on the set of regular elements in a fundamental Cartan subgroup.
- Conjecture: If $\pi \in \widehat{G}$ and $H_{D}\left(X_{\pi}\right) \neq 0$, then π is hypo-elliptic.
- Recall that irreducible tempered representations are induced from tempered elliptic representations.
- Conjecture: a unitary representation is either having nonzero Dirac cohomology or induced from a unitary representation with nonzero Dirac cohomology.
- The conjecture holds for $G L(n, \mathbb{R}), G L(n, \mathbb{C}), G L(n, \mathbb{H})$ as well as $\widetilde{G L}(n, \mathbb{R})$ (the two-fold covering group of $G L(n, \mathbb{R})$).

David, Happy Birthday!

- Thank you for guiding me into the field.
- Thank you for sharing your ideas and insights.
- Thank you for being a great teacher and friend.

