Computing with left cells of type E_8

Meinolf Geck

IAZ - Universität Stuttgart

MIT, May 2014

The quantity dim g/(rank(g)²) (defined for a simple complex Lie algebra g) is bounded, reaches its maximum (248/8² ≈ 4) for type E₈:

• Left cells of W (= Weyl group of \mathfrak{g}):

 $w \sim_L w'$ if $I_w = I_{w'}$

where $I_w =$ primitive ideal in $U(\mathfrak{g})$ defined by the simple module with highest weight $-w(\rho) - \rho$. (Joseph 1970/80's)

Kazhdan–Lusztig (1979) + Lusztig (1983).

(W, S) arbitrary Coxeter system plus weights $\{p_s \mid s \in S\}$.

 $(p_s \text{ positive integer}, p_s = p_t \text{ if } s, t \in S \text{ conjugate in } W.)$ $\mathcal{H} = \text{Iwahori-Hecke algebra over } \mathbb{C}(v):$ $\mathcal{H} = \bigoplus_{w \in W} \mathbb{C}(v) T_w, \qquad T_s^2 = T_1 + (v^{p_s} - v^{-p_s})T_s \text{ for } s \in S.$

Let $\{C_w \mid w \in W\}$ be the new "canonical basis" of \mathcal{H} .

 \rightsquigarrow Relations \sim_L , \sim_R , \sim_{LR} on W (left, right and two-sided cells).

- \rightarrow A left \mathcal{H} -module [Γ] and left W-module [Γ]₁ for each left cell Γ .
- \rightsquigarrow Connections with geometry, combinatorics, representation theory.

In this talk: W finite – with special attention to $W = W(E_8)$.

- |W| = 696,729,600 with max $\{I(w) \mid w \in W\} = 120$.
- $|\operatorname{Irr}(W)| = 112$ with max{dim $E \mid E \in \operatorname{Irr}(W)$ } = 7168.
- Lusztig (1979) + Barbasch–Vogan (1983): There are 46 special representations ↔ two-sided cells and 101,796 left/right cells.
- Lusztig (1986): There are 76 multiplicity vectors (m_E) such that $[\Gamma]_1 \cong \bigoplus_{E \in Irr(W)} m_E E$, all explicitly known.
- Y. Chen (2000): Partition of W into left cells.
- Howlett (2003): Construction of *W*-graph representations for *H*.
 → explicit matrix models for Irr(*H*).
- G.-Müller (2009): Decomposition numbers of *H*.
 → applications to modular representations of Chevalley group E₈(q).

What kind of questions are actually left to be solved?

Let C be a conjugacy class of involutions in W. Kottwitz (2000): Linear action of W on \mathbb{C} -vector space V_C with basis $\{e_w \mid w \in C\}$,

 $s.e_w = \left\{ egin{array}{ccc} -e_w & ext{if } sw = ws < w, \ e_{sws} & ext{otherwise}, \end{array}
ight.$ $(s \in S).$

(Formulation of Lusztig–Vogan, 2011.)

Kottwitz' Conjecture.

 $|C \cap \Gamma| = \dim \operatorname{Hom}_W(V_C, [\Gamma]_1)$ for every left cell Γ of W.

Conjecture now known to hold in general! Last case E_8 : Halls (2013). [Previous work: Kottwitz verified A_n ; Casselman F_4 , E_6 ; similar methods E_7 ; Bonnafé and G. (hal-00698613, arXiv:1206.0443): B_n , D_n .]

Need to be able to identify left cells Γ of the elements in a class *C* (as above), and corresponding modules $[\Gamma]_1$. Let G(q) = finite Chevalley group with Weyl group W, over \mathbb{F}_q . For $w \in W$ let R_w be the virtual representation of G(q) defined by Deligne and Lusztig. Unipotent representations:

 $\mathcal{U} := \{ \rho \in \operatorname{Irr}_{\mathbb{C}}(G(q)) \mid (\rho : R_w) \neq 0 \text{ for some } w \in W \}.$

Theorem (Lusztig 2002). Assume $\rho \in \mathcal{U}$ is cuspidal.

Then the set $\{w \in W \mid (\rho : R_w) \neq 0 \text{ and } l(w) = \text{minimum possible}\}$ is contained in a single conjugacy class of W, denoted C_{ρ} .

In type E_8 there exists ρ such that C_{ρ} consists of 4480 elements, all of order 6, length 40. To ρ is naturally attached a two-sided cell \mathcal{F}_{ρ} . Observation: \mathcal{F}_{ρ} contains exactly 4480 left cells. Lusztig: "This suggests that $C_{\rho} \subseteq \mathcal{F}_{\rho}$ and that any left cell in \mathcal{F}_{ρ} contains a unique element of C_{ρ} ". – Now verified ! Need to be able to reconstruct left cells of $w \in C_{\rho}$ efficiently. Algorithmic challenge. (W, S) arbitrary, weights $\{p_s \mid s \in S\}$:

Given $w \in W$, find Γ such that $w \in \Gamma$, and $[\Gamma]_1 \cong \bigoplus_{E \in Irr(W)} m_E E$.

Ways to approach left cells of W:

- Original definitions: Kazhdan–Lusztig polynomials $P_{y,w}$ etc.
- Induction from parabolic subgroups.
 (Will see that Vogan's generalised τ-invariant fits into this, too.)
- **3** Lusztig's **a**-invariant and leading coefficients ("limit" $v \rightarrow 0$).

What kind of answer do we expect for type E_8 ?

- Output file containing complete list of elements of *W* plus information on partition into cells. (Requires at least 5.6 GB.)
- Better: Efficient algorithms (applicable to any finite *W*) for specific tasks and further functionality (conjugacy classes, character tables of *W*, ...).

The easiest-to-compute invariant of a left cell:

The function $w \mapsto \{s \in S \mid ws < w\}$ is constant on left cells.

Vogan's generalised τ -invariant is a far-reaching refinement of this. Vogan I: A generalized τ -invariant ..., Math. Ann. (1979). Vogan II: Ordering of the primitive spectrum ..., Math. Ann. (1980). Will now give an explanation in terms of the concept of induction of cells – which works for arbitrary (W, S) and weights $\{p_s \mid s \in S\}$. Consider parabolic subgroup $W_I \subseteq W$ where $I \subseteq S$. Let X_I be minimal left coset representatives \rightsquigarrow projection map pr₁: $W \rightarrow W_1$. **Theorem** (Barbasch–Vogan 1983 and G. 2003). Let $y, w \in W$. $\operatorname{pr}_{I}(y) \sim_{I,I} \operatorname{pr}_{I}(w)$ (inside W_{I}). \Rightarrow $y \sim_I w$

Meinolf Geck (IAZ - Universität Stuttgart)

Let $I \subseteq S$ and $\delta: W_I \to W_I$ be a bijection such that: **1** If Γ' is a left cell of W_{I} , then so is $\delta(\Gamma')$ and **2** the map $w \mapsto \delta(w)$ induces an isomorphism $[\Gamma'] \cong [\delta(\Gamma')]$. • The map $w \mapsto \delta(w)$ preserves the right cells in W_l . Extend δ to $\delta^* \colon W \to W$, $xu \mapsto x\delta(u)$ (for $x \in X_I$, $u \in W_I$). **Example:** Let $I = \{s, t\}$ where *st* has order 3; then $W_I \cong \mathfrak{S}_3$. Define $\begin{cases} \{1\} \quad \{s, ts\} \quad \{t, st\} \quad \{sts\} \\ \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\ \{1\} \quad \{st, t\} \quad \{ts, s\} \quad \{sts\} \end{cases}$ Then $\delta^* \colon W \to W$ is the *-operation of Vogan I/Kazhdan–Lusztig. Note $p := p_s = p_t$; action of C_s and C_t on left cell module [{s, ts}] given by and we obtain exactly the same matrices for the action on $[{st, t}]$. So, (2) ok. Let Δ be a collection of pairs (I, δ) satisfying the above conditions. **Definition** (modelled on Vogan I). Let $y, w \in W$. Define relation $y \approx_n w$ inductively for all $n \ge 0$: • $y \approx_0 w$ if $pr_I(y) \sim_{I,I} pr_I(w)$ for all $(I, \delta) \in \Delta$. • $y \approx_{n+1} w$ if $y \approx_n w$ and $\delta^*(y) \approx_n \delta^*(w)$ for all $(I, \delta) \in \Delta$. Then y, w have the same "generalised τ^{Δ} -invariant" if $y \approx_n w \forall n$. **Proposition** (G. 2014). Two elements in the same left cell have the

same generalised τ^{Δ} -invariant.

Let $\Delta = \text{all pairs } (I, \delta)$ where $I = \{s, t\}$ with *st* of order 3 and δ as defined above. $\rightsquigarrow \tau^{\Delta}$ is Vogan's generalised τ -invariant. Note: $p_s = p_t$ if o(st) = 3, but unequal weights on *S* now allowed!

Example: Let $I = \{s, t\}$ where *st* has order 4; then $|W_I| = 8$. $\{1\}$ {sts, ts, s} {tst, st, t} {stst} Then $\delta^* \colon W \to W$ is the map defined in Vogan II and also Lusztig (1985) ("method of strings"). • If $p_s < p_t$, define δ : $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ $\{1\} \{s\} \{ts, sts\} \{t, st\} \{tst\} \{stst\}$ This yields a new "unequal weight *-operation" $\delta^* : W \to W$! [Similar definitions possible for any $I = \{s, t\}$ where $o(st) \ge 3$.] **Conjecture/Question**: Let Δ = all pairs (1, δ) where |I| = 2 and δ as above. Then $y, w \in W$ are in the same left cell iff y, w are in the same two-sided cell and y, w have the same generalised τ^{Δ} -invariant. Specialisation $v \mapsto 1$ induces a bijection $Irr(W) \leftrightarrow Irr(\mathcal{H}), E \leftrightarrow E_v$. \mathcal{H} is a symmetric algebra \rightsquigarrow orthogonality relations for $Irr(\mathcal{H})$: $\sum_{w \in W} Trace(T_w, E_v)^2 = (\dim E) \mathbf{c}_E, \quad 0 \neq \mathbf{c}_E \in \mathbb{C}[v, v^{-1}].$ Write $\mathbf{c}_E = f_E v^{-2\mathbf{a}_E} + \text{ higher powers of } v$, where $f_E > 0$, $\mathbf{a}_E \ge 0$. \rightsquigarrow Two invariants f_E , \mathbf{a}_E of $E \in Irr(W)$, explicitly known in all cases. [Benson-Curtis, Iwahori, Tits' (1960/70); Lusztig (1979): Definition of f_E , \mathbf{a}_E .]

Proposition (G. 2002/2009).

 \exists basis of E_v such that $v^{\mathbf{a}_E} T_w \colon E_v \to E_v$ is represented by a matrix whose entries are rational functions in $\mathbb{C}(v)$ with no pole at v = 0.

 $c_{w,E}^{ij}$:= entry at (i,j) in matrix of $v^{a_E} T_w$ evaluated at v = 0. $c_{w,E} = \sum_i c_{w,E}^{ii}$ Lusztig's leading coefficient (1987). Use leading coefficients to define a "limit $v \to 0$ " algebra structure on $\tilde{\mathcal{J}} := \bigoplus_{w \in W} \mathbb{C}t_w$ which remembers information about cells.

For $x, y, z \in W$ set:

$$\tilde{\gamma}_{\mathsf{x}\mathsf{y}\mathsf{z}} := \sum_{E \in \mathsf{Irr}(W)} f_E^{-1} \sum_{i,j,k} c_{\mathsf{x},E}^{ij} c_{\mathsf{y},E}^{jk} c_{\mathsf{z},E}^{ki}.$$

Then $\tilde{\mathcal{J}}$ is an associative algebra (with 1) with product

$$t_x \cdot t_y = \sum_{z \in W} \tilde{\gamma}_{xyz} t_{z^{-1}}.$$

The algebra $\tilde{\mathcal{J}}$ is semisimple and $Irr(W) \leftrightarrow Irr(\tilde{\mathcal{J}}), E \leftrightarrow E_{\tilde{\mathcal{J}}}$. A matrix representation affording $E_{\tilde{\mathcal{J}}}$ is given by

$$ilde{
ho}_E \colon ilde{\mathcal{J}} o M_d(\mathbb{C}), \qquad t_w \mapsto \left(c_{w,E}^{ij}\right)_{1 \leqslant i,j \leqslant d} \qquad (d = \dim E)$$

In the equal weight case, $\tilde{\mathcal{J}}$ is Lusztig's asymptotic algebra. Some properties survive in the general weight case.

- \rightarrow The numbers $c_{w,E}^{ij}$ and $c_{w,E}$ have some remarkable properties.
- Γ left cell \Rightarrow multiplicity vector $(m_E)_{E \in Irr(W)}$ given by

$$\sum_{w\in\Gamma}c_{w,E}c_{w,E'} = \begin{cases} f_E m_E & \text{if } E \cong E', \\ 0 & \text{otherwise.} \end{cases}$$

[Lusztig 1984 + G. 2014.]

• Γ left cell $\Rightarrow \Gamma$ contains at least one element of $\mathcal{D} := \Big\{ w \in W \mid \sum_{E \in Irr(W)} f_E^{-1} c_{w,E} \neq 0 \Big\}.$

[G. 2009; Lusztig 1987: "exactly one" in equal weight case, ${\cal D}$ is the set of distunguished (or Duflo) involutions in this case.]

• Let $y, w \in W$. Then y, w belong to the same left cell if

 $t_y \cdot t_{w^{-1}} \neq 0 \quad \Leftrightarrow \quad \sum_k c_{y,E}^{ik} c_{w^{-1},E}^{kj} \neq 0 \quad \text{for some } E, i, j.$

[G. 2009; converse holds in equal weight case.]

$$W = W(E_8)$$
: $|c_{w,E}| \leq 8$ for all w, E (Lusztig 1987).

[Explicit computation of all $c_{w,E}$ takes about 3 weeks on a computer; uses known "character table" of $\mathcal{H} = \mathcal{H}(E_8)$, G.-Michel 1997.]

What about $c_{w,E}^{ij}$? Lusztig (1981) + G. (2002):

- $\exists \mathcal{H}$ -invariant, non-degenerate symmetric $\beta_E \colon E_v \times E_v \to \mathbb{C}(v)$.
- If ∃ basis of E_v such that corresponding Gram matrix Ω_E of β_E has entries in C[v] and det(Ω_E)|_{v=0} ≠ 0, then c^{ij}_{w,E} defined.
 Howlett (2003): Construction of W-graph representations for H(E₈).
 G.-Müller (2009): Computation of Gram matrices Ω_E and verification of above property.

Hence, we can explicitly determine $c_{w,E}^{ij}$ and check relation $y \sim_L w$. But: Can NOT do this for all 696,729,600 elements of W. Recall: Family Δ of pairs $(I, \delta) \rightsquigarrow$ right *-operations $\delta^* : W \to W$. ("Right" because $\delta^*(xu) = x\delta(u)$ for $x \in X_I$, $u \in W_I$.)

Right *-orbit of a left cell Γ :

 $\Gamma = \Gamma_0, \Gamma_1, \Gamma_2, \dots$ where $\Gamma_{n+1} = \delta_n^*(\Gamma_n)$ for some $(I_n, \delta_n) \in \Delta$. All $[\Gamma_n] \cong [\Gamma]$ have the same multiplicity vector $(m_E)_{E \in Irr(W)}$.

Similarly, right *-orbit of a single element $w \in W$:

$$w = w_0, w_1, w_2, \ldots$$
 where $w_{n+1} = \delta_n^*(w_n)$ for some $(I_n, \delta_n) \in \Delta$.

All w_n belong to the same right cell in W (Lusztig 2003).

Finally, the map $w \mapsto w^{-1}$ exchanges left and right cells.

If $R^*(w)$ is the right *-star orbit of $w \in W$, then the left *-star orbit $L^*(w) := \{y^{-1} \mid y \in R^*(w^{-1})\}$ is contained in a left cell of W.

Hence: Only need to store one left cell from each right *-orbit of left cells and, for each left cell Γ , only representatives of left *-orbits in Γ .

Proposition (G.–Halls 2014). $W = W(E_8)$.

- There are (only!) 106 right *-orbits of left cells of W and $[\Gamma]_1 \cong \bigoplus_E m_E E$ is explicitly known for these 106 cells.
- The union of the above 106 left cells consists of (only!) 678 left *-orbits (of which representatives are explicitly known).

So: Only need to store 678 elements (+ corresponding multiplicity vectors $(m_E)_{E \in Irr(W)}$). Complete partition of W into left cells is reconstructed by repeated application of left/right *-operations. Note: The 678 elements are difficult to compute, but once they are there, it is not so difficult to prove the above statements to be true.

Input: An element $w \in W$.

Output: The left cell Γ such that $w \in \Gamma$ and $[\Gamma]_1 \cong \bigoplus_F m_E E$.

Pre-processing: Apply left *-operations to produce the 106 left cells $\Gamma_1, \ldots, \Gamma_{106}$ out of the 678 representatives. (These contain 646,270 elements in total; the "unpacking" takes a couple of minutes.)

- Compute the right *-orbit of w. This orbit meets a unique Γ_i.
 [Then w and Γ_i belong to the same two-sided cell, hence obtain unique "special" E₀ ∈ Irr(W) from multiplicity vector of [Γ_i]₁.]
- Apply the right *-operations backwards to this Γ_i to obtain the full left cell Γ such that w ∈ Γ. Then [Γ]₁ ≅ [Γ_i]₁.

Implemented and freely available in PyCox (written in Python)

(see LMS J. of Comput. and Math. 15, 2012, and G.–Halls, arXiv:1401.6804).

The most difficult theoretical result involved in the algorithm:

There are 46 two-sided cells in $W(E_8)$.

(Lusztig's implication: $x \sim_{LR} y$ and $x \leq_L y \Rightarrow x \sim_L y$.)

Relies on positivity $(-1)^{l(x)+l(y)+l(z)}h_{xyz} \in \mathbb{N}_0[v, v^{-1}].$

[Now purely algebraic proof due to Elias-Williamson (2012).]

Would like " $x \sim_{LR} y$ and $x \leq_L y \Rightarrow x \sim_L y$ " in unequal weight case.

The most difficult computation involved:

Needed Gram matrices Ω_E for Howlett's *W*-graph representations. Could then deduce that matrix of each $v^{\mathbf{a}_E} T_w \colon E_v \to E_v$ has entries given by rational functions in $\mathbb{C}(v)$ with no pole at v = 0. (Note: Subsequently, matrices Ω_E are not required any more !)

Is there a theoretical argument to make this deduction ?