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0. Representations as geometric objects

In my talk I would like to introduce a new approach to (or rather a
new language for) Representation Theory of groups.
Namely I propose to consider representation of a group as a sheaf
on some geometric object.

This point of view implies that in case of an algebraic group G
over a local or finite field the standard definition of a
representation of the group G is in some sense ”incorrect”.

I would like to convince you that the category Rep(G ) of
representations of G should be replaced by some larger category
M(G ).
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1. What is a representation of an algebraic group ?

Standard approach.

F - p-adic field

G algebraic group over F

G = G(F ) topological group

Rep(G ) – appropriate category of representations of G

One of main goals of this lecture is to explain that

This approach is ideologically inconsistent.

First let me describe a striking example that illustrates this point.
It is based on the following ”Geometric Ansatz”.
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2. Geometric Ansatz

Let a : G × Z → Z be a transitive action of an algebraic group on
an algebraic variety.

Passing to F -points we get a continuous action a : G × Z → Z .

This action is usually not transitive and we can write Z as a union
of open orbits Z =

⊔
Zi , i = 1, ..., n.

Ansatz
1 The space Z is ”good”, i.e. it is easy to describe

2. Every individual orbit Zi is ”bad” space, that means that it is
difficult to describe.
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3. Equivariant sheaves.

Consider a continuous action a : G × Z → Z . Central role in my
approach plays the category ShG (Z ) of G -equivariant sheaves (of
complex vector spaces) on Z .

Recall, that equivariant sheaf is a sheaf F on Z equipped with an
isomorphism α : a∗(F )→ pr∗Z (F ) with some conditions.

Fact 1. The category SHG (pt) is equivalent to the category
Rep(G ) of smooth representations of G .

Fact 2. Suppose that the action of G on Z is transitive. Fix a
point z ∈ Z and denote by H its stabilizer in G . Then
ShG (Z ) ≈ ShH(z) ≈ Rep(H).
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4. An example - representations of orthogonal
groups.

V - n-dimensional space over F .

Group G = GL(V ) acts on the space Z of non-degenerate
quadratic forms.

Fix a form Q ∈ Z , denote by H be the corresponding orthogonal
group O(Q) and by Z0 the G -orbit of Q in Z . Then we have

Rep(H) ≈ ShG (Z0) ⊂ ShG (Z ),

We see that according to the geometric Ansatz the category
Rep(H) ≈ ShG (Z0) is a bad category.

However this category can be naturally extended to a”good”
category M := ShG (Z ) of G -equivariant sheaves on Z
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5. Representations and sheaves on Stacks.

This example suggests that in general we should extend the
category Rep(G ) to some larger and more natural category M(G ).

This agrees with observation by several mathematicians (e.g by D.
Vogan) that when we classify irreducible representations it is better
to work with the union of sets Irr(Gi ) for several forms of the
group G than with one set Irr(G ).

In order to describe this category M(G ) I propose to consider
representations as sheaves on stacks. Let me discuss the notion of
stack.
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6. Stacks.

Informally stack is a ”space” X such that every point x ∈ X is
endowed with a group Gx of automorphisms of inner degrees of
freedom at this point.

We see that in order to consider stacks we should first fix a
Geometric Environment, i.e. a category S of spaces on which we
model our stacks. In fact S should be considered with some
Grothendieck topology (standard term for such category S is
”site”).

Usually one works with the following sites:

(i) Category of schemes over a field F
(ii) Category of smooth manifolds
(iii) Category of topological spaces (e.g. totally discontinuous)
(iv) Category Sets of sets.
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7. Groupoids – stacks in category Sets.

Stacks in the category S = Sets are just groupoids. By definition
groupoid is a category in which all morphisms are isomorphisms.

To every discrete group G we assign the basic groupoid
BG = pt/G as follows:

An object of the category BG is a G -torsor T and morphisms in
this category are morphisms of G -sets.

More generally, given an action of the group G on a set Z we
define the action groupoid BG (Z ) = Z/G as follows:

Object of BG (Z ) is a G -torsor T equipped with a G -morphism
ν : T → Z . Morphisms are morphisms of G -sets over Z .
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8. Representations as sheaves on groupoids.

Now consider an arbitrary groupoid X . It is natural to think about
X as a geometric object (some kind of a space).

We define a sheaf R (of vector spaces) on a groupoid X to be a
functor R : X → Vect.

We denote by Sh(X ) the category of sheaves on X .

Claim. (i) Category Sh(BG ) is naturally equivalent to the
category Rep(G ).

(ii) Category Sh(BG (Z )) is naturally equivalent to the category
ShG (Z ) of G -equivariant sheaves on Z .

This gives us a ”geometric” description of categories Rep(G ) and
ShG (Z ) as sheaves.
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9. Topological groupoids.

If G is a totally discontinuous topological group one can consider
the basic groupoid as a topological groupoid. One can then define
sheaves on a topological groupoid X taking this topology into
account.
In this case the category Sh(BG ) is equivalent to the category of
smooth representations of the group G .
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10. Algebraic groups and stacks.

Let G be an algebraic group defined over a field F .

By analogy with the discrete case one can define the basic stack
BG = pt/G. This will be an algebraic stack modeled on the
category S of schemes over F (more details later).

For any algebraic stack X over F its F -points X (F ) form a
groupoid. We define an F -sheaf on the stack X to be a sheaf on
the groupoid X (F ).

Main object that I propose to study is the category M =M(G,F )
of F -sheaves on the algebraic stack BG.
This category M should be considered as a ”correct” category of
representations of the algebraic group G . I call the objects of this
category stacky G -modules.
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11. Central subtle point.

Now we have two competing definitions of a representation of an
algebraic group G .

1. A sheaf on the basic groupoid BG of the group G = G(F ).

2. A sheaf on the groupoid BG(F ) of F -points of the basic stack
BG.

We have a natural imbedding BG ↪→ (BG)(F ) but it is not always
an equivalence of categories. So the category M(G,F ) might be
different from the category Rep(G ) = Sh(BG ).

Usually people use definition 1. However in my opinion the
definition 2 is much more appropriate.

In a sense my lecture is finished. Let me add several comments
and technical remarks about groupoids and stacks.
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12. Equivalence of groupoids

We know that if two objects of some category are isomorphic then
we can consider them as two realizations of the same geometric
structure.
Similarly, if two groupoids X and Y are equivalent (as categories)
we can assume that they represent two realizations of the same
geometric structure.
A subtle point here is that the equivalences between these
groupoids form a groupoid. This means that if we fix an
equivalence Q : X → Y then this equivalence itself has
automorphisms, and it is not clear how we should think about
them.
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13. Matrix models of basic and quotient groupoids.

Example. Consider an action a : G × Z → Z .

Let us define a groupoid BG0(Z ) as follows:
Objects of BG0(Z ) are points z ∈ Z and morphisms are defined by
Mor(z , z ′) := {g ∈ G |gz = z ′}.
We also denote the groupoid BG0(pt) by BG0.

Claim. The groupoid BG0(Z ) is canonically equivalent to the
groupoid BG (Z ).

The groupoid BG0(Z ) might be considered as a ”matrix” version
of the groupoid BG (Z ). It is better suited for computations.
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14. Theory of groups and theory of groupoids.

I would like to explain that the theories describing groups and
groupoids are essentially equivalent.

Proposition. 1. Every groupoid X is canonically decomposed as a
disjoint union of connected groupoids.

2. A connected groupoid Y is equivalent to the basic groupoid of
some group G .

Thus we see that any question about groupoids can be reduced to
the case of connected groupoids. Then this case can be reduced to
a question in group theory.

In my opinion the relation between theory of groupoids and group
theory is very similar to the relation between linear algebra and
matrix calculus.
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15. Equivalence between groups and connected
groupoids.

Note that the group G and the equivalence of groupoids in part 2
of the proposition is not canonical. It depends on a choice of an
object Y ∈ Y.

If we choose an object Y then we get a canonical equivalence of
categories Q = QY : Y → BG , where G := Aut(Y ). If we pick
another object Y ′ we get a different equivalence Q ′ : Y → BG ′.

Note that any choice of an isomorphism between Y and Y ′ defines
natural isomorphisms G w G ′ and Q w Q ′. However there is no
natural choice for such an isomorphism.

Next three constructions show that usually in Mathematics we
encounter groupoids and not groups.
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16. Multiplicative groupoid of a category.

Construction I. Starting with any category C we construct the
multiplicative groupoid C ∗ = Iso(C ) that has the same collection
of objects as category C and isomorphisms of C as morphisms.

Example 1. C = Finsets – the category of finite sets.

In this case the groupoid Iso(C ) is essentially the collection of all
symmetric groups Sn.

Example 2. C = Vectk – the category of finite dimensional vector
spaces over a field k.

In this case the groupoid Iso(C ) describes the collection of groups
GL(n, k) for all n.
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17. Poincare groupoid.

Construction II. Poincare groupoid of a topological space X .

Objects of Poin(X ) are points of X . Morphisms – homotopy
classes of paths.

If the space X is path connected then the groupoid Poin(X ) is
connected. For any point x ∈ X the group AutPoin(X )(x) is the
fundamental group π1(X , x).

This shows that the Poincare groupoid is more basic notion than
the fundamental group.
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18. Galois groupoid.

Construction III. Galois groupoid Gal(F ) of a field F .

Objects of the groupoid Gal(F ) are field extensions F → Ω such
that Ω is an algebraic closure of F . Morphisms are morphisms of
field extensions.

The groupoid Gal(F ) is connected. If we fix an algebraic closure Ω
then by definition the group AutGal(F )(Ω) is the Galois group
Gal(Ω/F ).

Again we see that the notion of Galois groupoid is more basic than
the notion of Galois group.
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19. What is a stack ?

Let us fix some site S. I would like to describe the notion of a
stack X modeled on S. I assume two features of this notion.

1. For every two stacks X ,Y the collection of morphisms from X
to Y form a groupoid Mor(X ,Y).

2. Every object S ∈ S is a stack.

The natural idea is to characterize a stack X by collection of
groupoids X (S) := Mor(S ,X ) for all objects S ∈ S.

In fact usually it is enough to know the groupoids X (S) for objects
S in some subcategory B ⊂ S provided it is large enough. For
example, if S is the category of schemes we can restrict everything
to the subcategory B of affine schemes.
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20. Technical definition of a stack.

Fix a large subcategory B ⊂ S. We define a stack X over the site
S to be the following collection of data:

(i) To every object S ∈ B we assign a groupoid X (S)

(ii) To every morphism ν : S → S ′ in B we assign a functor
X (S ′)→ X (S)

(iii) To every composition of morphisms in B we assign an
isomorphism of appropriate functors.

This data should satisfy a variety of compatibility conditions and
some finiteness conditions. For details see for example a note by
Barbara Fantechi ”Stacks for everybody”.
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21. Basic stack and quotient stack.

Here are some examples of stacks over the category S of schemes
over the field F . Fix an algebraic group G ∈ S.

Example 1. Basic stack BG.

For an affine F -scheme S an object of the groupoid BG(S) is a
principal G -bundle P over S .

Example 2. Quotient stack BG(Z)

Let G act on a scheme Z ∈ S. We define the quotient stack
X = BG(Z) = Z/G as follows:

Object of X (S) is a principal G-bundle P over S equipped with a
G-morphism ν : P → Z. Morphisms are morphisms of G-bundles
over Z.
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22. F -sheaves on an algebraic stacks.

Let F be a local non-Archimedean field (or finite field).

I will describe a technical definition of an F -sheaf on an algebraic
stack X that corresponds to the intuitive notion of a sheaf on
F -points of X .

For any F -scheme Z we consider the topological space Z = Z(F )
and define an F -sheaf R on Z to be a sheaf on Z . The category of
these sheaves we denote by ShF (Z). Any morphism ν : Z → W
defines a functor ν∗ : ShF (W)→ ShF (Z)

Question. How to extend these categories to stacks ? How to
define the category ShF (X ) ?
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23. Technical definition of F -sheaves on stacks.

Suppose we have some notion of F -sheaves on stacks.

Fix an F -sheaf R on a stack X . Then for any affine scheme S and
any point p ∈ X (S) = Mor(S ,X ) we get an F -sheaf Rp = p∗(F )
on S . We also get a family of isomorphisms connecting these
sheaves. Now we want to use these sheaves and isomorphisms to
characterize the F -sheaf R.

Definition. An F -sheaf R on the stack X is a collection of
F -sheaves Rp for all morphisms p : S → X and a collection of
isomorphisms satisfying correct compatibility relations.

It is not difficult to check that this definition is compatible with
informal definitions discussed before.
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24. How to describe F -sheaves on an algebraic
stack.

Let X be a stack over F . I would like to give a convenient
descriptions of F -sheaves on the stack X in terms of equivariant
sheaves. I will do this for the case of a quotient stack X ≈ Z/G.

Construction I. Let T1, ...Ti be representatives of isomorphisms
classes of G-torsors. They are described by elements in
H1(Gal(F ),G ).

For every i set Gi = Aut(Ti ) – this is the collection of all pure
inner forms of the group G . Consider also the topological Gi -space
Zi = Mor(Ti ,Z).

Claim. Category ShF (X ) of F -sheaves on X is equivalent to the
product of categories

∏
ShGi

(Zi )
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25. Vogan’s picture.

In particular we see that the collection of simple objects of the
category ShF (X ) is a disjoint union of collections of simple
Gi -equivariant sheaves on Zi .

In case when Z = pt we see that Irr(M(G,F )) =
∐

Irr(Gi ).

If we postulate that the category M(G,F ) is the ”correct”
category describing representations of the algebraic group G then
this bijection would explain the Vogan’s picture.
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26. Reduction to the case of group GL.

Let me present another description that is often convenient in
computations.

Construction II. Suppose that G is a linear algebraic group. Then
we can imbed it into a group P isomorphic to GL(n).

Using this we can realize our quotient stack X = Z/G as the
quotient W/P, where W = P ×G Z.

Since the group P has only one pure inner form we see that the
category ShF (X ) can be realized as the category ShP(W ) of
P-equivariant sheaves on W , where P = P(F ) and W =W(F ).
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