Computing with left cells of type E_{8}

Meinolf Geck

IAZ - Universität Stuttgart
MIT, May 2014

- The quantity $\frac{\operatorname{dimg}}{\operatorname{rank}(\mathfrak{g})^{2}}$ (defined for a simple complex Lie algebra \mathfrak{g}) is bounded, reaches its maximum $\left(\frac{248}{8^{2}} \approx 4\right)$ for type E_{8} :

(Lusztig 2013)
- Left cells of $W(=$ Weyl group of $\mathfrak{g})$:

$$
w \sim_{L} w^{\prime} \quad \text { if } \quad I_{w}=I_{w^{\prime}}
$$

where $I_{w}=$ primitive ideal in $U(\mathfrak{g})$ defined by the simple module with highest weight $-w(\rho)-\rho$. (Joseph 1970/80's)

Kazhdan-Lusztig (1979) + Lusztig (1983).

(W, S) arbitrary Coxeter system plus weights $\left\{p_{s} \mid s \in S\right\}$.

$$
\text { (} p_{s} \text { positive integer, } p_{s}=p_{t} \text { if } s, t \in S \text { conjugate in } W . \text {) }
$$

$\mathcal{H}=$ Iwahori-Hecke algebra over $\mathbb{C}(v)$:

$$
\mathcal{H}=\bigoplus_{w \in W} \mathbb{C}(v) T_{w}, \quad T_{s}^{2}=T_{1}+\left(v^{p_{s}}-v^{-p_{s}}\right) T_{s} \text { for } s \in S
$$

Let $\left\{C_{w} \mid w \in W\right\}$ be the new "canonical basis" of \mathcal{H}.
\leadsto Relations $\sim_{L}, \sim_{R}, \sim_{L R}$ on W (left, right and two-sided cells).
\rightsquigarrow A left \mathcal{H}-module $[\Gamma]$ and left W-module $[\Gamma]_{1}$ for each left cell Γ.
\rightsquigarrow Connections with geometry, combinatorics, representation theory.

In this talk: W finite - with special attention to $W=W\left(E_{8}\right)$.

- $|W|=696,729,600$ with $\max \{l(w) \mid w \in W\}=120$.
- $|\operatorname{lrr}(W)|=112$ with $\max \{\operatorname{dim} E \mid E \in \operatorname{Irr}(W)\}=7168$.
- Lusztig (1979) + Barbasch-Vogan (1983): There are 46 special representations \leftrightarrow two-sided cells and 101,796 left/right cells.
- Lusztig (1986): There are 76 multiplicity vectors $\left(m_{E}\right)$ such that

$$
[\Gamma]_{1} \cong \bigoplus_{E \in \operatorname{lrr}(W)} m_{E} E, \text { all explicitly known. }
$$

- Y. Chen (2000): Partition of W into left cells.
- Howlett (2003): Construction of W-graph representations for \mathcal{H}. \rightsquigarrow explicit matrix models for $\operatorname{Irr}(\mathcal{H})$.
- G.-Müller (2009): Decomposition numbers of \mathcal{H}.
\leadsto applications to modular representations of Chevalley group $E_{8}(q)$.
What kind of questions are actually left to be solved?

Let C be a conjugacy class of involutions in W. Kottwitz (2000): Linear action of W on \mathbb{C}-vector space V_{C} with basis $\left\{e_{w} \mid w \in C\right\}$,

$$
s . e_{w}=\left\{\begin{array}{ll}
-e_{w} & \text { if } s w=w s<w \\
e_{s w s} & \text { otherwise }
\end{array} \quad(s \in S)\right.
$$

(Formulation of Lusztig-Vogan, 2011.)

Kottwitz' Conjecture.

$|C \cap \Gamma|=\operatorname{dim} \operatorname{Hom}_{W}\left(V_{C},[\Gamma]_{1}\right) \quad$ for every left cell Γ of W.
Conjecture now known to hold in general! Last case E_{8} : Halls (2013). [Previous work: Kottwitz verified A_{n}; Casselman F_{4}, E_{6}; similar methods E_{7}; Bonnafé and G. (hal-00698613, arXiv:1206.0443): B_{n}, D_{n}.]

Need to be able to identify left cells Γ of the elements in a class C (as above), and corresponding modules $[\Gamma]_{1}$.

Let $G(q)=$ finite Chevalley group with Weyl group W, over \mathbb{F}_{q}. For $w \in W$ let R_{w} be the virtual representation of $G(q)$ defined by Deligne and Lusztig. Unipotent representations:

$$
\mathcal{U}:=\left\{\rho \in \operatorname{lrr}(G(q)) \mid\left(\rho: R_{w}\right) \neq 0 \text { for some } w \in W\right\} .
$$

Theorem (Lusztig 2002). Assume $\rho \in \mathcal{U}$ is cuspidal.

Then the set $\left\{w \in W \mid\left(\rho: R_{w}\right) \neq 0\right.$ and $I(w)=$ minimum possible $\}$ is contained in a single conjugacy class of W, denoted C_{ρ}.

In type E_{8} there exists ρ such that C_{ρ} consists of 4480 elements, all of order 6 , length 40 . To ρ is naturally attached a two-sided cell \mathcal{F}_{ρ}. Observation: \mathcal{F}_{ρ} contains exactly 4480 left cells.
Lusztig: "This suggests that $C_{\rho} \subseteq \mathcal{F}_{\rho}$ and that any left cell in \mathcal{F}_{ρ} contains a unique element of C_{ρ} ". - Now verified!

Need to be able to reconstruct left cells of $w \in C_{\rho}$ efficiently.

Algorithmic challenge. (W, S) arbitrary, weights $\left\{p_{s} \mid s \in S\right\}$:

Given $w \in W$, find Γ such that $w \in \Gamma$, and $[\Gamma]_{1} \cong \bigoplus_{E \in \operatorname{lr}(W)} m_{E} E$.
Ways to approach left cells of W :
(1) Original definitions: Kazhdan-Lusztig polynomials $P_{y, w}$ etc.
(2) Induction from parabolic subgroups.
(Will see that Vogan's generalised τ-invariant fits into this, too.)
(0 Lusztig's a-invariant and leading coefficients ("limit" $v \rightarrow 0$). What kind of answer do we expect for type E_{8} ?

- Output file containing complete list of elements of W plus information on partition into cells. (Requires at least 5.6 GB .)
- Better: Efficient algorithms (applicable to any finite W) for specific tasks and further functionality (conjugacy classes, character tables of W, \ldots).

The easiest-to-compute invariant of a left cell:
The function $w \mapsto\{s \in S \mid w s<w\}$ is constant on left cells.
Vogan's generalised τ-invariant is a far-reaching refinement of this.
Vogan I: A generalized τ-invariant ..., Math. Ann. (1979).
Vogan II: Ordering of the primitive spectrum ..., Math. Ann. (1980).
Will now give an explanation in terms of the concept of induction of cells - which works for arbitrary (W, S) and weights $\left\{p_{s} \mid s \in S\right\}$.

Consider parabolic subgroup $W_{I} \subseteq W$ where $I \subseteq S$. Let X_{I} be minimal left coset representatives \leadsto projection map $\mathrm{pr}_{1}: W \rightarrow W_{1}$.

Theorem (Barbasch-Vogan 1983 and G. 2003). Let $y, w \in W$.

$$
\left.y \sim_{L} w \quad \Rightarrow \quad \operatorname{pr}_{l}(y) \sim_{L, l} \operatorname{pr}_{l}(w) \quad \text { (inside } W_{l}\right)
$$

Let $I \subseteq S$ and $\delta: W_{l} \rightarrow W_{l}$ be a bijection such that:
(1) If Γ^{\prime} is a left cell of W_{l}, then so is $\delta\left(\Gamma^{\prime}\right)$ and
(2) the map $w \mapsto \delta(w)$ induces an isomorphism $\left[\Gamma^{\prime}\right] \cong\left[\delta\left(\Gamma^{\prime}\right)\right]$.
(3) The map $w \mapsto \delta(w)$ preserves the right cells in W_{l}.

Extend δ to $\quad \delta^{*}: W \rightarrow W, x u \mapsto x \delta(u) \quad$ (for $\left.x \in X_{l}, u \in W_{l}\right)$.
Example: Let $I=\{s, t\}$ where st has order 3 ; then $W_{l} \cong \mathfrak{S}_{3}$.
Define $\delta:$ $\begin{array}{cccc}\{1\} & \{s, t s\} & \{t, s t\} & \{s t s\} \\ \downarrow \downarrow & \downarrow \downarrow & \downarrow \downarrow & \downarrow \\ \{1\} & \{s t, t\} & \{t s, s\} & \{s t s\}\end{array}$
Then $\delta^{*}: W \rightarrow W$ is the $*$-operation of Vogan I/Kazhdan-Lusztig. Note $p:=p_{s}=p_{t}$; action of C_{s} and C_{t} on left cell module [\{s,ts\}] given by

$$
C_{s} \mapsto\left[\begin{array}{cc}
-v^{p}-v^{-p} & 1 \\
0 & 0
\end{array}\right], \quad C_{t} \mapsto\left[\begin{array}{cc}
0 & 0 \\
1 & -v^{p}-v^{-p}
\end{array}\right]
$$

and we obtain exactly the same matrices for the action on [\{st, $t\}]$. So, (2) ok.

Let Δ be a collection of pairs (I, δ) satisfying the above conditions.
Definition (modelled on Vogan I). Let $y, w \in W$.
Define relation $y \approx_{n} w$ inductively for all $n \geqslant 0$:

- $y \approx_{0} w$ if $\operatorname{pr}_{l}(y) \sim_{L, I} \operatorname{pr}_{l}(w)$ for all $(I, \delta) \in \Delta$.
- $y \approx_{n+1} w$ if $y \approx_{n} w$ and $\delta^{*}(y) \approx_{n} \delta^{*}(w)$ for all $(I, \delta) \in \Delta$.

Then y, w have the same "generalised τ^{Δ}-invariant" if $y \approx_{n} w \forall n$.
Proposition (G. 2014). Two elements in the same left cell have the same generalised τ^{Δ}-invariant.

Let $\Delta=$ all pairs (I, δ) where $I=\{s, t\}$ with st of order 3 and δ as defined above. $\rightsquigarrow \tau^{\Delta}$ is Vogan's generalised τ-invariant.
Note: $p_{s}=p_{t}$ if $o(s t)=3$, but unequal weights on S now allowed!

Example: Let $I=\{s, t\}$ where st has order 4 ; then $\left|W_{l}\right|=8$.

- If $p_{s}=p_{t}$, define $\delta: \begin{array}{cccc}\downarrow & \downarrow & \downarrow & \downarrow \\ \{1\} & \{s t s, t s, s\} & \downarrow & \downarrow \downarrow \\ \{t s t, s t, t\} & \downarrow & \{s t s t\}\end{array}$

Then $\delta^{*}: W \rightarrow W$ is the map defined in Vogan II and also Lusztig (1985) (" method of strings").

- If $p_{s}<p_{t}$, define δ :

$$
\begin{aligned}
& \{1\}\{s\}\{t, s t\}\{t s, s t s\}\{t s t\}\{s t s t\} \\
& \{1\}\{s\}\{t s, s t s\}\{t, s t\}\{t s t\}\{s t s t\}
\end{aligned}
$$

This yields a new "unequal weight $*$-operation" $\delta^{*}: W \rightarrow W$!
[Similar definitions possible for any $I=\{s, t\}$ where $o(s t) \geqslant 3$.]
Conjecture/Question: Let $\Delta=$ all pairs (I, δ) where $|I|=2$ and δ as above. Then $y, w \in W$ are in the same left cell iff y, w are in the same two-sided cell and y, w have the same generalised τ^{Δ}-invariant.

Specialisation $v \mapsto 1$ induces a bijection $\operatorname{Irr}(W) \leftrightarrow \operatorname{Irr}(\mathcal{H}), E \leftrightarrow E_{v}$. \mathcal{H} is a symmetric algebra \leadsto orthogonality relations for $\operatorname{lrr}(\mathcal{H})$:

$$
\sum_{w \in W} \operatorname{Trace}\left(T_{w}, E_{v}\right)^{2}=(\operatorname{dim} E) \mathbf{c}_{E}, \quad 0 \neq \mathbf{c}_{E} \in \mathbb{C}\left[v, v^{-1}\right] .
$$

Write $\quad \mathbf{c}_{E}=f_{E} V^{-2 \mathbf{a}_{E}}+$ higher powers of v, where $f_{E}>0, \mathbf{a}_{E} \geqslant 0$.
\rightsquigarrow Two invariants f_{E}, \mathbf{a}_{E} of $E \in \operatorname{lrr}(W)$, explicitly known in all cases.
[Benson-Curtis, Iwahori, Tits' (1960/70); Lusztig (1979): Definition of f_{E}, \mathbf{a}_{E}.]

Proposition (G. 2002/2009).

\exists basis of E_{v} such that $v^{\mathbf{a}_{E}} T_{w}: E_{v} \rightarrow E_{v}$ is represented by a matrix whose entries are rational functions in $\mathbb{C}(v)$ with no pole at $v=0$.

$$
\begin{aligned}
& c_{w, E}^{i j}:=\text { entry at }(i, j) \text { in matrix of } v^{\mathbf{a} E} T_{w} \text { evaluated at } v=0 . \\
& c_{w, E}=\sum_{i} i c_{w, E}^{i i} \quad \text { Lusztig's leading coefficient (1987). }
\end{aligned}
$$

Use leading coefficients to define a "limit $v \rightarrow 0$ " algebra structure on $\tilde{\mathcal{J}}:=\bigoplus_{w \in W} \mathbb{C} t_{w}$ which remembers information about cells.

For $x, y, z \in W$ set:

$$
\tilde{\gamma}_{x y z}:=\sum_{E \in \operatorname{lrr}(W)} f_{E}^{-1} \sum_{i, j, k} c_{x, E}^{i j} c_{y, E}^{j k} c_{z, E}^{k i} .
$$

Then $\tilde{\mathcal{J}}$ is an associative algebra (with 1) with product

$$
t_{x} \cdot t_{y}=\sum_{z \in W} \tilde{\gamma}_{x y z} t_{z^{-1}}
$$

The algebra $\tilde{\mathcal{J}}$ is semisimple and $\operatorname{Irr}(W) \leftrightarrow \operatorname{Irr}(\tilde{\mathcal{J}}), E \leftrightarrow E_{\tilde{\mathcal{J}}}$.
A matrix representation affording $E_{\tilde{\mathcal{J}}}$ is given by

$$
\tilde{\rho}_{E}: \tilde{\mathcal{J}} \rightarrow M_{d}(\mathbb{C}), \quad t_{w} \mapsto\left(c_{w, E}^{i j}\right)_{1 \leqslant i, j \leqslant d} \quad(d=\operatorname{dim} E)
$$

In the equal weight case, $\tilde{\mathcal{J}}$ is Lusztig's asymptotic algebra. Some properties survive in the general weight case.
\rightsquigarrow The numbers $c_{w, E}^{i j}$ and $c_{w, E}$ have some remarkable properties.

- Γ left cell \Rightarrow multiplicity vector $\left(m_{E}\right)_{E \in \operatorname{lrr}(W)}$ given by

$$
\sum_{w \in \Gamma} c_{w, E} c_{w, E^{\prime}}=\left\{\begin{array}{cl}
f_{E} m_{E} & \text { if } E \cong E^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

[Lusztig 1984 + G. 2014.]

- 「 left cell \Rightarrow 「 contains at least one element of

$$
\mathcal{D}:=\left\{w \in W \mid \sum_{E \in \operatorname{lrr}(W)} f_{E}^{-1} c_{w, E} \neq 0\right\} .
$$

[G. 2009; Lusztig 1987: "exactly one" in equal weight case, \mathcal{D} is the set of distunguished (or Duflo) involutions in this case.]

- Let $y, w \in W$. Then y, w belong to the same left cell if

$$
t_{y} \cdot t_{w^{-1}} \neq 0 \quad \Leftrightarrow \quad \sum_{k} c_{y, E}^{i k} c_{w^{-1}, E}^{k j} \neq 0 \quad \text { for some } E, i, j .
$$

[G. 2009; converse holds in equal weight case.]

$$
W=W\left(E_{8}\right): \quad\left|c_{w, E}\right| \leqslant 8 \quad \text { for all } w, E \quad(\text { Lusztig 1987) }
$$

[Explicit computation of all $c_{w, E}$ takes about 3 weeks on a computer; uses known "character table" of $\mathcal{H}=\mathcal{H}\left(E_{8}\right), \quad$ G.-Michel 1997.]

What about $c_{w, E}^{i j}$? Lusztig (1981) + G. (2002):

- $\exists \mathcal{H}$-invariant, non-degenerate symmetric $\beta_{E}: E_{v} \times E_{v} \rightarrow \mathbb{C}(v)$.
- If \exists basis of E_{v} such that corresponding Gram matrix Ω_{E} of β_{E} has entries in $\mathbb{C}[v]$ and $\left.\operatorname{det}\left(\Omega_{E}\right)\right|_{v=0} \neq 0$, then $c_{w, E}^{i j}$ defined.
Howlett (2003): Construction of W-graph representations for $\mathcal{H}\left(E_{8}\right)$. G.-Müller (2009): Computation of Gram matrices Ω_{E} and verification of above property.
Hence, we can explicitly determine $c_{w, E}^{i j}$ and check relation $y \sim_{L} w$.
But: Can NOT do this for all 696,729,600 elements of W.

Recall: Family Δ of pairs $(I, \delta) \rightsquigarrow$ right $*$-operations $\delta^{*}: W \rightarrow W$. ("Right" because $\delta^{*}(x u)=x \delta(u)$ for $x \in X_{1}, u \in W_{1}$.)
Right $*$-orbit of a left cell Γ :
$\Gamma=\Gamma_{0}, \Gamma_{1}, \Gamma_{2}, \ldots$ where $\Gamma_{n+1}=\delta_{n}^{*}\left(\Gamma_{n}\right)$ for some $\left(I_{n}, \delta_{n}\right) \in \Delta$.
All $\left[\Gamma_{n}\right] \cong[\Gamma]$ have the same multiplicity vector $\left(m_{E}\right)_{E \in \operatorname{lr}(W)}$.
Similarly, right $*$-orbit of a single element $w \in W$:
$w=w_{0}, w_{1}, w_{2}, \ldots$ where $w_{n+1}=\delta_{n}^{*}\left(w_{n}\right)$ for some $\left(I_{n}, \delta_{n}\right) \in \Delta$.
All w_{n} belong to the same right cell in W (Lusztig 2003).
Finally, the map $w \mapsto w^{-1}$ exchanges left and right cells.
If $R^{*}(w)$ is the right $*$-star orbit of $w \in W$, then the left $*$-star orbit $L^{*}(w):=\left\{y^{-1} \mid y \in R^{*}\left(w^{-1}\right)\right\}$ is contained in a left cell of W.

Hence: Only need to store one left cell from each right *-orbit of left cells and, for each left cell Γ, only representatives of left *-orbits in Γ.

Proposition (G.-Halls 2014). $W=W\left(E_{8}\right)$.

- There are (only!) 106 right *-orbits of left cells of W and $[\Gamma]_{1} \cong \bigoplus_{E} m_{E} E$ is explicitly known for these 106 cells.
- The union of the above 106 left cells consists of (only!) 678 left *-orbits (of which representatives are explicitly known).

So: Only need to store 678 elements (+ corresponding multiplicity vectors $\left.\left(m_{E}\right)_{E \in \operatorname{lr}(W)}\right)$. Complete partition of W into left cells is reconstructed by repeated application of left/right *-operations. Note: The 678 elements are difficult to compute, but once they are there, it is not so difficult to prove the above statements to be true.

Input: An element $w \in W$.
Output: The left cell Γ such that $w \in \Gamma$ and $[\Gamma]_{1} \cong \bigoplus_{E} m_{E} E$.
Pre-processing: Apply left $*$-operations to produce the 106 left cells $\Gamma_{1}, \ldots, \Gamma_{106}$ out of the 678 representatives. (These contain 646,270 elements in total; the "unpacking" takes a couple of minutes.)
(1) Compute the right $*$-orbit of w. This orbit meets a unique Γ_{i}. [Then w and Γ_{i} belong to the same two-sided cell, hence obtain unique "special" $E_{0} \in \operatorname{Irr}(W)$ from multiplicity vector of $\left[\Gamma_{i}\right]_{1}$.]
(2) Apply the right $*$-operations backwards to this Γ_{i} to obtain the full left cell Γ such that $w \in \Gamma$. Then $[\Gamma]_{1} \cong\left[\Gamma_{i}\right]_{1}$.

Implemented and freely available in PyCox (written in Python) (see LMS J. of Comput. and Math. 15, 2012, and G.-Halls, arXiv:1401.6804).

The most difficult theoretical result involved in the algorithm:
There are 46 two-sided cells in $W\left(E_{8}\right)$.
(Lusztig's implication: $x \sim_{L R} y$ and $x \leqslant L y \Rightarrow x \sim_{L} y$.)
Relies on positivity $(-1)^{1(x)+l(y)+l(z)} h_{x y z} \in \mathbb{N}_{0}\left[v, v^{-1}\right]$.
[Now purely algebraic proof due to Elias-Williamson (2012).]
Would like " $x \sim_{L R} y$ and $x \leqslant L y \Rightarrow x \sim_{L} y$ " in unequal weight case.
The most difficult computation involved:
Needed Gram matrices Ω_{E} for Howlett's W-graph representations.
Could then deduce that matrix of each $v^{\mathrm{a} E} T_{w}: E_{v} \rightarrow E_{v}$ has entries given by rational functions in $\mathbb{C}(v)$ with no pole at $v=0$.
(Note: Subsequently, matrices Ω_{E} are not required any more !)
Is there a theoretical argument to make this deduction ?

