Cocenter-Representation duality for affine Hecke algebras

Xuhua He

HKUST/Univ. Maryland

May 21, 2014

Finite dimensional representations of affine Hecke algebras have been studied by many people:

- Geometric method: Kazhdan, Lusztig, Ginzburg, Reeder, Kato, etc.
- Analytic method: Opdam, Solleveld

Finite dimensional representations of affine Hecke algebras have been studied by many people:

- Geometric method: Kazhdan, Lusztig, Ginzburg, Reeder, Kato, etc.
- Analytic method: Opdam, Solleveld
- Algebraic method: joint with Nie, joint with Ciubotaru

Finite dimensional representations of affine Hecke algebras have been studied by many people:

- Geometric method: Kazhdan, Lusztig, Ginzburg, Reeder, Kato, etc.
- Analytic method: Opdam, Solleveld
- Algebraic method: joint with Nie, joint with Ciubotaru

Affine Weyl groups

- (X, R, Y, R^{\vee}, Π) a based root datum
- $W_0 = W(R)$ a finite Weyl group
- S the set of simple reflections in W_0 .
- $W_a = \mathbb{Z}R \rtimes W_0$ an affine Weyl group
- \tilde{S} the set of simple reflections in W_a
- $\tilde{W} = X \rtimes W_0$ an extended affine Weyl group.

Example

The group $\mathbb{Z}^n \rtimes S_n$ is the extended affine Weyl group of GL_n . It is a quasi-Coxeter group.

Fix the parameter $q = \{q(s) \in \mathbb{C}^{\times} : s \in \tilde{S}\}$ such that q(s) = q(t) if $s, t \in \tilde{S}$ are conjugate in \tilde{W} .

Definition (Iwahori-Matsumoto presentation)

The affine Hecke algebra $\mathcal{H} = \mathcal{H}_q$ is the \mathbb{C} -algebra generated by $\{T_w : w \in \tilde{W}\}$ subject to the relations:

The Iwahori-Matsumoto presentation is related to the quasi-Coxeter structure of \tilde{W} .

Bernstein-Lusztig presentation: \mathcal{H} is the \mathbb{C} -algebra generated by $\{\theta_x T_w; x \in X, w \in W_0\}$. This is related to the semi-direct product $\tilde{W} = X \rtimes W_0$.

For any $J \subset \Pi$, let \mathcal{H}_J be the parabolic subalgebra of \mathcal{H} generated by $\{\theta_x T_w; x \in X, w \in W_J\}$. This is the affine Hecke algebra for the parabolic subgroup $\tilde{W}_J = X \rtimes W_J$, but for (probably) different parameters.

Bernstein-Lusztig presentation: \mathcal{H} is the \mathbb{C} -algebra generated by $\{\theta_x T_w; x \in X, w \in W_0\}$. This is related to the semi-direct product $\tilde{W} = X \rtimes W_0$.

For any $J \subset \Pi$, let \mathcal{H}_J be the parabolic subalgebra of \mathcal{H} generated by $\{\theta_x T_w; x \in X, w \in W_J\}$. This is the affine Hecke algebra for the parabolic subgroup $\tilde{W}_J = X \rtimes W_J$, but for (probably) different parameters.

Roughly speaking, \mathcal{H}_J consists of two parts: the semisimple part \mathcal{H}_J^{ss} and the central part.

For any representation σ of \mathcal{H}_J^{ss} and any central character χ_t of \mathcal{H}_J , we have the parabolically induced module $i_J(\sigma \circ \chi_t)$.

Bernstein-Lusztig presentation: \mathcal{H} is the \mathbb{C} -algebra generated by $\{\theta_x T_w; x \in X, w \in W_0\}$. This is related to the semi-direct product $\tilde{W} = X \rtimes W_0$.

For any $J \subset \Pi$, let \mathcal{H}_J be the parabolic subalgebra of \mathcal{H} generated by $\{\theta_x T_w; x \in X, w \in W_J\}$. This is the affine Hecke algebra for the parabolic subgroup $\tilde{W}_J = X \rtimes W_J$, but for (probably) different parameters.

Roughly speaking, \mathcal{H}_J consists of two parts: the semisimple part \mathcal{H}_J^{ss} and the central part.

For any representation σ of \mathcal{H}_J^{ss} and any central character χ_t of \mathcal{H}_J , we have the parabolically induced module $i_J(\sigma \circ \chi_t)$.

Trace map

- $\overline{\mathcal{H}} = \mathcal{H}/[\mathcal{H},\mathcal{H}]$ —the cocenter of \mathcal{H} .
- $R(\mathcal{H})$ —Grothendieck group of finite dim representations of \mathcal{H} .
- $Tr: \overline{\mathcal{H}} \to R(\mathcal{H})^*$, $h \mapsto (V \mapsto Tr_V(h))$, the trace map.

Definition

A function $f \in R(\mathcal{H})^*$ is good if for any $J \subset \Pi$ and $\sigma \in R(\mathcal{H}_J^{ss})$, the function $t \mapsto f(i_J(\sigma \circ \chi_t))$ is a regular function on t.

Trace map

- $\overline{\mathcal{H}} = \mathcal{H} / [\mathcal{H}, \mathcal{H}]$ —the cocenter of \mathcal{H} .
- $R(\mathcal{H})$ —Grothendieck group of finite dim representations of \mathcal{H} .
- $Tr: \overline{\mathcal{H}} \to R(\mathcal{H})^*$, $h \mapsto (V \mapsto Tr_V(h))$, the trace map.

Definition

A function $f \in R(\mathcal{H})^*$ is good if for any $J \subset \Pi$ and $\sigma \in R(\mathcal{H}_J^{ss})$, the function $t \mapsto f(i_J(\sigma \circ \chi_t))$ is a regular function on t.

Theorem (Bernstein, Deligne, Kazhdan)

Let H_q be the Hecke algebra of a p-adic group (algebra of locally constant, compact support measures). Then

• The image of Tr is $R(H_q)^*_{good}$ (trace Paley-Wiener Theorem).

In the map Tr is injective (density Theorem).

Trace map

- $\bar{\mathcal{H}} = \mathcal{H}/[\mathcal{H},\mathcal{H}]$ —the cocenter of \mathcal{H} .
- $R(\mathcal{H})$ —Grothendieck group of finite dim representations of \mathcal{H} .
- $Tr: \overline{\mathcal{H}} \to R(\mathcal{H})^*$, $h \mapsto (V \mapsto Tr_V(h))$, the trace map.

Definition

A function $f \in R(\mathcal{H})^*$ is good if for any $J \subset \Pi$ and $\sigma \in R(\mathcal{H}_J^{ss})$, the function $t \mapsto f(i_J(\sigma \circ \chi_t))$ is a regular function on t.

Theorem (Bernstein, Deligne, Kazhdan)

Let H_q be the Hecke algebra of a p-adic group (algebra of locally constant, compact support measures). Then

- The image of Tr is $R(H_q)^*_{good}$ (trace Paley-Wiener Theorem).
- **2** The map *Tr* is injective (density Theorem).

Naive example: Consider $\mathcal{H}_1 = \mathbb{Z}[W]$. Then

- For any conjugacy class \mathcal{O} of W, and $w, w' \in \mathcal{O}$. The image of w and w' in $\overline{\mathcal{H}}_1$ are the same.
- **2** \overline{H}_1 has a standard basis $\{w_O\}$. Here O runs over all the conjugacy classes of W and w_O is a representative of O.

Question

What happens for Hecke algebra \mathcal{H} ?

Notice here that in general, for $w, w' \in O$, the image of T_w and $T_{w'}$ in $\overline{\mathcal{H}}$ are different.

Naive example: Consider $\mathcal{H}_1 = \mathbb{Z}[W]$. Then

- For any conjugacy class \mathcal{O} of W, and $w, w' \in \mathcal{O}$. The image of w and w' in $\overline{\mathcal{H}}_1$ are the same.
- **2** \overline{H}_1 has a standard basis $\{w_O\}$. Here O runs over all the conjugacy classes of W and w_O is a representative of O.

Question

What happens for Hecke algebra \mathcal{H} ?

Notice here that in general, for $w, w' \in O$, the image of T_w and $T_{w'}$ in \overline{H} are different.

Let W_0 be a finite Coxeter group and \mathcal{O} be a conjugacy class. Let \mathcal{O}_{min} be the set of minimal length elements in \mathcal{O} . Then

Let W_0 be a finite Coxeter group and \mathcal{O} be a conjugacy class. Let \mathcal{O}_{min} be the set of minimal length elements in \mathcal{O} . Then

■ Each element w of O can be brought to a minimal length element w' by conjugation by simple reflections which reduce or keep constant the length. We write w → w'.

Let W_0 be a finite Coxeter group and \mathcal{O} be a conjugacy class. Let \mathcal{O}_{min} be the set of minimal length elements in \mathcal{O} . Then

- Each element w of O can be brought to a minimal length element w' by conjugation by simple reflections which reduce or keep constant the length. We write w → w'.
- Any two elements in O_{min} are "strongly conjugate", i.e., conjugate in the associated Braid group.

Let W_0 be a finite Coxeter group and \mathcal{O} be a conjugacy class. Let \mathcal{O}_{min} be the set of minimal length elements in \mathcal{O} . Then

- Each element w of O can be brought to a minimal length element w' by conjugation by simple reflections which reduce or keep constant the length. We write w → w'.

Elliptic conjugacy classes of type E_8

and a statement in the statement of the						
C		Cmin	d	l(w	w e n	w,d
- E8	213.34.5.7	128	30	8	12345678	A2
E ₈ (a ₁)	211.34.52.7	7 320	24	10	1234254678	A2
$E_8(a_2)$	2 ¹² ·3 ⁵ ·5·7	624	20	12	123425465478	A2
E8(a4)	2 ¹³ ·3 ² ·5 ² ·7	7 732	18	-14	12342542345678	A ² A ⁴
E8(a5)	2 ¹³ ·3 ⁴ ·5·7	1516	15	16	1231423454657658	A 1324
E7 + A1	212.32.52.7	192	18	16	1234234542345678	A2 A16
D ₈	2 ¹² .3 ⁵ .5 ²	852	14	18	123423454234565768	A ² A ¹²
E8(a3)	2 ⁹ ·3 ³ ·5 ² ·7	2696	12	20	12314234542365476548	A2
D ₈ (a ₁)	2 ¹¹ ·3 ³ ·5 ² ·7	2040	12	22	1234234542345654765876	$\Lambda^2 \Lambda^4$
E8(a7)	2 ⁹ ·3 ³ ·5 ² ·7	2360	12	22	1231423454316542345678	A ² A ²
E8(a6)	211.34.7	3370	10	24	123142314542345654765876	Δ ²³⁴⁵ Δ ²
$E_7(a_2) + A_1$	2 ¹⁰ ·3 ³ ·5 ² ·7	1758	12	24	123142314354316542345678	$\Lambda^2 \Lambda^2 = \Lambda^8$
$E_{6} + A_{2}$	2 ⁹ ·3 ³ ·5 ² ·7	840	12	26	12314231454231456542345678	$\Delta^2 \Delta_{5}^{6} = 24$
D ₈ (a ₂)	2 ¹² ·3 ⁴ ·5·7	4996	30	26	12342354234654276542345678	A ⁶ A ⁴ A ²⁰
A ₈	2 ¹³ ·3 ² ·5 ² ·7	2816	9	28	1231423145423145654234567687	$\Delta^2 \Delta_4^4$
D ₈ (a ₃)	28.34.5 ² .7	7748	8	30	123142314354231465423476548765	
$D_{6} + 2A_{1}$	210.34.7	256	10	32	12342345423456542345676542345678	$\Delta^2 \Delta^8$
$A_7 + A_1$	27.35.5 ² .7	2080	8	34	1231423454231456542345676542345678	$\Delta^2 \Delta^2_{aa} = \Lambda^4_{aa}$
E8(a8)	2 ⁷ .5.7	4480	6	40	1 1 143542314565423145676542345678765	Δ2
$E_7(a_4) + A_1$	29.5 ² .7	11592	6	42	1 1 14354231435426542314567654234567876	$\Delta^2 \Delta_4^4$
2D4	2 ⁹ ·3·5 ² ·7	4070	6	44	1 1 1435423456542314567654231435465768765	$\Delta^2 \Delta_{1,2}^{4,3,4}$
$E_6(a_2) + A_2$	2 ⁸ ·3 ² ·5 ² ·7	16374	6	44	1 1 1454231436542314354265431765423456787	$\Delta^2 \Delta^2$
$A_5 + A_2 + A_1$	29.32.52.7	3752	6	46	1231423145423145654234567654234567876542345678	$\Delta^2 \Delta_{2245}^2 \Delta_{2245}^2$
$D_5(a_1) + A_3$	28.33.52.7	15134	12	46	1231423154231654317654231435426543176542345678	Δ ⁴ Δ ²
2A4	211.34.7	7952	5	48	123142314542314565423145676542314567876542345678	Δ^2
2D ₄ (a ₁)	24.33.5.7	15120	4	60	1231423143- •54231435426542345765423143548765423143547654765876	Δ^2
$D_4 + 4A_1$	26.5.7	56	6	64	1231423143- -542314354265423143542654317654231435426543176542345678	$\Delta^2 \Delta^4$
$2A_3 + 2A_1$	23.33.52.7	1260	4	66	1231423143- -54231435426542314354265431765423143542654317876542845678	$\Delta^2 \Delta_{2345}^2$
4A ₂	2 ⁷ .5.7	4480	3	80	123142314354231435. 6542314354267654231435426543178765423143542654317654234567876	$\Delta^{2^{2^{3+3}}}$
8A1	1	1	2	120	wo	Δ^2

Figure: Geck-Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, table B.6.

Xuhua He (HKUST/Univ. Maryland)

Theorem (Geck-Pfeiffer)

Let \mathcal{H} be the Hecke algebra for the finite Weyl group W_0 . Then

For any conjugacy class O of W₀ and w, w' ∈ O_{min}, the image of T_w and T_{w'} in H
 A are the same. We denote it by T_O.

Theorem (Geck-Pfeiffer)

Let \mathcal{H} be the Hecke algebra for the finite Weyl group W_0 . Then

For any conjugacy class O of W₀ and w, w' ∈ O_{min}, the image of T_w and T_{w'} in H
 H are the same. We denote it by T_O.

• $\{T_{\mathcal{O}}\}$ is a basis of $\overline{\mathcal{H}}$.

Theorem (Geck-Pfeiffer)

Let \mathcal{H} be the Hecke algebra for the finite Weyl group W_0 . Then

- For any conjugacy class O of W₀ and w, w' ∈ O_{min}, the image of T_w and T_{w'} in H
 Ā are the same. We denote it by T_O.
- $\{T_{\mathcal{O}}\}$ is a basis of $\overline{\mathcal{H}}$.

Here minimal length representatives give the same image in the cocenter follows from the fact that these elements are "strongly conjugate".

Theorem (Geck-Pfeiffer)

Let \mathcal{H} be the Hecke algebra for the finite Weyl group W_0 . Then

- For any conjugacy class O of W₀ and w, w' ∈ O_{min}, the image of T_w and T_{w'} in H
 H are the same. We denote it by T_O.
- $\{T_{\mathcal{O}}\}$ is a basis of $\overline{\mathcal{H}}$.

Here minimal length representatives give the same image in the cocenter follows from the fact that these elements are "strongly conjugate".

 $\{T_{\mathcal{O}}\}\$ spans $\overline{\mathcal{H}}$ follows from the fact that each element w can be reduced to a minimal length element w' via $w \to w'$.

Theorem (Geck-Pfeiffer)

Let \mathcal{H} be the Hecke algebra for the finite Weyl group W_0 . Then

- For any conjugacy class O of W₀ and w, w' ∈ O_{min}, the image of T_w and T_{w'} in H
 H are the same. We denote it by T_O.
- $\{T_{\mathcal{O}}\}$ is a basis of $\overline{\mathcal{H}}$.

Here minimal length representatives give the same image in the cocenter follows from the fact that these elements are "strongly conjugate".

 $\{T_{\mathcal{O}}\}\$ spans $\overline{\mathcal{H}}$ follows from the fact that each element w can be reduced to a minimal length element w' via $w \to w'$.

And $\{T_O\}$ is linearly independent follows from the fact that \sharp irreducible representations of $W_0 = \sharp$ conjugacy classes of W_0 .

Theorem (Geck-Pfeiffer)

Let \mathcal{H} be the Hecke algebra for the finite Weyl group W_0 . Then

- For any conjugacy class O of W₀ and w, w' ∈ O_{min}, the image of T_w and T_{w'} in H
 H are the same. We denote it by T_O.
- $\{T_{\mathcal{O}}\}$ is a basis of $\overline{\mathcal{H}}$.

Here minimal length representatives give the same image in the cocenter follows from the fact that these elements are "strongly conjugate".

 $\{T_{\mathcal{O}}\}\$ spans $\overline{\mathcal{H}}$ follows from the fact that each element w can be reduced to a minimal length element w' via $w \to w'$.

And $\{T_{\mathcal{O}}\}$ is linearly independent follows from the fact that

 \sharp irreducible representations of $\mathit{W}_0=\sharp$ conjugacy classes of $\mathit{W}_0.$

From finite Weyl groups to affine Weyl groups

We'd like to understand the behaviour of elements in a given conjugacy class \mathcal{O} of an (extended) affine Weyl group and to see if

- Any element $w \in \mathcal{O}$ can be reduced to an element $w' \in \mathcal{O}_{\min}$.
- Any two elements in \mathcal{O}_{min} are "strongly conjugate".

The main difficulty is that in general, ${\cal O}$ contains infinite elements.

This make it impossible to check by computer via brute force even for a simple affine Weyl group such as \tilde{A}_2 .

We'd like to understand the behaviour of elements in a given conjugacy class \mathcal{O} of an (extended) affine Weyl group and to see if

- Any element $w \in \mathcal{O}$ can be reduced to an element $w' \in \mathcal{O}_{\min}$.
- Any two elements in \mathcal{O}_{min} are "strongly conjugate".

The main difficulty is that in general, \mathcal{O} contains infinite elements.

This make it impossible to check by computer via brute force even for a simple affine Weyl group such as \tilde{A}_2 .

How can we see the infinity?

We'd like to understand the behaviour of elements in a given conjugacy class \mathcal{O} of an (extended) affine Weyl group and to see if

- Any element $w \in \mathcal{O}$ can be reduced to an element $w' \in \mathcal{O}_{\min}$.
- Any two elements in \mathcal{O}_{min} are "strongly conjugate".

The main difficulty is that in general, $\mathcal O$ contains infinite elements.

This make it impossible to check by computer via brute force even for a simple affine Weyl group such as \tilde{A}_2 .

How can we see the infinity?

MIThenge

Figure: MIT Infinite Corridor, January 2001. Photograph by Matt Yourst. Predictions: 11/11/2014-11/14/2014, Time: 4:18:52 to 4:22:38.

Xuhua He (HKUST/Univ. Maryland)

MIThenge

Figure: MIT Infinite Corridor, January 2001. Photograph by Matt Yourst. Predictions: 11/11/2014-11/14/2014, Time: 4:18:52 to 4:22:38.

Xuhua He (HKUST/Univ. Maryland)

Arithmetic invariants of conjugacy classes in \hat{W}

Definition

For $w \in \tilde{W}$, $w^{|W_0|} = t^{\lambda}$ for some $\lambda \in X$. Set $\nu_w = \lambda/|W_0| \in X_{\mathbb{Q}}$, the *Newton point* of w. Let $\bar{\nu}_w$ be the unique dominant element in $W_0 \cdot \nu_w$.

The map $f: \tilde{W} \to \tilde{W}/W_a \times X_{\mathbb{Q}}, \quad w \mapsto (wW_a, \bar{\nu}_w)$ is constant on each conjugacy class of \tilde{W} .

Theorem (Kottwitz, H.)

Let G be a split p-adic group with Iwahori-Weyl group $ilde{W}$ and σ be the standard Frobenius map. Then

• The map f factors as
$$\tilde{W}/conj \xrightarrow{\Phi} G/\sigma - conj \xrightarrow{1-1} Im(f)$$
.

The map Φ is surjective and has a natural cross-section given by the set of straight conjugacy classes of W̃.

Arithmetic invariants of conjugacy classes in \hat{W}

Definition

For $w \in \tilde{W}$, $w^{|W_0|} = t^{\lambda}$ for some $\lambda \in X$. Set $\nu_w = \lambda/|W_0| \in X_{\mathbb{Q}}$, the *Newton point* of w. Let $\bar{\nu}_w$ be the unique dominant element in $W_0 \cdot \nu_w$.

The map $f: \tilde{W} \to \tilde{W}/W_a \times X_{\mathbb{Q}}, \quad w \mapsto (wW_a, \bar{\nu}_w)$ is constant on each conjugacy class of \tilde{W} .

Theorem (Kottwitz, H.)

Let G be a split p-adic group with Iwahori-Weyl group \tilde{W} and σ be the standard Frobenius map. Then

1 The map f factors as
$$\tilde{W}/conj \xrightarrow{\Phi} G/\sigma - conj \xrightarrow{1-1} Im(f)$$
.

One map Φ is surjective and has a natural cross-section given by the set of straight conjugacy classes of W̃.

Theorem (H., H.-Nie)

Let W be an extended affine Weyl group and ${\mathcal O}$ be a conjugacy class. Then

Theorem (H., H.-Nie)

Let W be an extended affine Weyl group and ${\mathcal O}$ be a conjugacy class. Then

Theorem (H., H.-Nie)

Let W be an extended affine Weyl group and ${\mathcal O}$ be a conjugacy class. Then

1 For any $w \in \mathcal{O}$, there exists $w' \in \mathcal{O}_{\min}$ such that $w \to w'$.

Theorem (H., H.-Nie)

Let W be an extended affine Weyl group and ${\mathcal O}$ be a conjugacy class. Then

() For any $w \in \mathcal{O}$, there exists $w' \in \mathcal{O}_{\min}$ such that $w \to w'$.

② Any two elements in \mathcal{O}_{min} are "strongly conjugate".

Theorem (H., H.-Nie)

Let W be an extended affine Weyl group and ${\mathcal O}$ be a conjugacy class. Then

- **(**) For any $w \in \mathcal{O}$, there exists $w' \in \mathcal{O}_{\min}$ such that $w \to w'$.
- 2 Any two elements in \mathcal{O}_{min} are "strongly conjugate".

Theorem (H.-Nie)

Let ${\mathcal H}$ be an extended affine Hecke algebra. Then

• For any conjugacy class \mathcal{O} of \tilde{W} and $w, w' \in \mathcal{O}_{\min}$, the image of T_w and $T_{w'}$ in $\overline{\mathcal{H}}$ are the same. We denote it by $T_{\mathcal{O}}$.

Theorem (H.-Nie)

Let ${\mathcal H}$ be an extended affine Hecke algebra. Then

- For any conjugacy class \mathcal{O} of \tilde{W} and $w, w' \in \mathcal{O}_{\min}$, the image of T_w and $T_{w'}$ in $\overline{\mathcal{H}}$ are the same. We denote it by $T_{\mathcal{O}}$.
- $\{T_{\mathcal{O}}\}$ spans of $\overline{\mathcal{H}}$.

Theorem (H.-Nie)

Let ${\mathcal H}$ be an extended affine Hecke algebra. Then

- For any conjugacy class \mathcal{O} of \tilde{W} and $w, w' \in \mathcal{O}_{\min}$, the image of T_w and $T_{w'}$ in $\overline{\mathcal{H}}$ are the same. We denote it by $T_{\mathcal{O}}$.
- $\{T_{\mathcal{O}}\}$ spans of $\overline{\mathcal{H}}$.

We'll see later that $\{T_{\mathcal{O}}\}$ is always a basis of $\overline{\mathcal{H}}$. This is the lwahori-Matsumoto presentation of the cocenter.

Theorem (H.-Nie)

Let ${\mathcal H}$ be an extended affine Hecke algebra. Then

- For any conjugacy class \mathcal{O} of \tilde{W} and $w, w' \in \mathcal{O}_{\min}$, the image of T_w and $T_{w'}$ in $\bar{\mathcal{H}}$ are the same. We denote it by $T_{\mathcal{O}}$.
- $\{T_{\mathcal{O}}\}$ spans of $\overline{\mathcal{H}}$.

We'll see later that $\{T_{\mathcal{O}}\}\)$ is always a basis of $\overline{\mathcal{H}}$. This is the lwahori-Matsumoto presentation of the cocenter.

However, the relation between Iwahori-Matsumoto presentation and representation theory (the induction functor and restriction functors, etc.) is hard to understand.

Theorem (H.-Nie)

Let ${\mathcal H}$ be an extended affine Hecke algebra. Then

- For any conjugacy class \mathcal{O} of \tilde{W} and $w, w' \in \mathcal{O}_{\min}$, the image of T_w and $T_{w'}$ in $\overline{\mathcal{H}}$ are the same. We denote it by $T_{\mathcal{O}}$.
- $\{T_{\mathcal{O}}\}$ spans of $\overline{\mathcal{H}}$.

We'll see later that $\{T_{\mathcal{O}}\}\)$ is always a basis of $\overline{\mathcal{H}}$. This is the lwahori-Matsumoto presentation of the cocenter.

However, the relation between Iwahori-Matsumoto presentation and representation theory (the induction functor and restriction functors, etc.) is hard to understand.

In order to give the Bernstein-Lusztig presentation of the cocenter, one needs to have a nice paramitrization of conjugacy classes of \tilde{W} .

Proposition (H.-Nie)

Let \mathcal{A} be the set of all pairs (J, C), where C is an elliptic conjugacy class of \tilde{W}_J and ν_w is dominant for all $w \in C$. Then

$$\pi: \mathcal{A}/\sim \xrightarrow{1-1}$$
 conjugacy classes of $\tilde{W}.$

Theorem (H.-Nie)

Let $i_J : \mathcal{H}_J \to \mathcal{H}$ be the inclusion and $\overline{i}_J : \overline{\mathcal{H}}_J \to \overline{\mathcal{H}}$ the induced map. For any $(J, C) \in \mathcal{A}$,

$$T_{\mathcal{O}} = \overline{i}_J (T_C^J).$$

In order to give the Bernstein-Lusztig presentation of the cocenter, one needs to have a nice paramitrization of conjugacy classes of \tilde{W} .

Proposition (H.-Nie)

Let \mathcal{A} be the set of all pairs (J, C), where C is an elliptic conjugacy class of \tilde{W}_J and ν_w is dominant for all $w \in C$. Then

$$\pi: \mathcal{A}/\sim \xrightarrow{\mathbf{1}-\mathbf{1}}$$
 conjugacy classes of $ilde{\mathcal{W}}.$

Theorem (H.-Nie)

Let $i_J : \mathcal{H}_J \to \mathcal{H}$ be the inclusion and $\overline{i}_J : \overline{\mathcal{H}}_J \to \overline{\mathcal{H}}$ the induced map. For any $(J, \mathcal{C}) \in \mathcal{A}$,

$$T_{\mathcal{O}}=\overline{i}_J(T_C^J).$$

Cocenter-Representation duality holds for affine Hecke algebras for generic parameters.

Cocenter-Representation duality holds for affine Hecke algebras for generic parameters.

Theorem (Ciubotaru-H.)

{T_O} is a basis of *H*

Cocenter-Representation duality holds for affine Hecke algebras for generic parameters.

Theorem (Ciubotaru-H.)

• $\{T_{\mathcal{O}}\}$ is a basis of $\overline{\mathcal{H}}$ (basis Theorem).

Cocenter-Representation duality holds for affine Hecke algebras for generic parameters.

Theorem (Ciubotaru-H.)

• $\{T_{\mathcal{O}}\}$ is a basis of $\overline{\mathcal{H}}$ (basis Theorem).

• For any parameters, the image of Tr is $R(\mathcal{H}_q)^*_{good}$ (trace Paley-Wiener Theorem).

Cocenter-Representation duality holds for affine Hecke algebras for generic parameters.

Theorem (Ciubotaru-H.)

- $\{T_{\mathcal{O}}\}$ is a basis of $\overline{\mathcal{H}}$ (basis Theorem).
- For any parameters, the image of Tr is $R(\mathcal{H}_q)^*_{good}$ (trace Paley-Wiener Theorem).

• For generic parameter, the map *Tr* is injective (density Theorem).

Cocenter-Representation duality holds for affine Hecke algebras for generic parameters.

Theorem (Ciubotaru-H.)

- $\{T_{\mathcal{O}}\}$ is a basis of $\overline{\mathcal{H}}$ (basis Theorem).
- For any parameters, the image of Tr is $R(\mathcal{H}_q)^*_{good}$ (trace Paley-Wiener Theorem).
- For generic parameter, the map *Tr* is injective (density Theorem).

To explain the basic idea of cocenter-representation duality, we start with the group algebra for a finite group and its representation over $\mathbb{C}.$

Then # irreducible representations=# conjugacy classes. In other words,

rank of Grothendieck group=rank of cocenter.

And the trace map leads to an invertible square matrix.

To explain the basic idea of cocenter-representation duality, we start with the group algebra for a finite group and its representation over \mathbb{C} .

Then # irreducible representations=# conjugacy classes. In other words,

rank of Grothendieck group=rank of cocenter.

And the trace map leads to an invertible square matrix.

Difficulty: for affine Hecke algebras, both the rank of R(H) and the rank of \overline{H} are infinite.

To explain the basic idea of cocenter-representation duality, we start with the group algebra for a finite group and its representation over \mathbb{C} .

Then # irreducible representations=# conjugacy classes. In other words,

rank of Grothendieck group=rank of cocenter.

And the trace map leads to an invertible square matrix.

Difficulty: for affine Hecke algebras, both the rank of R(H) and the rank of \overline{H} are infinite.

The key idea is to construct filtrations on $\overline{\mathcal{H}}$ and on $R(\mathcal{H})$ so that the corresponding subquotient "matches".

Question

What are the filtrations?

Elliptic Theory (Arthur): There is a standard filtration on $R(\mathcal{H})$ obtained from induced modules: $R(\mathcal{H}) \supset R(\mathcal{H})^1 \supset \cdots$, where $R(\mathcal{H})^1$ is spanned by all the induced modules. The elliptic quotient $\overline{R}(\mathcal{H})_{ell} = R(\mathcal{H})/R(\mathcal{H})^1$. The key idea is to construct filtrations on $\overline{\mathcal{H}}$ and on $R(\mathcal{H})$ so that the corresponding subquotient "matches".

Question

What are the filtrations?

Elliptic Theory (Arthur): There is a standard filtration on $R(\mathcal{H})$ obtained from induced modules: $R(\mathcal{H}) \supset R(\mathcal{H})^1 \supset \cdots$, where $R(\mathcal{H})^1$ is spanned by all the induced modules. The elliptic quotient $\overline{R}(\mathcal{H})_{ell} = R(\mathcal{H})/R(\mathcal{H})^1$.

However, the dual filtration on $\bar{\mathcal{H}}$ is very complicated to understand.

The key idea is to construct filtrations on $\overline{\mathcal{H}}$ and on $R(\mathcal{H})$ so that the corresponding subquotient "matches".

Question

What are the filtrations?

Elliptic Theory (Arthur): There is a standard filtration on $R(\mathcal{H})$ obtained from induced modules: $R(\mathcal{H}) \supset R(\mathcal{H})^1 \supset \cdots$, where $R(\mathcal{H})^1$ is spanned by all the induced modules. The elliptic quotient $\overline{R}(\mathcal{H})_{ell} = R(\mathcal{H})/R(\mathcal{H})^1$.

However, the dual filtration on $\bar{\mathcal{H}}$ is very complicated to understand.

Here we consider different filtrations. For simplicity, we only consider semisimple root datum here.

On the $\bar{\mathcal{H}}$ side, we consider:

 $\{0\}\subset \bar{\mathcal{H}}_1\subset \cdots\subset \bar{\mathcal{H}},$

where $\overline{\mathcal{H}}_1$ is spanned by $T_{\mathcal{O}}$ with $\nu_{\mathcal{O}} = 0$.

Here we consider different filtrations. For simplicity, we only consider semisimple root datum here.

On the $\bar{\mathcal{H}}$ side, we consider:

$$\{0\}\subset \bar{\mathcal{H}}_1\subset\cdots\subset \bar{\mathcal{H}},$$

where $\bar{\mathcal{H}}_1$ is spanned by $T_{\mathcal{O}}$ with $\nu_{\mathcal{O}} = 0$.

On the R(H) side, we consider the dual filtration:

$$R(\mathcal{H}) \supset R(\mathcal{H})^1_{rigid} \supset \cdots,$$

where $R(\mathcal{H})_{rigid}^1$ is spanned by $i_J(\sigma) - i_J(\sigma \circ \chi_t)$ for all J, σ, t . The quotient $\overline{R}(\mathcal{H})_{rigid} = R(\mathcal{H})/R(\mathcal{H})_{rigid}^1$ is called the rigid quotient.

Here we consider different filtrations. For simplicity, we only consider semisimple root datum here.

On the $\bar{\mathcal{H}}$ side, we consider:

$$\{0\}\subset \bar{\mathcal{H}}_1\subset\cdots\subset \bar{\mathcal{H}},$$

where $\bar{\mathcal{H}}_1$ is spanned by $T_{\mathcal{O}}$ with $\nu_{\mathcal{O}} = 0$.

On the R(H) side, we consider the dual filtration:

$$R(\mathcal{H}) \supset R(\mathcal{H})^1_{rigid} \supset \cdots,$$

where $R(\mathcal{H})_{rigid}^1$ is spanned by $i_J(\sigma) - i_J(\sigma \circ \chi_t)$ for all J, σ, t . The quotient $\overline{R}(\mathcal{H})_{rigid} = R(\mathcal{H})/R(\mathcal{H})_{rigid}^1$ is called the rigid quotient.

For generic parameters, the trace map $Tr : \overline{\mathcal{H}} \times R(\mathcal{H}) \to \mathbb{C}$ induces a perfect pairing

 $Tr: \overline{\mathcal{H}}_1 \times \overline{R}(\mathcal{H})_{rigid} \to \mathbb{C}.$

For generic parameters, the trace map $Tr : \overline{\mathcal{H}} \times R(\mathcal{H}) \to \mathbb{C}$ induces a perfect pairing

$$Tr: \overline{\mathcal{H}}_1 imes \overline{R}(\mathcal{H})_{rigid} \to \mathbb{C}.$$

Corollary (Ciubotaru-H.)

For generic parameters, the rank of R(Hq)_{rigid} equals the number of conjugacy classes of W of finite order.

• For generic parameters, the rank of $\overline{R}(\mathcal{H}_q)_{ell}$ equals the number of elliptic conjugacy classes of \widetilde{W} .

For generic parameters, the trace map $Tr : \overline{\mathcal{H}} \times R(\mathcal{H}) \to \mathbb{C}$ induces a perfect pairing

$$Tr: \overline{\mathcal{H}}_1 imes \overline{R}(\mathcal{H})_{rigid} \to \mathbb{C}.$$

Corollary (Ciubotaru-H.)

- For generic parameters, the rank of R
 (Hq)_{rigid} equals the number of conjugacy classes of W
 of finite order.
- Solution For generic parameters, the rank of $\overline{R}(\mathcal{H}_q)_{ell}$ equals the number of elliptic conjugacy classes of \widetilde{W} .

Let **k** be an algebraically closed field and $q(s) \in \mathbf{k}^{\times}$. Let $R(\mathcal{H}_{q,\mathbf{k}})$ be the Grothendieck group of finite dimensional representation of \mathcal{H}_q over **k**.

For any $K \subset \tilde{S}$ with W_K is finite, let Ω_K be the subset of Ω that stabilizes K and $W_K^{\sharp} = W_K \rtimes \Omega_K$. Let \mathcal{I} be the set of all K with maximal W_K^{\sharp} .

Question

Is the rank of $\bar{R}(\mathcal{H}_{q,\mathbf{k}})_{ell}$ equal to the $\sum_{K \in \mathcal{I}/conj} \operatorname{rank} \bar{R}(\mathcal{H}_{K,q,\mathbf{k}} \rtimes \Omega_K)_{ell}$?

Here the left side is for affine Hecke algebras and the right side is for finite Hecke algebras (with twist).

Example

We list the expected rank of $\overline{R}(\mathcal{H}_{q,\mathbf{k}})_{ell}$ for SL_3 and PGL_3 . Here $\Phi_3(q) = q^2 + q + 1$.

SL ₃	$char(\mathbf{k}) \neq 3$	$char(\mathbf{k}) = 3$
$\Phi_3(q) eq 0$	3	3
$\Phi_3(q)=0$	0	0

PGL ₃	$char(\mathbf{k}) \neq 3$	$char(\mathbf{k}) = 3$
$\Phi_3(q) eq 0$	3	1
$\Phi_3(q)=0$	2	0

One more thing: on the real group

Thank you, David: for being a great teacher, guide and friend of my wife and I.

Happy birthday!

Thank you, David: for being a great teacher, guide and friend of my wife and I.

Happy birthday!