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Abstract

The evolution of form and shape can be described by differential equations. Many of these
equations originate in various branches of science and engineering. They are fundamental
and in a sense canonical. The fact that they make sense geometrically means that they are
relevant everywhere and have fundamental properties that appear over and over in many
settings. Understanding them requires simultaneous insight into analysis and geometry and
the interplay between these.
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1. Introduction

The evolution of form and shape can be described by differential equations. These
equations are classical, and those we will consider are variants of the heat equation that gov-
erns how heat distributes over time. The questions and equations, many of which originate
in various branches of science and engineering, are fundamental and in a sense canonical,
and as a consequence come up in many areas. The Laplace equation, for example, is the
canonical linear second order partial differential equation once we have a metric structure.
The Laplace operator appears classically in the physics of gravity, electricity and magnetism,
fluid mechanics, and quantum mechanics, it has played a central role in many areas of math-
ematics, and its study in increasing generality played a central role in the development of the
theory of PDEs. The fact that the equations make sense geometrically means that they are
relevant everywhere in physical settings, and they have certain fundamental properties that
appear over and over. Understanding them requires simultaneous insight into analysis and
geometry, and the interplay between these. The new ideas and techniques to deal with these
questions apply to many different situations. Recent years have seen dramatic progress on
many of these questions thanks to the combined efforts of many people with different points
of views and techniques. The goal here is to give a flavor of some of these results.

The first equation we will consider is mean curvature flow of hypersurfaces. Surface
tension is the tendency of fluid surfaces to shrink into the smallest surface area possible.
Mathematically, the force of surface tension is described by the mean curvature. In equilib-
rium the mean curvature is zero and one gets minimal surfaces. Minimal surfaces date back to
Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques
developed have played key roles in geometry and partial differential equations. Examples
include monotonicity and tangent cone analysis originating in the regularity theory for min-
imal surfaces, estimates for nonlinear equations based on the maximum principle arising in
Bernstein’s classical work, and even Lebesgue’s definition of the integral that he developed
in his thesis on the Plateau problem for minimal surfaces.

Under mean curvature flow, the surface moves to decrease surface area as fast as pos-
sible. If we think of the hypersurface as the level set of a function and insist that all level sets
move by mean curvature flow, then this gives rise to a nonlinear degenerate parabolic PDE
on a Euclidean space. This is the level set formulation of the equation. The level set method
has been intensively studied in many pure and applied fields over the last 35 years. One of
the first questions that comes up is the regularity of solutions. The equation is degenerate
and a priori solutions are only defined weakly. We will see that the regularity of solutions
is equivalent to a question that has been widely studied in geometry over the last 40 years,
namely, the question of uniqueness of blowups. This is very much in the spirit of the simple
fact that a function is differentiable at a point if, at all sufficiently small scales, it not only
looks like a linear function but the same linear function independent of scale.

As growth of solutions to PDEs plays an important role in many different areas, we
will discuss the growth of some classical and basic equations on manifolds. These include
harmonic and caloric functions. That is, functions that are either solutions to the Laplace
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equation or the heat equation. We will also discuss more general eigenfunctions of drift
equations. Drift Laplacians are ubiquitous in many areas, including quantum field theory,
stochastic PDE, and anywhere the heat equation or Gaussian appears, such as functional
inequalities, parabolic PDEs, geometric flows, and probability. The drift term arises in two
different ways. One is whenever there is a natural scaling or, more generally, a gradient flow.
A second way it arises is when there is a natural measure, in which case the drift operator
is the canonical self-adjoint second order operator. There is a long history of studying the
growth of solutions to differential equations, inequalities, and systems. These new growth
estimates have direct application to longstanding open questions.

Analysis of noncompact manifolds almost always requires some controlled behav-
ior at infinity. Without such, one can neither show nor expect strong properties. On the other
hand, such assumptions restrict the possible applications and often too severely. In a wide
range of areas, noncompact spaces come with a Gaussian weight and a drift Laplacian.
Eigenfunctions are L2 in the weighted space allowing for extremely rapid growth. Rapid
growth would be disastrous for many applications. Surprisingly, for very general tensors,
manifolds, and weights, we will show the same polynomial growth bounds that Laplace and
Hermite observed for functions on a Euclidean space for the standard Gaussian. This covers
all shrinkers for Ricci and mean curvature flows.

These new growth estimates for the PDEs open a door to study delicate analyti-
cal questions on a wide class of non-compact manifolds without assuming any asymptotic
decay at infinity. They provide an analytic framework for investigating nonlinear PDE on
Gaussian spaces where previously the Gaussian weight allowed wild growth that made it
impossible to approximate nonlinear by linear. They are key to bound the growth of dif-
feomorphisms of noncompact manifolds and to solving the “gauge problem.” Many key
problems are defined intrinsically without a canonical coordinate system. In those prob-
lems, the infinite-dimensional diffeomorphism group (gauge group) becomes a major issue
and dealing with it a major obstacle. Ricci flow is such an example. There are many problems
where this degeneracy under diffeomorphisms plays a central role, but most techniques rely
on compactness or rapid decay which we do not have in the situations we consider.

Another common feature for all of these problems is that they are dynamical and can
be thought of as infinite-dimensional dynamical systems. Classical results from dynamics
do not apply directly, but they do give some guiding principles, [85,88,92]. In mathematics,
structural stability is a fundamental property of a dynamical system, which means that the
qualitative behavior of the trajectories is unaffected by small perturbations. Given a smooth
function f on a finite-dimensional space, the gradient rf points in the direction of the
steepest ascent. The critical points of f are the points where rf vanishes. If p is a local
minimum of f , then the second derivative test tells us that the Hessian matrix of f at p is
nonnegative. More generally, the number of negative eigenvalues of the Hessian is called the
index of the critical point. A fundamental method to find the minimum of f is the method of
gradient descent. Here, we make an initial guess p0 and then iteratively move in the negative
gradient direction, the direction of the steepest descent, by setting piC1 D pi � rf .pi /.
The function f .x.t// decreases as efficiently as possible as x.t/ heads towards the minimum.
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The dynamics near a nondegenerate critical point are determined by the index. If the index is
zero, then the critical point is attracting and the entire neighborhood flows towards the critical
point. However, when the index is positive, a generic point will flow out of the neighborhood,
missing the critical point. In the final part we will discuss stable structures in geometry.

Part 1. Optimal regularity of PDEs. In mean curvature flow, the velocity vector field is
the mean curvature vector and the evolving front is the level set of a function that satisfies
a nonlinear degenerate parabolic equation. Solutions are defined in a weak, so-called “vis-
cosity” sense; in general, they may not even be differentiable (let alone twice differentiable).
However, it turns out that for a monotonically advancing front viscosity solutions are in fact
twice differentiable and satisfy the equation in the classical sense. Moreover, the situation
becomes very rigid when the second derivative is continuous.

Suppose † � RnC1 is an embedded hypersurface and n is the unit normal of †.
The mean curvature is given by H D div†.n/. Here

div†.n/ D

nX
iD1

hrei
n; ei i;

where ei is an orthonormal basis for the tangent space of †. For example, at a point where
n points in the xnC1 direction and the principal directions are in the other axis directions,

div†.n/ D

nX
iD1

@ni

@xi

is the sum (n times the mean) of the principal curvatures. If † D u�1.s/ is the level set of a
function u on RnC1 and s is a regular value, then n D

ru
jruj

and

H D

nX
iD1

hrei
n; ei i D divRnC1

�
ru

jruj

�
:

The last equality used that hrnn; ni is automatically 0 because n is a unit vector.
A one-parameter family of smooth hypersurfaces Mt � RnC1 flows by the mean

curvature flow if the speed is equal to the mean curvature and points inward:

xt D �Hn;

where H and n are the mean curvature and unit normal of Mt at the point x. Our flows will
always start at a smooth embedded connected hypersurface, even if it becomes disconnected
and nonsmooth at later times. The earliest reference to the mean curvature flow we know
of is in the work of Birkhoff from the 1910s, where he used a discrete version of this, and
independently in the material science literature of the 1920s.

Two key properties.

• H is the gradient of area, so the mean curvature flow is the negative gradient flow
for volume (Vol Mt decreases most efficiently).

• (Avoidance property) If M0 and N0 are disjoint, then Mt and Nt remain disjoint.
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The avoidance principle is simply a geometric formulation of the maximum prin-
ciple. An application of it shows that if one closed hypersurface encloses another, then the
outer one can never catch up with the inner. The reason for this is that if it did there would
be a first point of contact, and right before that the inner one would contract faster than the
outer, contradicting that the outer was catching up.

Curve shortening flow. When n D 1 and the hypersurface is a curve, the flow is the curve
shortening flow. Under the curve shortening flow, a round circle shrinks through round circles
to a point in finite time. A remarkable result of Grayson [103] from 1987 (using earlier work
of Gage and Hamilton [100]) shows that any simple closed curve in the plane remains smooth
under the flow until it disappears in finite time in a point. Right before it disappears, the curve
will be an almost round circle.

Level set flow. The analytical formulation of the flow is the level set equation that can be
deduced as follows. Given a closed embedded hypersurface † � RnC1, choose a function
v0 W RnC1 ! R that is zero on †, positive inside the domain bounded by †, and negative
outside. (Alternatively, choose a function that is negative inside and positive outside.)

• If we simultaneously flow ¹v0 D s1º and ¹v0 D s2º for s1 ¤ s2, then avoidance
implies they stay disjoint.

• In the level set flow, we look for v W RnC1 � Œ0; 1/ ! R so that each level set
t ! ¹v.�; t / D sº flows by mean curvature and v.�; 0/ D v0.

• If rv ¤ 0 and the level sets of v flow by mean curvature, then

vt D jrvj div
�

rv

jrvj

�
:

This is degenerate parabolic and undefined when rv D 0. It may not have classical solutions.
In a paper from 1988, Osher and Sethian [159] studied this equation numerically.

The analytical foundation was provided by Evans and Spruck [98] in a series of four papers
in the early 1990s and, independently and at the same time, by Chen, Giga, and Goto [41]; see
also [5]. Both of these two groups constructed (continuous) viscosity solutions and showed
uniqueness. The notion of viscosity solutions had been developed by Lions and Crandall in
the early 1980s. The work of these two groups on the level set flow was one of the significant
applications of this theory.

Examples of singularities. Under mean curvature flow, a round sphere remains round but
shrinks and eventually becomes extinct in a point. A round cylinder remains round and even-
tually becomes extinct in a line. The marriage ring is the example of a thin torus of revolution
in R3. Under the flow, the marriage ring shrinks to a circle then disappears.

Dumbbell. If the neck is sufficiently thin, then under the evolution the neck of a rotationally
symmetric mean convex dumbbell in R3 pinches off first and the surface disconnects into
two components. Later each component (bell) shrinks to a round point. This example falls
into a larger category of surfaces that are rotationally symmetric around an axis. Because
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of the symmetry, then the solution reduces to a one-dimensional heat equation. This was
analyzed already in the early 1990s by Angenent, Altschuler, and Giga [4]; cf. also the work of
Soner and Souganidis from around the same time. A key tool in the arguments of Angenent–
Altschuler–Giga was a parabolic Sturm–Liouville theorem of Angenent that holds in one
spatial dimension.

Singular set. Under mean curvature flow, closed hypersurfaces contract, develop singulari-
ties, and eventually become extinct. The singular set � is the set of points in space and time
where the flow is not smooth.

In the first three examples—the sphere, cylinder, and marriage ring—� is a point,
line, and closed curve, respectively. In each case, the singularities occur only at a single time.
In contrast, the dumbbell has two singular times with one singular point at the first time and
two at the second.

Mean convex flows. A hypersurface is convex if every principal curvature is positive. It is
mean convex if H > 0, i.e., if the sum of the principal curvatures is positive at every point.
Under the mean curvature flow, a mean convex hypersurface moves inward and, since mean
convexity is preserved, it will continue to move inward and eventually sweep out the entire
compact domain bounded by the initial hypersurface.

Monotone movement can be modeled particularly efficiently numerically by the Fast
Marching Method of Sethian.

Level set flow for mean convex hypersurfaces. When the hypersurfaces are mean convex,
the equation can be rewritten as a degenerate elliptic equation for a function u defined by

u.x/ D ¹t j x 2 Mt º:

We say that u is the arrival time since it is the time the hypersurfaces Mt arrive at x as the
front sweeps through the compact domain bounded by the initial hypersurface. Kohn and
Serfaty [131] provided a game theoretic interpretation of the arrival time. It follows easily
that if we set v.x; t/ D u.x/ � t , then v satisfies the level set flow. Now the level set equation
vt D jrvj div.rv=jrvj/ becomes

�1 D jruj div
�

ru

jruj

�
:

This is a degenerate elliptic equation that is undefined when ru D 0. Note that if u sat-
isfies this equation, then so does u plus a constant. This just corresponds to shifting the
time when the flow arrives by a constant. A particular example of a solution to this equa-
tion is the function u D �

1
2
.x2

1 C x2
2/, that is, the arrival time for shrinking round cylinders

in R3. In general, Evans–Spruck (cf. Chen–Giga–Goto) constructed Lipschitz solutions to
this equation.

Singular set of mean convex level set flow. The singular set of the flow is the critical set
of u. Namely, .x; u.x// is singular if and only if rxu D 0. For instance, in the example of
the shrinking round cylinders in R3, the arrival time is given by u D �

1
2
.x2

1 C x2
2/ and the

flow is singular in the line x1 D x2 D 0; that is, exactly where ru D 0.

7 Evolution of form and shape



We will next see that even though the arrival time was only a solution to the level set
equation in a weak sense, it always turns out to be a twice differentiable classical solution.

Differentiability [79,80].

• u is twice differentiable everywhere, with bounded second derivatives, and smooth
away from the critical set.

• u satisfies the equation everywhere in the classical sense.

• At each critical point, the Hessian is symmetric and has only two eigenvalues 0

and �
1
k

; �
1
k

has multiplicity k C 1.

This result is equivalent to saying that at a critical point, say x D 0 and u.x/ D 0,
the function u is (after possibly a rotation of RnC1) up to higher order terms equal to the
quadratic polynomial

�
1

k

�
x2

1 C � � � C x2
kC1

�
:

This second-order approximation is simply the arrival time of the shrinking round cylinders.
It suggests that the level sets of u right before the critical value and near the origin should be
approximately cylinders (with an .n � k/-dimensional axis). This has indeed been known for
a long time and is due to Huisken [114–116], White [182–184], Huisken–Sinestrari [117, 118],
Andrews [8], and Haslhofer–Kleiner [109]. It also suggests that those cylinders should be
nearly the same (after rescaling to unit size). That is, the axis of the cylinders should not
depend on the value of the level set. This last property, however, was only very recently
established in [78] (cf. [90]) and is the key to proving that the function is twice differentiable.1

The proof that the axis is unique, independent on the level set, relies on a key new inequality
that draws its inspiration from real algebraic geometry although the proof is entirely new.
This kind of uniqueness is a famously difficult problem in geometric analysis and no general
case had previously been known.

Regularity of solutions. We have seen that the arrival time is always twice differentiable,
and one may wonder whether there is even more regularity. Huisken [116] showed already in
1990 that the arrival time is C 2 for convex M0. However, in 1992 Ilmanen gave an example
of a rotationally symmetric mean convex M0 in R3 where u is not C 2. This result of Ilmanen
[120] shows that the above theorem about differentiability cannot be improved to C 2. We will
see later that in fact one can entirely characterize when the arrival time is C 2. In the plane,
Kohn and Serfaty [131] showed that u is C 3, and for n > 1 Sesum [168] gave an example of
a convex M0 where u is not C 3. Thus Huisken’s result is optimal for n > 1.

The next result shows that one can entirely characterize when the arrival time is C 2.

Continuous differentiability [82]. u is C 2 if and only if:

1 Uniqueness of the axis is parallel to the fact that a function is differentiable at a point pre-
cisely if on all sufficiently small scales at that point it looks like the same linear function.
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• There is exactly one singular time (where the flow becomes extinct).

• The singular set � is a k-dimensional, closed, connected, embedded, C 1 subman-
ifold of cylindrical singularities.

Moreover, the axis of each cylinder is the tangent plane to � .
When u is C 2 in R3, the singular set � is either:

(1) A single point with a spherical singularity, or

(2) A simple closed C 1 curve of cylindrical singularities.

The examples of the sphere and marriage ring show that each of these phenomena
can happen, whereas the example of the dumbbell does not fall into either, showing that in
that case the arrival time is not C 2.

We can restate this result for R3 in terms of the structure of the critical set and
Hessian: u is C 2 if and only if u has exactly one critical value and the critical set is either:

(1) A single point where Hessu is �
1
2

times the identity, or

(2) A simple closed C 1 curve where Hessu has eigenvalues 0 and �1 with multi-
plicities 1 and 2, respectively.

In case (2), the kernel of Hessu is tangent to the curve, in fact, more is true, see [84].

2. Uniqueness of blowups in geometry

We saw that the key for optimal regularity for the level set equation was to show that
the second-order approximation to a solution is independent of scale. The level sets of the
second-order approximation are cylinders, and the key was that the axis of the cylinders was
independent of scales.

This, independence of scale, is part of a larger question about uniqueness of blowups
that has been widely studied whenever singularities occur. Indeed, once singularities occur,
one naturally wonders what the singularities are like. A standard technique for analyzing sin-
gularities is to magnify around them. Unfortunately, singularities in many of the interesting
problems in geometric PDEs looked at under a microscope will resemble one blowup, but
under higher magnification, it might (as far as anyone knows) resemble a completely dif-
ferent blowup. Whether this ever happens is perhaps the most fundamental question about
singularities; see, e.g., [171] and [108]. By general principles, the set of blowups is connected
and, thus, the difficulty for uniqueness is when the blowups are not isolated in the space of
blowups.

One of the first major results on uniqueness was by Allard–Almgren in 1981 [3],
where uniqueness of tangent cones with smooth cross-section for minimal varieties is proven
under an additional integrability assumption on the cross-section. The integrability condition
applies in a number of important cases, but it is difficult to check and is not satisfied in many
other important cases.
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The next breakthrough on uniqueness was inspired by some old results in real alge-
braic geometry. Perhaps surprisingly, blowups for a number of important geometric PDEs
can essentially be reformulated as infinite-dimensional gradient flows of analytic function-
als. Thus, the uniqueness question would follow from an infinite-dimensional version of
Lojasiewicz’s theorem for gradient flows of analytic functionals. In real algebraic geome-
try, Lojasiewicz’s theorem asserts that any integral curve of the gradient flow of an analytic
function that has an accumulation point has a unique limit. Lojasiewicz proved this result
in the early 1960s as a consequence of his gradient inequality. Infinite-dimensional ver-
sions of Lojasiewicz’s theorem and the underlying Lojasiewicz inequalities were proven in
a celebrated work of Simon [170] for the area, energy, and related functionals, and used, in
particular, to prove a fundamental result about uniqueness of tangent cones with smooth
cross-section of minimal surfaces. This holds, for instance, at all singular points of an area-
minimizing hypersurface in R8. It also holds for singularities with smooth compact tangent
flows for mean curvature flow by Schulze [174].

These method are very powerful and have had a major impact, but they do not apply
when the blowups are noncompact. Indeed, in the most important examples, for essentially
all of the natural flows the most common singularities are products with nontrivial Euclidean
factors and thus are noncompact.

We will say that a singular point is cylindrical if at least one tangent flow is a
multiplicity-one cylinder Sk � Rn�k . We will later see that these are the most common and
most important singularities. In [78] we showed that at each cylindrical singular point of a
mean curvature flow the blowup is unique, that is, it does not depend on the sequence of
rescalings.

Theorem 2.1. Let Mt be an MCF in RnC1. At each cylindrical singular point, the tangent
flow is unique. That is, any other tangent flow is also a cylinder with the same Rk factor that
points in the same direction.

This settled a major open problem that was open even in the case of mean convex
hypersurfaces where it was known that all singularities are cylindrical. Moreover, this was
the first general uniqueness theorem for blowups to a geometric PDE at a noncompact sin-
gularity.

To prove our uniqueness result, we established two completely new infinite-dimen-
sional Lojasiewicz-type inequalities. Infinite-dimensional Lojasiewicz inequalities were
pioneered 30 years ago by Simon [170]. However, unlike all other infinite-dimensional
Lojasiewicz inequalities we know of, ours do not follow from a reduction to the classi-
cal finite-dimensional Lojasiewicz inequalities from the 1960s from algebraic geometry,
rather we prove our inequalities directly and do not rely on Lojasiewicz’s arguments or
results.

This is only a brief introduction to a very central and active area, see [37,39,47,52,

74,76,78,95,101,112,154,155,174].
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3. Regularity of singular set

A major theme in PDEs over the last 50 years has been understanding singularities
and the set where singularities occur. In the presence of a scale-invariant monotone quantity,
blowup arguments can often be used to bound the dimension of the singular set; see, e.g., [3].
Unfortunately, these dimension bounds say little about the structure of the set. The key to get
more structure is uniqueness of blowups. Uniqueness of tangents has important applications
to regularity of the singular set; see, e.g., [171]. We will see in this section that the results of
the previous sections lead to a rather complete description of the singular set for MCF with
cylindrical singularities:

Theorem 3.1 ([81]). Let Mt � RnC1 be an MCF of closed embedded hypersurfaces with
only cylindrical singularities, then the space-time singular set is contained in finitely many
(compact) embedded C 1 submanifolds each of dimension at most .n � 1/ together with a set
of dimension at most .n � 2/.

In fact, [81] proves considerably more than what is stated in Theorem 3.1; see The-
orem 4:18 there. For instance, instead of just proving the first claim of the theorem, the
entire stratification of the space-time singular set is Lipschitz of the appropriate dimension.
Moreover, this holds without ever discarding any subset of measure zero of any dimension
as is always implicit in any definition of rectifiable. To illustrate the much stronger version,
consider the case of evolution of surfaces in R3. In that case, this gives that the space-time
singular set is contained in finitely many (compact) embedded Lipschitz curves with cylinder
singularities together with a countable set of spherical singularities. In higher dimensions,
the direct generalization of this is proven.

Theorem 3.1 has the following corollaries:

Corollary 3.2 ([81]). Let Mt � RnC1 be an MCF of closed embedded mean convex hyper-
surfaces or an MCF with only cylindrical singularities, then the conclusion of Theorem 3.1
holds.

More can be said in dimensions three and four:

Corollary 3.3 ([81]). If Mt is as in Theorem 3.1 and n D 2 or 3, then the evolving hypersur-
face is completely smooth (i.e., has no singularities) at almost all times. In particular, any
connected subset of the space-time singular set is completely contained in a time-slice.

A key technical point in [81] is to prove a strong parabolic Reifenberg property for
MCF with generic singularities. In fact, the space-time singular set is proven to be (paraboli-
cally) Reifenberg vanishing. In analysis, a subset of a Euclidean space is said to be Reifenberg
(or Reifenberg flat) if on all sufficiently small scales it is, after rescaling to unit size close,
to a k-dimensional plane. The dimension of the plane is always the same but the plane itself
may change from scale to scale. Many snowflakes, like the Koch snowflake, are Reifenberg
with Hausdorff dimension strictly larger than one. A set is said to be Reifenberg vanishing if
the closeness to a k-plane goes to zero as the scale goes to zero. It is said to have the strong
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Reifenberg property if the k-dimensional plane depends only on the point but not on the
scale.

Using the uniqueness of tangent flows, [81] shows that the singular set in space-time
is strong (half) Reifenberg vanishing with respect to the parabolic Hausdorff distance. This
is done in two steps, showing first that nearby singularities sit inside a parabolic cone (i.e.,
between two oppositely oriented space-time paraboloids that are tangent to the time-slice
through the singularity). In fact, this parabolic cone property holds with vanishing constant.
Next, in the complementary region of the parabolic cone in space-time (that is essentially
space-like), the parabolic Reifenberg essentially follows from the space Reifenberg that the
uniqueness of tangent flows implies.

An immediate consequence, of independent interest, of the parabolic cone property
with vanishing constant is that nearby a generic singularity in space-time (nearby is with
respect to the parabolic distance) all other singularities happen at almost the same time.

These results should be contrasted with a result of Altschuler–Angenent–Giga [4]

showing that in R3 the evolution of any rotationally symmetric surface obtained by rotating
the graph of a function r D u.x/, a < x < b around the x-axis is smooth except at finitely
many singular times where either a cylindrical or spherical singularity forms. For more gen-
eral rotationally symmetric surfaces (even mean convex), the singularities can consist of
nontrivial curves. For instance, consider a torus of revolution bounding a region �. If the
torus is thin enough, it will be mean convex. Since the symmetry is preserved and because
the surface always remains in �, it can only collapse to a circle. Thus at the time of collapse,
the singular set is a simple closed curve.

White showed that a mean convex surface evolving by MCF in R3 must be smooth
at almost all times, and at no time can the singular set be more than 1-dimensional. In fact,
White’s general dimension reducing argument [180, 181] gives that the singular set of any
MCF with only cylindrical singularities has dimension at most .n � 1/.

These results motivate the following conjecture:

Conjecture 3.4 ([81]). Let Mt be an MCF of closed embedded hypersurfaces in RnC1 with
only cylindrical singularities. Then the space-time singular set has only finitely many com-
ponents.

If this conjecture was true, then it would follow that in R3 and R4 MCF with only
generic singularities is smooth except at finitely many times; cf. the three-dimensional con-
jecture at the end of Section 5 in [183].

Part 2. Growth of solutions to differential equations. On a Riemannian manifold M with
metric h�; �i and Levi-Civita connection r, the gradient of a function f is defined by

V.f / D hrf; V i for all vectors fields V: (3.5)
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The Laplacian of f is the trace of the Hessian. That is, if ei is an orthonormal frame for M ,
then

�f D Tr Hessf D

X
i

Hessf .ei ; ei / D

X
i

hrei
V; ei i: (3.6)

The Laplace operator is the canonical linear second order partial differential equation once
we have a metric structure.

4. Harmonic functions with polynomial growth

The classical Liouville theorem, named after Joseph Liouville (1809–1882), states
that a bounded (or even just positive) harmonic function on all of Rn must be constant. There
is a very short proof of this for bounded functions using the mean value property:

Given two points, choose two balls with the given points as centers and of equal
radius. If the radius is large enough, the two balls will coincide except for an
arbitrarily small proportion of their volume. Since the function is bounded, the
averages of it over the two balls are arbitrarily close, and so the function assumes
the same value at any two points.

The Liouville theorem has had a huge impact across many fields, such as com-
plex analysis, partial differential equations, geometry, probability, discrete mathematics, and
complex and algebraic geometry, as well as many applied areas. The impact of the Liouville
theorem has been even larger as the starting point of many further developments.

On manifolds with nonnegative Ricci curvature, mean values inequalities hold, but
are no longer equalities, and the above proof does not give a Liouville type property. How-
ever, in the 1970s, S. T. Yau [187] showed that the Liouville theorem holds for such manifolds.
Later, in the mid 1970s, Yau together with S. Y. Cheng [42] showed a gradient estimate on
these manifolds giving an effective version of the Liouville theorem; see also Schoen [165].

The situation is very different for negatively curved manifolds such as hyperbolic
space. This is easiest seen in two dimensions where being harmonic is conformally invariant,
so each harmonic function on the Euclidean disk is also harmonic in the hyperbolic metric.
In particular, each continuous function on the circle extends to a harmonic function on the
disk and the space of bounded harmonic functions is infinite dimensional; cf. Anderson [6],
Sullivan [173], and Anderson–Schoen [7].

On a Euclidean space, as soon as one allows a polynomial rate of growth, there
are lots of harmonic functions. In fact, on a Euclidean space the harmonic functions with
polynomial growth are the harmonic polynomials which play a central role in analysis. On
a general manifold, the situation is much more complicated, and one does not expect an
explicit representation. Given a manifold M and a constant d , Hd .M/ is the linear space of
harmonic functions of polynomial growth at most d . Namely, u 2 Hd .M/ if �u D 0 and
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for some p 2 M and a constant Cu depending on u

sup
BR.p/

juj � Cu.1 C R/d for all R: (4.1)

In 1974, S. T. Yau conjectured that manifolds with nonnegative Ricci curvature
should have a strong Liouville property, namely that Hd .M/ is finite dimensional for each
d when RicM � 0. The conjecture was settled in [59]; see [86] for more results.2 In fact,
[59,62,63] proved finite dimensionality under much weaker assumptions of:

(1) A volume doubling bound,

(2) A scale-invariant Poincaré inequality or mean value inequality.

Both (1) and (2) hold for Ric � 0 by the Bishop–Gromov volume comparison and
work of Buser. However, these properties do not require much regularity of the space and are
quite flexible. In particular, they make sense for more general metric-measure spaces and are
preserved by bi-Lipschitz changes of the metric. Moreover, properties (1) and (2) make sense
also for discrete spaces, vastly extending the theory and methods out of the continuous world.
This extension opens up applications to geometric group theory and discrete mathematics,
some of which we will touch upon later.

An interesting feature of these dimension estimates is that they follow from “rough”
properties of M and are therefore surprisingly stable under perturbation. Unlike a Ricci
curvature bound, these properties are stable under bi-Lipschitz transformations, cf. [134].
Moreover, these properties make sense also for discrete spaces, vastly extending the theory
and methods out of the continuous world. Kleiner [128] (see also Shalom–Tao [169,175,176])
used, in part, this in his new proof of an important and foundational result in geometric
group theory, originally due to Gromov [104]. Harmonic functions also play a central role in
complex geometry, [136,142,157].

5. Ancient caloric functions with polynomial growth

Harmonic functions are functions that are in equilibrium for the Laplace equation.
For the heat equation, equilibrium is reached when solutions have existed for all prior times.
This naturally leads to the question of whether there is a generalization of the results in the
previous section to ancient solutions of the heat equation with polynomial growth. Ancient
solutions are those that are defined for all negative t . Many solutions of the heat equation,
including the fundamental solution, cannot be extended to all negative t . Given d > 0,
u 2 Pd .M/ if u is ancient (defined for all negative t ), @t u D �u and for some p 2 M

and a constant Cu,

sup
BR.p/�Œ�R2;0�

juj � Cu.1 C R/d for all R: (5.1)

2 For Yau’s 1974 conjecture, see: page 117 in [188], problem 48 in [189], Conjecture 2:5 in
[97,124–126,165], Conjecture 1 in [137], and problem (1) in [138], amongst others.
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On Rn, these functions are the classical caloric polynomials that include the spherical har-
monics and generalize the Hermite polynomials.

A manifold has polynomial volume growth if there are constants C and dV so that
Vol.BR.p// � C.1 C R/dV for some p 2 M , and all R > 0.3 In [89] the following sharp
inequality, which is an equality on Rn, was shown:

Theorem 5.2. If M has polynomial volume growth and k is a nonnegative integer, then

dim P2k.M/ �

kX
iD0

dim H2i .M/: (5.3)

Since Hd1
� Hd2

for d1 � d2, Theorem 5.2 implies:

Corollary 5.4. If M has polynomial volume growth, then for all k � 1,

dim P2k.M/ � .k C 1/ dim H2k.M/: (5.5)

Combining this with the bound dim Hd .M/ � Cd n�1 when RicM n � 0 from [59]

gives:

Corollary 5.6. There exists C D C.n/ so that if RicM n � 0, then for d � 1,

dim Pd .M/ � Cd n: (5.7)

The exponent n in (5.7) is sharp: There is a constant c depending on n so that for
d � 1,

c�1d n
� dim Pd

�
Rn

�
� cd n: (5.8)

Recently, Lin and Zhang [141] proved very interesting related results, adapting the methods
of [59,62,63] to get the bound d nC1.

An immediate corollary of the parabolic gradient estimate of Li and Yau [139] is
that if d < 2 and Ric � 0, then Pd .M/ D Hd .M/ consists only of harmonic functions of
polynomial growth. In particular, Pd .M/ D ¹constant functionsº for d < 1 and, moreover,
dim P1.M/ � n C 1, by Li and Tam [138], with equality if and only if M D Rn by [38].

The exponent n � 1 is also sharp in the bound for dim Hd when RicM n � 0. How-
ever, as in Weyl’s asymptotic formula, the coefficient of d n�1 can be related to the volume
[63]:

dim Hd .M/ � Cn VM d n�1
C o

�
d n�1

�
; (5.9)

where

• VM is the “asymptotic volume ratio” limr!1 Vol.Br /=rn.

• o.d n�1/ is a function of d with limd!1 o.d n�1/=d n�1 D 0.

Combining (5.9) with Corollary 5.4 gives dim Pd .M/ � Cn VM d n C o.d n/ when
RicM n � 0.

3 A volume-doubling space with doubling constant CD has polynomial volume growth of
degree log2 CD .
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6. Growth of drift equations

The Laplacian � is self-adjoint with respect to the ordinary L2 inner product. How-
ever, if we instead use a weighted L2 inner product, then the Laplacian may not be self-adjoint
but there is a natural self-adjoint elliptic operator known as the drift Laplacian. Drift Lapla-
cians are ubiquitous in many areas, including quantum field theory, stochastic PDEs, and
anywhere the heat equation or Gaussian appear, such as functional inequalities, parabolic
PDEs, geometric flows, and probability. The drift term arises whenever there is natural mea-
sure or a natural scaling or, more generally, a gradient flow.

To make the drift Laplacian precise, fix a function � and define the weighted
L2-norm k � k� by

kuk
2
� �

Z
M

u2 e�� : (6.1)

Similarly, we will define the weighted inner product by

hu; vi� �

Z
M

uv e�� : (6.2)

The drift Laplacian L� is defined by

L�u D �u � hr�; rui D e� div
�
e��

ru
�

(6.3)

and

hL�u; vi� D �

Z
M

hru; rvi e��
D hu; L�vi� : (6.4)

The operator is self adjoint and under reasonable hypothesis has discrete eigenvalues going to
infinity, see, for instance, [11,43,111,144]. The best-known example is the Ornstein–Uhlenbeck
operator on Rn,

L D � �
1

2
rx ; (6.5)

where � D
jxj2

4
and k � k� is the Gaussian L2-norm.

Drift Laplacians were considered very early on. Laplace discovered that on the line
eigenfunctions of Lu D u00 �

x
2
u0 in the Gaussian L2 space are polynomials whose degree

is exactly twice the eigenvalue. These polynomials were later rediscovered twice. First by
Chebyshev and a few years later by Hermite. They are now known as the Hermite polyno-
mials and the eigenvalue equation as the Hermite equation. The first few eigenfunctions are:
constants with eigenvalue 0, the linear function x with eigenvalue 1

2
, and the quadratic poly-

nomial x2 � 2 with eigenvalue 1. The Hermite polynomials and their higher-dimensional
analogues play an important role in diverse fields. We will describe a vast generalization of
these results that has many applications.

6.1. Growth of drift equations
We will next describe optimal polynomial growth bounds for eigenfunctions of drift

Laplacians in a general setting that includes all shrinking solitons for both Ricci and mean

16 T.H. Colding



curvature flows (or MCF). These bounds are sharp for the Ornstein–Uhlenbeck operator on
Euclidean space.

There is a long history of studying the growth of solutions to differential equations,
inequalities, and systems. At a very rough level, there are two main techniques. The first,
exemplified in the work of Carleman and Hörmander, is to consider weighted L2-norms with
growing weights. The second, seen, for instance, in the work of Hadamard and Almgren, is
to study the growth of spherical maxima or averages. The second is an extreme version of
the first where the weight is a measure concentrated on a lower-dimensional set. As such,
the second method typically gives stronger information and requires greater structure, such
as invariance under dilations. However, general manifolds do not come with any dilation
structure.

The growth estimates that we describe here hold in remarkable generality and with-
out any assumptions on asymptotic decay. This is surprising and in contrast to most other
situations, like unique continuation, that require very strong geometric assumptions on the
space. A typical starting point for growth estimates is a Pohozaev identity or commutator esti-
mate that come from a dilation, or approximate dilation, structure. We have none of these
here in this general setting. In contrast, we rely on a miraculous cancelation for just the right
quantity. A consequence of the generality is that the growth estimates hold for all singularities
which is key for applications.

In many settings, one has an n-dimensional Riemannian manifold .M;g/, that could
even be flat Euclidean space, with two nonnegative functions f and S satisfying

�f C S D
n

2
; (6.6)

jrf j
2

C S D f; (6.7)

and where f is proper and C n. The weight e�f gives a drift Laplacian L on tensors u

Lu D ef div
�
e�f

ru
�

D �u � rrf u (6.8)

that is self-adjoint with respect to the L2-norm kuk2
L2 D

R
juj2 e�f . Using the function f , we

can define a very natural exhaustion function b that will share many of the same properties
that the distance function has on a Euclidean space with the standard Gaussian measure.
Since jr

p
f j �

1
2

by (6.7), b D 2
p

f satisfies jrbj � 1 as in [35]. On Rn, f D
jxj2

4
and

S D 0 satisfy (6.6), (6.7) with L D � �
1
2
rx the Ornstein–Uhlenbeck operator and b D jxj.

In a Ricci flow, singularities are gradient shrinking solitons, f is the potential, and S is scalar
curvature.4 In an MCF, singularities are shrinkers † � RN , f D

jxj2

4
, and S D jHj2, where

H is the mean curvature vector.5

Throughout, � > 0 is a constant and u is a tensor on M . We will often assume that

hLu; ui � ��juj
2
I (6.9)

4 See [32,40,49–51,107,129,160,178].
5 See, e.g., [72,78,115].
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this includes eigentensors with Lu D ��u. To understand the growth of u, we will study a
weighted average of juj2 on level sets of b,

I.r/ D r1�n

Z
bDr

juj
2
jrbj: (6.10)

This is defined at regular values of b, but extends continuously to all values to be dif-
ferentiable a.e. and absolutely continuous. The weight jrbj will play a crucial role (cf.
[1,53,60,61,75,105]). The growth of I will be bounded above in terms of the solid integral

D.r/ D r2�n e
r2

4

Z
b<r

�
jruj

2
C hLu; ui

�
e�f : (6.11)

The frequency U D
D
I

is defined when I is positive and will measure the growth of log I .
The frequency U describes the rate of growth of the function u. To illustrate this,

when u is a degree m Hermite polynomial, so � D
m
2

, it is easy to see that

U.r/ D m
�
1 C O

�
r�2

��
D 2�

�
1 C O

�
r�2

��
: (6.12)

The next theorem from [91] shows that an L2 tensor satisfying (6.9) has frequency
bounded by 2� and, accordingly, it grows at most polynomially at this rate. This may seem
surprising since the weight e�f decays rapidly, so the L2 condition a priori allows extremely
rapid growth.

Theorem 6.13. Suppose u; Lu 2 L2, (6.6), (6.7), (6.9) hold, and u does not vanish iden-
tically outside a compact set. Given " > 0, there exists R D R.n; �; "/ such that if r > R,
then

U.r/ � 2� C "; (6.14)

and for all r2 > r1 > R,

I.r2/ � I.r1/

�
r2

r1

�2.2�C"/

: (6.15)

This is sharp for the Ornstein–Uhlenbeck operator on Rn where the L2 eigenfunc-
tions are Hermite polynomials with degree twice the eigenvalue. Note that u cannot vanish
on an open set if u has unique continuation, e.g., if Lu D ��u.

Our results give that polynomially growing “special functions” are dense in L2. This
gives manifold versions of some very classical problems in analysis. Whereas Weierstrass’s
approximation theorem shows that polynomials are dense among continuous functions on
any compact interval, the classical Bernstein problem [145], dating back to 1924, asks if
polynomials are dense on R in the weighted Lp.e�f dx/ space if f is assumed to grow
sufficiently fast at infinity. On the line, the Hermite polynomials are dense in L2.e�

jxj2

4 dx/

and Lennart Carleson (and implicitly Izumi–Kawata) showed that polynomials are dense in
Lp.e�jxj˛ dx/ if and only if ˛ � 1. A similar problem in several complex variables is the
completeness problem, going back to Carleman in 1923, about the density of polynomials in
weighted L2 spaces of holomorphic functions [22].

Almgren’s frequency has been used to show unique continuation [102] and structure
of the nodal sets [143]; prior to this, the main tool in unique continuation was Carleman
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estimates that still is the primary technique. Almgren’s frequency bounds relied on scaling
for Rn; cf. [60, 61]. The papers [18] (cf. [179]), [83] developed frequencies for conical and
cylindrical MCF shrinkers and did not involve a weight like jrbj. Theorem 6.13, in contrast,
holds very generally, including for all shrinkers in both Ricci flow and MCF. A much weaker
version of Theorem 6.13, that was not relative, was proven in [83] in the special case of
MCF.

Part 3. Stable structures. In mathematics, structural stability is a fundamental property
of a dynamical system which means that the qualitative behavior of the trajectories is unaf-
fected by small perturbations. Given a smooth function f on a finite-dimensional space, the
gradient rf points in the direction of the steepest ascent. The critical points of f are the
points where rf vanishes. If p is a local minimum of f , then the second derivative test tells
us that the Hessian matrix of f at p is nonnegative. More generally, the number of negative
eigenvalues of the Hessian is called the index of the critical point. A fundamental method
to find the minimum of f is the method of gradient descent. Here, we make an initial guess
p0 and then iteratively move in the negative gradient direction, the direction of the steepest
descent, by setting piC1 D pi � rf .pi /. This can also be done continuously by defining a
negative gradient flow

dx

dt
D �rf

�
x.t/

�
: (6.16)

The function f .x.t// decreases as efficiently as possible as x.t/ heads towards the minimum.
The dynamics near a nondegenerate critical point are determined by the index. If the index is
zero, then the critical point is attracting and the entire neighborhood flows towards the critical
point. However, when the index is positive, a generic point will flow out of the neighborhood,
missing the critical point.

Many of the fundamental problems in geometry can be understood as problems
about dynamical systems on an infinite-dimensional space. Sometimes this is immediate.
For instance, in the case of geodesics or minimal surfaces. Geodesics are critical points for
energy, whereas minimal surfaces are critical points for area. Another example where the
connection to dynamical systems is immediate is the mean curvature flow that is the nega-
tive gradient flow for area. In other cases the connection is hidden, but no less fundamental.
An example of this is uniqueness of blowups, that we discussed earlier. Uniqueness can be
thought of as the question of whether a related recurrent flow has a limit or is wandering.
One of the most basic and fundamental questions about a dynamical system is the question of
equilibria: which equilibria are stable (generic) and which are not. For a nongeneric equilib-
rium, a nearby flow line passes by the equilibria and thus the nongeneric ones can typically
be ignored.

We will look for stable structures in four situations and discuss what is known and
unknown, see [58]. Those four are: (1) minimal hypersurfaces; (2) minimal submanifolds of
higher codimension; (3) singularities that are stable or generic, and cannot be perturbed away,
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for motion by mean curvature of hypersurfaces; and, finally, (4) singularities for motion by
mean curvature in higher codimension.

7. Minimal surfaces

Let †n � RN be a smooth submanifold (possibly with boundary). Given an infinitely
differentiable (i.e., smooth), compactly supported, normal (orthogonal to †) vector field V

on †, consider the one-parameter variation

†s;V D
®
x C sV .x/ j x 2 †

¯
: (7.1)

This gives a path s ! †s;V in the space of submanifolds with †0;V D †. The so-called first
variation formula of area or volume is the equation (integration is with respect to d Vol)

d

ds sD0
Vol.†s;V / D

Z
†

hV; Hi; (7.2)

where H is the mean curvature vector. When † is a hypersurface, H is the unit normal times
the sum of the principal curvatures. In general, H D �

P
i A.ei ; ei / where A is the second

fundamental form and ei is an orthonormal frame for the tangent space of †; A.ei ; ej / D

Aij D r?
ei

ej where r is the Euclidean derivative and “?” is the component orthogonal to
the submanifold. When † is noncompact, †s;V is replaced by �s;V D ¹x C sV .x/ j x 2 �º

where � is a compact subset of † containing the support of V .
The submanifold † is said to be a minimal if

d

ds sD0
Vol.†s;V / D 0 for all V ; (7.3)

or, equivalently, by (7.2), if H is identically zero. Thus † is minimal if and only if it is a
critical point for the volume functional. Since a critical point is not necessarily a minimum,
the term minimal is misleading but time-honored. It is easy to see that being minimal is
equivalent to all the coordinate functions of RN restricted to the submanifold are harmonic
with respect to the Laplacian, �†, on the submanifold. In higher codimension, the minimal
surface equation is a complicated system.

A computation shows that if † is minimal, then the second derivative of volume is

d 2

ds2 sD0
Vol.†s;V / D �

Z
†

hV; LV i; (7.4)

where LV D �†V C hAij ; ViAij is the so-called second variational (or Jacobi) operator.
This is an operator on the normal bundle of † and is the Laplacian plus a zeroth-order term.
When the submanifold is a hypersurface, this simplifies and becomes LV D �†V C jAj2V ,
where jAj2 is the sum of the squares of the principal curvatures. It simplifies further if one
identifies V with its projection � D hV;ni onto the unit normal n. Then L� D �†� C jAj2�.

A minimal submanifold is stable if it passes the second derivative test

d 2

ds2
Vol.†s;V / � 0 for all V: (7.5)
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Obviously, if a minimal surface is area or volume minimizing among competitors with the
same boundary, then it is stable as well. However, stability is much more general than being
minimizing. Stability becomes a question about whether the Jacobi operator L is nonnega-
tive or not. The operator L is much simpler for hypersurfaces and, in particular, it is easy to
see that a minimal graph is stable. In higher codimension, the question of stability becomes
much more complicated because of the vector-valued nature of L and the curvature of the
normal bundle. For example, minimal graphs are not necessarily stable in higher codimen-
sion.6

A classical theorem of Bernstein from 1916 shows that entire (that is, where the
domain of definition is all of R2) minimal graphs in R3 are planes. Whether this is true in
higher dimensions became known as the Bernstein problem. This problem played an impor-
tant role in the field for decades and is closely related to regularity for area minimizers.
In 1965 and 1966, De Giorgi and Almgren proved the Bernstein theorem for graphs in R4

and R5. In 1968, Simons extended the Bernstein theorem to R6, R7, and R8, which was
shown to be sharp the next year by Bombieri, De Giorgi, and Giusti. Simons’ influential
paper introduced the second variation operator and stability to minimal surface theory. Sta-
bility of hypersurfaces was studied by Schoen–Simon–Yau [166], who showed that, as long as
the dimension of the hypersurface is at most six and the volumes of balls are up to a constant
the same as Euclidean balls of the same radius and dimension, all stable minimal hyper-
surfaces are planes, cf. [186] and references there. In R3 Fischer-Colbrie and Schoen [99]

showed the same, but without assuming area bounds. This was also proved independently by
Do Carmo and Peng. Schoen [164] (see also [46,57]) later showed a local version of this that
has had a huge influence on the development of minimal surfaces in three dimensions. Stable
minimal surfaces can be constructed variationally, see, for instance, [152]. These estimates
can also be applied to low index minimal surfaces, [146, 147, 172]. See [64–71] and [161] for
more about minimal surfaces.

The situation is much more complicated in higher codimension where there is no
analog of the Bernstein theorem, cf. [96,163]. A simple argument of Wirtinger from the 1930s,
using Stokes’ formula, shows that any complex submanifold of CN is volume minimizing
among things with the same boundary and, thus, a stable minimal submanifold. This gives a
plethora of area-minimizing, and thus also stable, minimal submanifolds once the codimen-
sion is at least two. Moreover, these examples can have arbitrarily large areas. Remarkably,
Micallef [153] proved a converse in R4. Namely, he showed that a stable oriented, parabolic
minimal surface in R4 is complex for some orthogonal complex structure. Being parabolic
is a conformal property that holds, for instance, if the volume of balls grows at most quadrat-
ically. Examples of Arezzo and Micallef show that this converse does not hold for surfaces
in codimension larger than two.

6 By [153], Osserman’s minimal graph x3 D
1
2 cos x2

2 .ex1 �3 e�x1 / and
x4 D �

1
2 sin x2

2 .ex1 �3 e�x1 / in R4 is not stable.
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8. Motion by mean curvature

Surface tension is the tendency of fluid surfaces to shrink into the minimum sur-
face area possible. Mathematically, the force of surface tension is described by the mean
curvature.

A one-parameter family of n-dimensional submanifolds Mt � RN is said to move
by motion by mean curvature, see, for instance, [9,92], if the time derivative of the position
vector x moves by minus the mean curvature. That is,

@x

@t
D �H: (8.1)

It follows from the first variation formula that the mean curvature flow is the negative gradient
flow for area. That is, the mean curvature flow moves the submanifold in the direction where
the area or volume decreases as fast as possible.

We can view the mean curvature flow as a type of heat equation. This is exemplified
by that the coordinate functions of the ambient Euclidean space restricted to the evolving
submanifolds satisfy the heat equation

@x

@t
D �Mt x: (8.2)

This equation is nonlinear since the Laplacian �Mt depends on Mt . Moreover, since the
submanifolds are evolving, the induced metric is time-varying so the Laplacian �Mt is also
time-varying. From the first variation formula (7.2), it follows easily that the mean curvature
flow moves in the direction where the volume decreases as fast as possible; thus, the mean
curvature flow is the negative gradient flow of volume. The motion is by surface tension. In
higher codimension, (8.1) and (8.2) are complicated parabolic systems where much less is
known.

Since the coordinate functions on the evolving submanifolds satisfy the heat equa-
tion, it follows from the parabolic maximum principle that the evolving submanifolds remain
inside the convex hull of the initial submanifold. A straightforward computation shows that
also the function jxj2 � 2nt satisfies the heat equation on the evolving submanifolds. At
the initial time t D 0, this is nonnegative and therefore, by the parabolic maximum prin-
ciple, it remains nonnegative as long as the flow exists. Since we have already seen that
maxMt jxj2 remains bounded under the evolution, it follows that the flow must become
extinct in finite time and, thus, singularities occur. There are two approaches either consider-
ing a weak flow through singularities or considering flow with surgery through singularites;
see, [17,30,110,119,130] for surgery.

For a fixed constant c > 0, rescaling the flow parabolically

t ! cMc�2 D Mc;t (8.3)

gives a new solution to motion by mean curvature that has the effect that the submanifolds
are magnified by the constant c. If we simultaneously with rescaling also reparametrize time,
then we get a rescaled mean curvature flow. It is easy to see that such a one-parameter family
satisfies the rescaled mean curvature flow equation

@x

@t
D

x?

2
� H: (8.4)
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The rescaled mean curvature flow, which is so critical for understanding the mean curvature
flow, can itself be interpreted as the negative gradient flow of a functional that we call the
Gaussian surface area.

8.1. Gaussian surface area and entropy
The Gaussian surface area F of an n-dimensional submanifold †n � RN is

F.†/ D .4�/� n
2

Z
†

e�
jxj2

4 : (8.5)

The constant .4�/� n
2 is a normalization that makes the Gaussian area equal to one for an

n-plane through the origin. Following [72], the entropy � is the supremum of F over all
translations and dilations

�.†/ D sup
c;x0

F.c† C x0/: (8.6)

By considering all centers and scales and taking the supremum over these, we get some rough
low-regularity measure of the complexity of the submanifold. In particular, it is easy to see
that the entropy is always at least 1 and achieved only on a n-dimensional plane.

It follows easily from Huisken’s monotonicity formula that the entropy is monotone
under mean curvature flow and, moreover, the entropy at the initial time gives an upper bound
for the entropy of any future singularity; see [72].

Prior to the entropy, many results focused on either convexity conditions or graph-
ical restrictions as these were preserved under the flow by the maximum principle. These
properties, however, are pretty strong and heavily restrict the types of singularities that can
occur. The entropy now plays a central role in mean curvature flow and a great deal is now
known about low entropy flows, [20,21,45,48,55].

If V is a normal vector field and †s;V , as before, is the variation †s;V D

¹x C sV .x/ j x 2 †º, then an easy computation shows that

d

ds sD0
F.†s;V / D .4�/� n

2

Z
†

�
V; H �

x?

2

�
e�

jxj2

4 : (8.7)

It follows that the Gaussian surface area F is monotone nonincreasing under the rescaled
mean curvature flow and constant if and only if

H D
x?

2
: (8.8)

This equation is the shrinker equation and is equivalent to the rescaled flow is static. Or,
equivalently, the evolution under the mean curvature flow is by rescaling. That is, a later time
slice is exactly like an earlier, just scaled down. That Gaussian surface area is monotone under
the rescaled flow corresponds to Huisken’s celebrated monotonicity formula [115]. From this,
it follows also that the entropy is a Lyapunov function for both the mean curvature flow and
the rescaled mean curvature flow.

From Huisken’s monotonicity [115], as well as work of Ilmanen [121] and White
[180], one knows that every sequence ci ! 1 has a subsequence (also denoted by ci ) such
that Mci ;t converges to a shrinker M1;t (so M1;t D

p
�tM1;�1) with supt �.M1;t / �
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supt �.Mt /. Such a limit is said to be a tangent flow at the origin. Similarly, one can magnify
(blow up) around any other point in space time. If one does not fix the point around where
one blows up, but still looks at limits of a sequence of blowups, then the limiting flows are
not shrinkers, but even then the limiting flows will exist for all negative times and are said to
be ancient flows.

The shrinker equation (8.8) is a second order nonlinear elliptic equation that is
closely related to the classical minimal surface equation. In fact, shrinkers are minimal sur-
faces for a conformally changed metric that is not particularly well-behaved: it is not complete
and the curvature is unbounded. This perspective has limited utility for global questions, but
it is very useful for local regularity (e.g., any tangent cone is a minimal cone); cf. [55,72,73].

8.2. Second variation and stability
We have already seen that shrinkers are critical points for the Gaussian area. The

critical points for the Gaussian surface area are the fixed points for the rescaled flow. To
understand the dynamics of the flow, we would like to understand which fixed points can be
avoided and, more generally, the dynamics near any fixed point.

When † is a shrinker, we therefore look at the second derivative. A calculation (see
[72]) gives

d 2

ds2 sD0
F.†s;V / D �.4�/� n

2

Z
†

hV; LV i e�
jxj2

4 : (8.9)

Here LV D LV C hAij ; V iAij C
1
2
V is the second variation operator, and LV D

�†V �
1
2
r?

xT V is the Ornstein–Uhlenbeck operator on the normal bundle. For hypersur-
faces, there is a similar simplification of the operator L, as we saw for the second derivative
of volume; cf. [10,14,135] for higher codimension.

For any shrinker, translations and scaling give directions where the Gaussian area
decreases [72], so there are no stable shrinkers in the usual sense. Translation of a submanifold
in the direction E 2 RN is infinitesimally given by the normal part E? of E. Similarly,
rescaling is given by the normal vector field x?

2
. This corresponds to E? (with E 2 RN )

and H D
x?

2
being eigenvectors of L with eigenvalues �

1
2

and �1, respectively. Perturbing
by either translation or scaling has the effect of moving the same singularity to a different
point in space or time. However, the singularity is not avoided; it just occurs at another time
or place for the flow. For this reason, we say [72] that a shrinker is F -stable if

d 2

ds2 sD0
F.†s;V / � 0 for all V orthogonal to H and to all E?: (8.10)

Here orthogonal means with respect to the Gaussian inner product on the space of normal
vector fields. It is easy to see that spheres and planes are F -stable in any codimension. In
[72] the F -stable hypersurfaces were classified.

Theorem 8.11. The only F -stable hypersurfaces are the planes and the round sphere.

At first it may seem surprising that round cylinders are not F -stable. Indeed, for
nonompact shrinkers, it turns out that the right notion of stability is that of entropy stability,
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however, for compact singularities those two notions of stability are the same [72]. A shrinker
is entropy-stable if it is a local minimum for the entropy �. Entropy-unstable shrinkers are
singularities that can be perturbed away, whereas entropy-stable ones cannot; see [72].

Even for hypersurfaces, examples show that singularities of the mean curvature flow
are too numerous to classify. The hope is that the generic ones that cannot be perturbed away
are much simpler. Indeed, in all dimensions, generic singularities (that is, entropy-stable
shrinkers) of hypersurfaces moving by mean curvature flow have been classified in [72].

Theorem 8.12. In all dimensions, generic singularities (that is, entropy-stable shrinkers) of
hypersurfaces are round generalized cylinders Skp

2k
� Rn�k .

The generic singularities in R3 are the sphere S2
2, cylinder S1p

2
� R, and plane R2.

In contrast to the Bernstein theorems for minimal hypersurfaces, this classification of generic
singularities holds in every dimension.

The paper [55] showed that for hypersurfaces round spheres are the shrinkers with
the smallest entropy. The authors of [55] conjectured further that round spheres had the least
entropy for any closed hypersurface; this was proven by Bernstein–Wang [20] up to dimen-
sion 7 and extended by Zhu [190] to higher dimensions; cf. also [21,24,127,185]. For surfaces
embedded shrinkers with genus zero has been classified by Brendle, [28].

8.3. Higher codimension
For the mean curvature flow in higher codimension, we search again for the stable

singularities. Recall that stable singularities are those that are entropy stable, which is equiv-
alent to being F -stable for closed shrinkers. In higher codimension, [87] gave the following
bound for the entropy:

Theorem 8.13. If †2 � RN is an F -stable shrinker diffeomorphic to a two-sphere, then

�.†/ < 4 D e �
�
S2

2

�
: (8.14)

The sharp constant is unknown, but (8.14) is at most off by a factor of e. By [87],
similar bounds also hold for other closed shrinking surfaces of any finite index where the
entropy bound depends on the genus and index. This implies that any such F -stable shrinker,
that, a priori, lies in a high-dimensional Euclidean space, in fact, lies in a linear subspace
of some fixed small dimension. The sharp bound for the dimension of the linear space is
unknown, though [87] provides sharp dimension bounds in various other important situations.

There is no analog of (8.14) for minimal surfaces in R4. Namely, viewing R4 as
C2, one sees that the parametrized complex submanifold z ! .z; zm/ is a stable mini-
mal variety that is topologically a plane for each integer m. It has Area.Br \ †/ � C mr2

for r � 1. In contrast, [87] implies that Area.Br \ †/ � C.1 C /r2 for a closed stable
2-dimensional shrinker † of genus  . Similarly, there is no analog of the codimension bound
for minimal surfaces. Indeed, for each m, the parametrized surface z ! .z; z2; z3; : : : ; zmC1/

is a stable minimal variety that is topologically a plane. Its real codimension is 2m and it is
not contained in a proper subspace.
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Once one has the entropy bound in (8.14), to conclude that stable singularities have
low codimension, one needs a result about the number of linearly independent coordinate
functions. The coordinate functions on a mean curvature flow produce a linear space of
caloric functions, i.e., solutions of the heat equation, that grow at most linearly. The bound
on the codimension is a consequence of a much more general result about polynomial growth
caloric functions on an ancient mean curvature flow that has a variety of other useful appli-
cations.

Let M n
t � RN be an ancient mean curvature flow of n-dimensional submanifolds

with entropies �.Mt / � �0 < 1. Recall that ancient flows are solutions that exist for all
negative times. The space Pd of polynomial growth caloric functions consists of u.x; t/ onS

t Mt � ¹tº so that .@t � �Mt /u D 0 and there exists C depending on u withˇ̌
u.x; t/

ˇ̌
� C

�
1 C jxj

d
C jt j

d
2
�

for all .x; t/ with x 2 Mt ; t < 0: (8.15)

The simplest example is when the flow consists of a static (constant in time) hyperplane Rn.
In this case, Pd .Rn/ consists of polynomials in .t; x1; : : : ; xn/ known as the caloric polyno-
mials and, using the special structure in this case, it is easy to see that dim Pd .Rn/ � cnd n.
The paper [87] showed sharp bounds for dim Pd for all d � 1 for an ancient flow with
�.Mt / � �0,

dim Pd � Cn�0d n: (8.16)

One remarkable consequence when d D 1 is a bound for the codimension. Namely, the
flow sits inside a linear subspace of dimension at most dim P1, since a linear relation for
coordinate functions specifies a hyperplane containing the flow.

The next result we will describe gives sharp bounds for codimension in arguably
some of the most important situations for ancient flows. The bounds mentioned above were
sharp in the exponent of d and, thus, asymptotically sharp as d ! 1. The next result is
more delicate and obtains sharp constants for d fixed.

Suppose that M n
t � RN is an ancient MCF with supt �.Mt / < 1. For each con-

stant c > 0 define the flow Mc;t by Mc;t D
1
c
Mc2t . It follows that Mc;t is an ancient MCF

as well. Since supt �.Mt / < 1, it follows from Huisken’s monotonicity [115], as well as
work of Ilmanen [121] and White [180], that every sequence ci ! 1 has a subsequence (also
denoted by ci ) such that Mci ;t converges to a shrinker M1;t (so M1;t D

p
�tM1;�1) with

supt �.M1;t / � supt �.Mt /. We will say that such an M1;t is a tangent flow at �1 of the
original flow. In [87] the following sharp bound for the codimension was shown:

Theorem 8.17. If M n
t � RN is an ancient MCF and one tangent flow at �1 is a cylinder

Skp
2k

� Rn�k , then Mt is a flow of hypersurfaces in a Euclidean subspace.

Combining this result with results of Angenent–Daskalopoulos–Sesum [12, 13],
Brendle–Choi [29], and Choi–Haslhofer–Hershkovits [48] gives uniqueness for ancient flows
of surfaces in higher codimension.
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Part 4. The gauge group. Comparing and recognizing metrics can be extraordinarily dif-
ficult because of the group of diffeomorphisms. Two metrics, which could even be the
same, could look completely different in different coordinates. Many key problems are
defined intrinsically without a canonical coordinate system. In those problems, the infinite-
dimensional diffeomorphism group (gauge group) becomes a major issue and dealing with
it a major obstacle. Ricci flow is such an example.

“Gauge theory is a term which has connotations of being a fearsomely compli-
cated part of mathematics—for instance, playing an important role in quantum
field theory, general relativity, geometric PDEs, and so forth. But the underlying
concept is really quite simple: a gauge is nothing more than a coordinate system
that varies depending on location …By fixing a gauge (thus breaking or spending
the gauge symmetry), the model becomes something easier to analyse mathemat-
ically …Deciding exactly how to fix a gauge (or whether one should spend the
gauge symmetry at all) is a key question in the analysis of gauge theories, and one
that often requires the input of geometric ideas and intuition into that analysis.”
[177]

One of the most interesting results of transformation groups is the existence of
slices. A slice for the action of a group on a manifold is a submanifold which is trans-
verse to the orbits near a given point.7 Ebin and Palais proved the existence of a slice for
the infinite-dimensional diffeomorphism group of a compact manifold acting on the space
of all Riemannian metrics. However, here we will be interested in when the manifolds are
not compact.

8.4. A new approach to dealing with the gauge group
We describe a new way of dealing with the diffeomorphism group from [91] that

should be useful in a broad range of applications, and explain how it can be used to solve a
well-known problem in Ricci flow. A key new tool is a detailed analysis of a natural second-
order system operator P . The operator will be used to “fix the gauge.” The analysis applies
to all noncompact singularities. This makes it particularly useful, but also delicate. At each
scale, a diffeomorphism is applied to fix the gauge, requiring precise and delicate estimates
for the growth of the diffeomorphism. The gauge-fixing diffeomorphism satisfies a nonlinear
system of PDEs, where P is the linearization. We will need, and show, strong bounds for
the displacement function of the gauge-fixing diffeomorphism.

Suppose we have two weighted manifolds. Assume that on a large, but compact set,
the manifolds, metrics, and weights almost agree after identification by a diffeomorphism.

7 If the group is compact and Lie and the space is completely regular, Mostow proved, as a
generalization of works of Gleason, Koszul, Montgomery, Yang, and others, that there is a
slice through every point. If the group is not compact but Lie and if the space is a Cartan
space, then Palais proves the same result.
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On this set, in these coordinates, we write the metric on one as g and on the other as g C h,
where h is small, and the weights as e�f and e�f �k , where k is small. We would like to
mod out by the diffeomorphism group, by adjusting by a diffeomorphism to put the equation
in an appropriate gauge so that the difference h in the metrics is orthogonal to the action
of the group. Orthogonality corresponds to making divf h D 0,8 which means finding a
diffeomorphism ˆ so that

divf

�
ˆ�.g C h/ � g

�
D 0: (8.18)

The pullback metric is quadratic in the differential of ˆ, so this is a second-order nonlinear
system of PDEs for ˆ. This is the PDE that is in the spirit of the slice theorem for group
actions and a solution ˆ gives the desired “gauge-fixing.” Terms involving divf h come up
again and again, so many quantities simplify in this gauge and things become easier.

In [91] we construct the diffeomorphism solving (8.18) using an iteration scheme for
the linearized operator P on vector fields Y . We show first sharp polynomial bounds on P

and then use them to show sharp polynomial bounds for the displacement function of ˆ

x ! distg
�
x; ˆ.x/

�
: (8.19)

The bounds are relative, meaning that better initial bounds give better bounds further out.
These optimal bounds hold on all singularities and give a key new tool for dealing with the
gauge group of all noncompact singularities.

The linearization of (8.18) is to find a vector field whose Lie derivative of the
metric has divf equal to � divf h. The Lie derivative in a direction Y can also be writ-
ten as �2 div�

f Y , where div�
f is the operator adjoint of divf with respect to the weighted

measure. Therefore, the linearization of (8.18) is P Y D
1
2

divf h, where

P Y D divf ı div�
f Y: (8.20)

Solutions of P Y D
1
2

divf h are unique once we require that Y is orthogonal to the kernel of
P . The kernel is the Killing fields. We will solve P Y D

1
2

divf h on any shrinker and show
via L2-methods that kY kW 1;2 � k divf hkL2 . Given the noncompactness, the L2-estimates
are not sufficient to implement the iteration scheme, and we need stronger polynomial esti-
mates. The problems are magnified by that initial closeness is only on a given compact set.
As one builds out to get closeness on larger sets, one needs at each step to adjust the entire
diffeomorphism so that the normalization is zero on larger and larger sets. Understanding P

and proving growth estimates is a major point.
The L2-theory for P shares formal similarities with Hörmander’s influential L2

N@-method in several complex variables. In the L2 N@-method, one solves the Poisson equa-
tion N@u D F , with estimates, where N@F D 0. To do so, one introduces the adjoint of N@ with
respect to a weight. Hörmander’s idea for the weight came from Carleman’s method for
proving unique continuation of a PDE. Here we solve P Y D F , where F D

1
2

divf h is

8 For a symmetric two-tensor h, the f -divergence is divf .h/ D ef div.e�f h/ D

div.h/ � h.rf; �/.
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orthogonal to the kernel of div�
f . Hörmander’s method gives weighted L2-bounds for N@ sim-

ilar to our weighted bounds for P . To introduce a second weight to capture the growth à
la Carleman and Hörmander is less natural here. Instead, we go a different route to prove
stronger bounds.

8.5. Bounding the growth of gauge transformations
We need to control the growth of Y to control the metric in the new coordinates,

but Y will be constructed using weighted L2-methods and, thus, a priori could grow rapidly.
The next theorem from [91] shows that an L2 eigenvector field with eigenvalue � for P

grows polynomially of degree at most 4� C 1. A Poisson version is used to control Y with
P Y D

1
2

divf h. We set b D 2
p

f and measure the growth of Y by the weighted average

IY .r/ D r1�n

Z
bDr

jY j
2
jrbj: (8.21)

A one-parameter family of smooth manifolds, [15–17, 25, 106, 129, 130], is said to flow by the
Ricci flow if

gt D �2 Ric :

The triple .M; g; f / is a gradient shrinking soliton, or shrinker for short, if

Ric C Hessf D
1

2
gI

shrinkers are the singularities in Ricci flow, [33,36,107,122,158,162].

Theorem 8.22. For any shrinker .M; g; f /, if Y 2 L2, P Y D �Y and

Z D Y C
2

2� C 1
r divf .Y /;

then divf .Z/ D 0 and for any ı > 0 and r2 > r1 > R D R.�; n; ı/,

Ir divf .Y /.r2/ �

�
r2

r1

�4�Cı

Ir divf .Y /.r1/; (8.23)

IZ.r2/ �

�
r2

r1

�8�C2Cı

IZ.r1/: (8.24)

Each of these growth bounds is sharp and so is the requirement that Y 2 L2. Com-
bining them bounds Y . As a corollary, L2 Killing fields on a shrinker grow at most linearly.

Corollary 8.25. On any shrinker, for any L2 Killing field Y , r divf .Y / is parallel and if
Z D Y C 2r divf .Y /, then divf .Z/ D 0 and for any ı > 0 and r2 > r1 > R D R.n; ı/,

IZ.r2/ �

�
r2

r1

�2Cı

IZ.r1/: (8.26)

It is easy to see that this is sharp; on the two-dimensional Gaussian soliton,
Y D x2e1 � x1e2 is a Killing field with divf .Y / D 0 that grows linearly.

On a shrinker, the operator P relates to the manifold version of the much studied
Ornstein–Uhlenbeck operator L on vector fields Y by the formula

�2P Y D r divf Y C LY C
1

2
Y: (8.27)
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Whereas P is a true system operator, L is not, and for that reason, P is more complicated.
On the other hand, on solitons, P has many nice properties: it commutes with L and if Y is
an eigenvector field of P with eigenvalue ��, then r divf .Y / is an eigenvector field of L

with eigenvalue �. The unweighted version of P was used implicitly by Bochner to show that
closed manifolds with negative Ricci curvature have no Killing fields. Building on this the
unweighted operator was later used by Bochner and Yano to show that the isometry group of
such manifolds is finite. The unweighted operator also arises in general relativity. The rela-
tionship between P and the unweighted version, used by Bochner, mirrors the relationship
between the Ornstein–Uhlenbeck operator and the Laplacian.

8.6. Applications
This new understanding of the “gauge group” can be used to settle a well-known

problem in Ricci flow. Namely, using it one can show, see [91], a strong rigidity for cylinders,
quotients of cylinders, and more general shrinking solitons; [23,34], cf. [140].

Theorem 8.28. Let † be the round cylinder S` � Rn�` (or quotient of such) as a shrinker
with potential f† D

jxj2

4
C

`
2
. There exists an R D R.n/ such that if .M n; g; f / is another

shrinker and ¹f† � Rº \ † is close to ¹f � Rº � M in the smooth topology and f† and
f are close on this set, then .M; g; f / is a round shrinking cylinder (or quotient of such).

Since blowups only converge on compact subsets, rather than globally, the most
useful characterizations involve only a compact subset as in Theorem 8.28. An important
difficulty is that there are nontrivial infinitesimal variations, i.e., variations in the kernel of the
linearized operator (not generated by diffeomorphisms). One consequence of Theorem 8.28
is that these infinitesimal variations are not integrable; cf. also [54].

The principle behind Theorem 8.28 is that closeness to a large enough piece of †

propagates outwards, becoming even closer on larger scales. We will explain some of the
ideas behind this shortly. A much weaker extension will follow from pseudolocality [160],
which says that flatness propagates forward in time; accordingly, flatness propagates out-
ward in space for shrinkers. This gives a priori curvature estimates on a slightly larger scale.
However, it gives little control over the metric itself because of the gauge invariance and,
second, there is a loss in the estimates that makes it impossible to iterate. There are three
major ingredients in the proof of Theorem 8.28; we loosely refer to these as propagation of
almost splitting, gauge fixing, and quadratic rigidity in the right gauge. These are of inde-
pendent interest and will described in order next.

“Propagation of almost splitting” shows that if a shrinker is close to a product
N � Rn�` on a large scale, then it remains close on a fixed larger scale. The closeness
on the first scale is used to get n � ` eigenvalues that are exponentially close to 1

2
, which

is a lower bound for any shrinker that is only achieved by linear functions on products. The
corresponding eigenfunctions will have exponentially small L2-bounds for their Hessians,
which forces the gradients to be virtually parallel on small sets but says little on large balls
because of the Gaussian weight. It is here that the growth bounds from [91] first play a crucial
role, showing that the Hessian bounds can only grow polynomially so the initial exponen-
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tial smallness gives control on larger scales. These almost parallel vector fields are then
used to construct a diffeomorphism to † on the larger scale, giving vastly more control than
what followed from pseudolocality. This is very much a Ricci flow fact that does not have
an MCF analogue where we do not have a corresponding description of the bottom of the
spectrum.

The almost splitting gives considerable control on the larger scale, but does not
fix the gauge—the difference in metrics is small, but is not orthogonal to the action of the
gauge group. Moreover, even when the two metrics are the same, the difference between the
potentials could be a linear function, corresponding to a translation along the axis.

There are many other important uniqueness results in Ricci flow, see, for instance,
[16,26,27,132,133].

Part 5. Minimal surfaces. Surfaces that locally minimize area have been extensively used to
model physical phenomena, including soap films, black holes, compound polymers, protein
folding, etc. The mathematical field dates to the 1740s.

Minimal surfaces with uniform curvature or area bounds are well understood, yet
essentially nothing was known without such bounds. We discuss here the theory of embedded
(i.e., without self-intersections) minimal surfaces in Euclidean space R3 without a priori
bounds; see [64–70, 77, 161] for more. The study is divided into three cases, depending on
the topology of the surface. In case one the surface is a disk, in case two the surface is a
planar domain (genus zero), and the third case is that of finite (nonzero) genus. The complete
understanding of the disk case is applied in both cases two and three. In all three cases
the surface is allowed to have a boundary. This is an essential point and makes the results
particularly useful. For instance, given any minimal surface, independent of its topology, if
a component of the intersection of the surface with a Euclidean ball is a disk, then case one
applies and gives a good description of that component. Similarly, for cases two and three.
The surface itself may then be thought of as built out of these snapshots (or building blocks).
We will here mostly only discuss the case of disks.

The helicoid, which is a double spiral staircase, was discovered to be a minimal
surface by Meusnier in 1776. As we will see, the helicoid is the most important example of
an embedded minimal disk. In fact, we will see that every such disk is either a graph of a
function or part of a double spiral staircase. For planar domains the fundamental examples
are the catenoid, also discovered by Meusnier in 1776, and the Riemann examples discovered
by Riemann in the beginning of the 1860s.9 Finally, for general fixed genus, an important
example is the recent example by Hoffman–Weber–Wolf of a genus-one helicoid. The genus-
one helicoid is a complete minimal surface that on a large scale, away from the genus, looks
essentially like an ordinary helicoid. This illustrates that the helicoid is one of the basic
building blocks of general minimal surfaces. This is also true for the Riemann examples.
The Riemann examples are a two-parameter family of complete minimal surfaces. As the

9 Riemann worked on minimal surfaces in the period 1860–1861. He died in 1866. The Rie-
mann example was published post-mortem in 1867 in an article edited by Poggendorf.
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parameters degenerate, the Riemann examples looks like either a collection of catenoids
stacked on top of each other or two oppositely oriented helicoids (with parallel axes) glued
together.

In the last section we discuss why (complete) embedded minimal surfaces are auto-
matically proper (i.e., why divergent sequences of points on the surface diverge in Euclidean
space). This question is known as the Calabi–Yau conjectures for embedded surfaces. For
immersed (but not embedded) surfaces, there are counterexamples by Jorge-Xavier and Nadi-
rashvili.

8.7. Minimal graphs and the helicoid
The derivation of the equation for a minimal graph goes back to Lagrange’s 1762

memoir. There are questions of existence of solutions, uniqueness of equilibria, and the
global structure of the space (or spaces) of examples. At the intersection of all of these ques-
tions is the question of what the (shape of the) natural building blocks are. In a broad sense,
graphs and helicoids are in a fundamental way the key building blocks of embedded minimal
surfaces.

There are two local models for embedded minimal disks. One model is the plane
(or, more generally, a minimal graph) and the other is a piece of a helicoid.

Minimal graphs over proper simply connected domains in R2 gives a large class
of embedded minimal disks, however, by a classical theorem of Bernstein from 1916 entire
(i.e., where � D R2) minimal graphs are planes.

The second model comes from the helicoid which was discovered by Meusnier in
1776.10 The helicoid is a “double spiral staircase” given by sweeping out a horizontal line
rotating at a constant rate as it moves up a vertical axis at a constant rate. Each half-line traces
out a spiral staircase and together the two half-lines trace out (up to scaling) the double spiral
staircase .s cos t; s sin t; t /, where s; t 2 R.

For the results about embedded minimal disks, it will be important to understand a
sequence of helicoids obtained from a single helicoid by rescaling as follows:

Consider the sequence †i D ai † of rescaled helicoids where ai ! 0. (That is,
rescale R3 by ai , so points that used to be distance d apart will in the rescaled R3 be distance
ai d apart.) The curvatures of this sequence of rescaled helicoids are blowing up (i.e., the
curvatures go to infinity) along the vertical axis. The sequence converges (away from the
vertical axis) to a foliation by flat parallel planes; that is, it converges to the collection of
planes x3 D constant. The singular set (the axis) then consists of removable singularities.

10 Meusnier had been a student of Monge. He also discovered that the catenoid is minimal in
the sense of Lagrange, and he was the first to characterize a minimal surface as a surface
with vanishing mean curvature. Unlike the helicoid, the catenoid is not topologically a plane
but rather a cylinder.
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8.8. Multivalued graphs, spiral staircases, double spiral staircases
To be able to give a precise meaning to the statement that the helicoid is a double

spiral staircase, we will need the notion of a multivalued graph, each staircase will be a
multivalued graph. Intuitively, a multivalued graph is a surface covering an annulus, such
that over a neighborhood of each point of the annulus, the surface consists of N graphs.
To make this notion precise, let Dr be the disk in the plane centered at the origin and of
radius r and let P be the universal cover of the punctured plane C n ¹0º with global polar
coordinates .�;�/ so � > 0 and � 2 R. An N -valued graph on the annulus Ds n Dr is a single
valued graph of a function u over ¹.�; �/ j r < � � s; j� j � N�º. For working purposes, we
generally think of the intuitive picture of a multisheeted surface in R3, and we identify the
single-valued graph over the universal cover with its multivalued image in R3.

The multivalued graphs that we will consider will all be embedded, which corre-
sponds to a nonvanishing separation between the sheets (or the floors). If † is the helicoid,
then † n ¹x3 � axisº D †1 [ †2, where †1, †2 are 1-valued graphs on C n ¹0º; †1 is the
graph of the function u1.�; �/ D � and †2 is the graph of the function u2.�; �/ D � C � .
(Further, †1 is the subset where s > 0 in the parametrization of the helicoid and †2 the
subset where s < 0.) In either case the separation between the sheets is constant, equal to
2� . A multivalued minimal graph, see chapter 1 in [71], is a multivalued graph of a function
u satisfying the minimal surface equation.

8.9. Structure of embedded minimal disks
All of our results for disks, as well as for other topological types, require only a piece

of a minimal surface. In particular, the surfaces may well have boundaries and when we, for
instance, say in the next theorem “Any embedded minimal disk in R3 is either a graph of a
function or part of a double spiral staircase”, then we mean that if the surface is contained in
a Euclidean ball of radius r0 and the boundary is contained in the boundary of that ball, then
in a concentric Euclidean ball with radius a fixed (small) fraction of r0, any component of the
surface is either a graph of a function or part of a double spiral staircase. That the surfaces
are allowed to have boundaries is a major point and makes the results particularly useful.
Note also that as the conclusion is for a “fixed fraction of the surface” this is an interior
estimate.

The following is the main structure theorem for embedded minimal disks:

Theorem 8.29. Any embedded minimal disk in R3 is either a graph of a function or part of a
double spiral staircase. In particular, if for some point the curvature is sufficiently large, then
the surface is part of a double spiral staircase (it can be approximated by a piece of a rescaled
helicoid). On the other hand, if the curvature is below a certain threshold everywhere, then
the surface is a graph of a function.

As a consequence of this structure theorem we get the following compactness result:
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Corollary 8.30. A sequence of embedded minimal disks with curvatures blowing up (i.e.,
going to infinity11) at a point mimics the behavior of a sequence of rescaled helicoids with
curvature going to infinity.

8.10. Two key ideas behind the proof of the structure theorem for disks
The first of these key ideas says that if the curvature of such a disk † is large at some

point x 2 †, then near x a multivalued graph forms (in †), and this extends (in †) almost
all the way to the boundary12 of †. Moreover, the inner radius, rx , of the annulus where the
multivalued graph is defined is inversely proportional to jAj.x/, and the initial separation
between the sheets is bounded by a constant times the inner radius.

An important ingredient in the proof of Theorem 8.29 is that general embedded
minimal disks with large curvature at some interior point can be built out of N -valued graphs.
In other words, any embedded minimal disk can be divided into pieces each of which is an
N -valued graph. Thus the disk itself should be thought of as being obtained by stacking
these pieces (graphs) on top of each other.

The second key result (Theorem 8.31) is a curvature estimate for embedded minimal
disks in a half-space (in this theorem r0 is a scaling factor, which after rescaling can be taken
to be one):

Theorem 8.31. There exists " > 0 such that for all r0 > 0, if † � B2r0 \ ¹x3 > 0º � R3 is
an embedded minimal disk with @† � @B2r0 , then for all components †0 of Br0 \ † which
intersect B"r0 ,

sup
x2†0

ˇ̌
A†.x/

ˇ̌2
� r�2

0 : (8.32)

This theorem has an equivalent formulation that may be easier to appreciate. Namely,
for " > 0 sufficiently small, (8.32) is equivalent to the statement that †0 is a graph over
(a domain in) the plane ¹x3 D 0º.

Theorem 8.31 is an interior estimate where the curvature bound, (8.32), is on the
ball Br0 of one-half of the radius of the ball B2r0 containing †. This is just like a gradient
estimate for a harmonic function where the gradient bound is on one-half of the ball where
the function is defined. Theorem 8.31 is often referred to as the one-sided curvature estimate
(since † is assumed to lie on one side of a plane). The assumption in Theorem 8.31 that †

is simply connected (i.e., that † is a disk) is crucial, as can be seen from the example of
a rescaled catenoid. Rescaled catenoids converge (with multiplicity two) to the flat plane.
Likewise, by considering the universal cover of the catenoid, one sees that Theorem 8.31
requires the disk to be embedded, and not just immersed.

The one-sided curvature estimate has strong implications for embedded minimal
surfaces. We will return to some of these applications later, but note here that it can be

11 A minimal surface in R3 the curvature K D �
1
2 jAj2 is nonpositive; so that by the curva-

tures of a sequence is going to infinity we mean that K ! �1 or, equivalently, jAj2 ! 1.
12 Our results require only that we have a piece of a minimal surface and thus it may have

boundary.
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applied even to ends of embedded minimal surfaces with finite topology to give a different
of a conjecture of Nitsche, see [56,93].

8.11. Uniqueness theorems
There is a long history of uniqueness theorems for properly embedded minimal sur-

faces, but all of those made very strong assumptions. A typical example is Catalan’s theorem.
Catalan proved in 1842 that any complete ruled minimal surface is either a plane or a heli-
coid. A surface is said to be ruled if it has the parametrization X.s; t/ D ˇ.t/ C sı.t/, where
s; t 2 R, and ˇ and ı are curves in R3. The curve ˇ.t/ is called the directrix of the surface,
and a line having ı.t/ as direction vector is called a ruling. For the helicoid, the x3-axis
is a directrix, and for each fixed t the line s ! .s cos t; s sin t; t / is a ruling. More recent
uniqueness results (for instance, by Lopez, Meeks, Nirenberg, Nitsche, Osserman, Perez,
Ros, Schoen, Shiffman, and Simon) assumed either finite total curvature or periodicity. The
structure theorems in [65–68] opened up the possibility of showing uniqueness theorems in
complete generality.

To give a flavor of some of the results that led to spetacular development in the theory
of minimal surfaces, we will mention just a few highlights. Using the above structure theorem
for disks, Meeks–Rosenberg [150] proved, cf. [19], that the plane and the helicoid are the
only complete properly embedded simply-connected minimal surfaces in R3. The Riemann
examples were shown to be unique by Meeks–Perez–Ros [148]. In addition to the structure
theory for disks, they also used the structure theory of all finite-genus embedded minimal
surfaces from [70]. The paper [148] also introduced two very interesting new techniques into
the subject: the KdV equation and a careful analysis of the Shiffman function.

9. Embedded minimal surfaces are automatically proper

Implicit in all of the results mentioned above was an assumption that the minimal
surfaces were proper. However, as we will see next, it turns out that embedded minimal
surfaces are, in fact, automatically proper. This was the content of the Calabi–Yau conjectures
which were proven to be true for embedded surfaces in [66].

9.1. Proper embeddings
An immersed surface in R3 is proper if the preimage of any compact subset of R3

is compact in the surface. For instance, a line is proper whereas a curve that spiral infinitely
into a circle is not.

9.2. The Calabi–Yau conjectures; the statements and examples
The Calabi–Yau conjectures about surfaces date back to the 1960s. Their original

form was given in 1965 where Calabi [31] made the following two conjectures about minimal
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surfaces13:

Conjecture 9.1. Prove that a complete minimal surface in R3 must be unbounded.

Calabi continued: “It is known that there are no compact minimal surfaces in R3

(or of any simply connected complete Riemannian 3-dimensional manifold with sectional
curvature � 0). A more ambitious conjecture is”:

Conjecture 9.2. A complete [non-flat] minimal surface in R3 has an unbounded projection
in every line.

The immersed versions of these conjectures turned out to be false. Namely, Jorge and
Xavier [123] constructed non-flat minimal immersions contained between two parallel planes
in 1980, giving a counterexample to the immersed version of the more ambitious Conjec-
ture 9.2. Another significant development came in 1996, when Nadirashvili [156] constructed
a complete immersion of a minimal disk into the unit ball in R3, showing that Conjecture 9.1
also failed for immersed surfaces; cf. [2].

The main result in [70] is an effective version of properness for disks, giving a
chord–arc bound.14 Obviously, intrinsic distances are larger than extrinsic distances, so the
significance of a chord–arc bound is the reverse inequality, i.e., a bound on intrinsic distances
from above by extrinsic distances. Given such a chord–arc bound, one has that as intrinsic
distances go to infinity, so do extrinsic distances. Thus as an immediate consequence:

Theorem 9.3. A complete embedded minimal disk in R3 must be proper.

Theorem 9.3 gives immediately that the first of Calabi’s conjectures is true for
embedded minimal disks. Another immediate consequence of the chord–arc bound together
with the one-sided curvature estimate (i.e., Theorem 8.31) is a version of that estimate for
intrinsic balls. As a corollary of this intrinsic one-sided curvature estimate, we get that the
second, and more ambitious, of Calabi’s conjectures is also true for embedded minimal disks.
The second Calabi conjecture (for embedded disks) is an immediate consequence of the fol-
lowing half-space theorem:

Theorem 9.4. The plane is the only complete embedded minimal disk in R3 in a half-space.

Theorem 9.4 is a byproduct of the proof of Theorem 9.3. However, given Theo-
rem 9.3, Theorem 9.4 follows from the half-space theorem of [113].

The results for disks imply both of Calabi’s conjectures and properness also for
embedded surfaces with finite topology. A surface † is said to have finite topology if it is
homeomorphic to a closed Riemann surface with a finite set of points removed or “punc-
tures.” Each puncture corresponds to an end of †.

13 S. S. Chern [44] also promoted these conjectures at roughly the same time and they were
revisited several times by S. T. Yau.

14 A chord–arc bound is a bound above and below for the ratio of intrinsic to extrinsic dis-
tances.

36 T.H. Colding



See [94,149,151] for related results and further references.
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