Defining equations for some nilpotent varieties

Eric Sommers (UMass Amherst)
Ben Johnson (Oklahoma State)

The Mathematical Legacy of Bertram Kostant
MIT
June 1, 2018
Kostant's interest in the Buckyball
- Kostant’s interest in the Buckyball

- He didn’t like the Brooklyn Dodgers
Kostant’s most highly cited paper in Math Reviews

Let \mathcal{N} be nilpotent cone in \mathfrak{g}. Kostant showed

- \mathcal{N} is a normal variety
- The defining ideal of \mathcal{N} is generated by u_1, \ldots, u_ℓ,

a set of basic invariants in $S_{\mathfrak{g}^*}$. Assume $\deg(u_\ell) = h$.

- As a module for G, write

$$\mathbb{C}^\bullet[\mathcal{N}] \cong \bigoplus p_\lambda V_\lambda$$

where $p_\lambda = q^{m_1^\lambda} + \cdots + q^{m_\ell_\lambda}$. Then

$$\ell_\lambda = \dim V_\lambda^T.$$

These exponents are called the *generalized exponents* of λ.
Let e be a principal nilpotent and e, h, f basis of \mathfrak{sl}_2-triple.

Form slice

$$v := f + g^e.$$

The \mathbb{C}^*-action on v coming from h and scaling so that f is in degree 0.

Then g^e is graded in degrees $2m_1 + 2, \ldots, 2m_\ell + 2$, where m_1, \ldots, m_ℓ are the usual exponents.

Restrict u_i to v. Then

Theorem (Kostant)

u_i has linear term when expressed in the graded basis of g^e.

Jacobian matrix of u_i's is rank ℓ everywhere on v, including at f.

Explicit list of basic invariants

- Can take a possible list and restrict to a Cartan subalgebra \(\mathfrak{h} \). Look for a point where determinant of Jacobian is nonzero.

Theorem
The invariants
\[
\text{tr}((\text{ad } X)^2), \ldots, \text{tr}((\text{ad } X)^d) \ldots, \text{tr}((\text{ad } X)^{30})
\]
is a list of basic invariants for \(E_8 \).

Can use smaller representations for other types if adjoint representation doesn’t work (e.g., if there is an odd fundamental degree).
Explicit list of basic invariants

- Can take a possible list and restrict to a Cartan subalgebra \mathfrak{h}.
 Look for a point where determinant of Jacobian is nonzero.
- Take a possible single basic invariant and restrict to v and see that it has a linear term.

Theorem

The invariants

$$tr((ad X)^2), \ldots tr((ad X)^{d_i}), \ldots tr((ad X)^{30})$$

is a list of basic invariants for E_8.

Can use smaller representations for other types if adjoint representation doesn’t work (e.g., if there is an odd fundamental degree).
Example in MAGMA

Adjoint representation of the slice v for F_4, using 4 variables: $m[1], m[2], m[3], m[4]$.

```
> M;
[0  m[1]  0  0  0  0  m[2]  -m[2]  0  0  0  0  -m[3]  -m[3]  0  0  0  0  0  0  0  0  m[4]  0  0
[22  0  m[1]  0  0  0  0  m[2]  0  2*m[2]  0  0  0  -m[3]  -m[3]  0  0  0  0  0  0  0  0  0  0]
[0  42  0  m[1]  0  0  0  0  m[2]  0  2*m[2]  0  0  0  -m[3]  0  0  0  0  0  0  0  0  0  0  0]
[0  0  60  0  2*m[1]  m[1]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[0  0  16  0  0  0  m[1]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[0  0  0  42  0  0  0  m[1]  m[1]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[0  0  42  0  0  0  m[1]  m[1]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[0  0  0  30  30  0  0  0  m[1]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[0  0  0  32  0  0  0  m[1]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
```

Linear term in each case.
Usual exponents

When $\lambda = \theta$ is the highest root, the generalized exponents are the usual exponents.

Two ways to see this:

- Generalized exponents come from grading of

$$V^g_{\lambda} = g^g \subset g^e.$$

Have equality since g^e is abelian.

- Fix i. Then

$$\left\{ \frac{\partial u_i}{\partial x_j} \right\}$$

is a basis of a copy of the adjoint representation in Sg^*. Non-zero on \mathcal{N}; in fact, the copies are linearly independent.

So $\{d_i - 1\}$ are generalized exponents for $\lambda = \theta$.
Applications to intersections

- \(\mathcal{N} \cap \mathfrak{h} = \{0\} \). Functions at 0 are

\[
\mathcal{S}_{\mathfrak{h}}^* / (\text{positive invariants}) \cong H^* (G/B).
\]

Starting point to look at \(\overline{\mathcal{O}} \cap \mathfrak{h} \).

We obtain cohomology of Springer fiber for dual orbit in type A.

Kraft, De Concini-Procesi, Tanisaki, Carrell

- \(\mathcal{N} \cap S_{f'} \) for smaller nilpotent, where

\[
S_{f'} = f' + g^{e'}
\]

Also can do this by replacing \(\mathcal{N} \) by smaller nilpotent orbit \(\mathcal{O} \):

\[
\overline{\mathcal{O}} \cap S_{f'}.
\]

Brieskorn, Slodowy, Kraft-Procesi, Fu-Juteau-Levy-S.
Let f' be in the subregular orbit. Take slice to f':

$$S_{f'} = f' + g^{e'}$$

This has dimension $\ell + 2$.
Let f' be in the subregular orbit. Take slice to f':

$$S_{f'} = f' + g^{e'}$$

This has dimension $\ell + 2$.

Then $u_1, \ldots, u_{\ell-1}$ have (linearly independent) linear terms on $S_{f'}$.

While u_ℓ of highest degree, the Coxeter number, is exactly the defining equation in the remaining three dimensions of an ADE-singularity.

Carried out by Slodowy
Example in E_6

The latter is the equation for the E_6 singularity in \mathbb{C}^3: $x^2 + y^3 + z^4 = 0$.
Singularities in E_6
Find equations for other orbits

- Weyman for $GL_n(\mathbb{C})$.

\[O = O_\lambda \]

$\lambda = (\lambda_1, \lambda_2, \ldots)$ partition of n

Let $k_i = \lambda_1 + \lambda_2 + \cdots + \lambda_i - i + 1$

Equations come from subspace of $k_i \times k_i$-minors isomorphic to representation of highest weight $\omega_i + \omega_{n-i}$, plus the basic invariants.
Find equations for other orbits

- Weyman for $GL_n(\mathbb{C})$.
 \[\mathcal{O} = \mathcal{O}_\lambda \]
 \(\lambda = (\lambda_1, \lambda_2, \ldots) \) partition of \(n \)
 Let \(k_i = \lambda_1 + \lambda_2 + \cdots + \lambda_i - i + 1 \)
 Equations come from subspace of \(k_i \times k_i \)-minors isomorphic to representation of highest weight \(\varpi_i + \varpi_{n-i} \), plus the basic invariants.

- Hook \(\lambda = (a, 1, \ldots 1) \).
 Minimal generators: all \(a \times a \) minors. Rank conditions plus basic invariants up to degree \(a \).
Find equations for other orbits

- Weyman for $GL_n(\mathbb{C})$.
 \[O = O_\lambda \]
 \[\lambda = (\lambda_1, \lambda_2, \ldots) \text{ partition of } n \]
 Let $k_i = \lambda_1 + \lambda_2 + \cdots + \lambda_i - i + 1$
 Equations come from subspace of $k_i \times k_i$-minors isomorphic to representation of highest weight $\varpi_i + \varpi_{n-i}$, plus the basic invariants.

- Hook $\lambda = (a, 1, \ldots 1)$.
 Minimal generators: all $a \times a$ minors. Rank conditions plus basic invariants up to degree a.

- Almost rectangular: $\lambda = (a, a, \ldots a, b)$.
 Minimal generators: Just need a copy of the adjoint in degree a and basic invariants up to degree a.
 Take entries X^a where $X = (x_{ij})$ is a generic matrix for a copy of the adjoint rep.
Let ϕ be the dominant short root.

The highest generalized exponent for V_ϕ occurs in $ht(\phi)$ degree, the dual Coxeter number. This is true for any representation V_{λ}.

The ideal for the subregular nilpotent variety is given by a copy of V_ϕ in this top degree together with $u_1, \ldots, u_{\ell-1}$.

These are minimal generators.
Main result

- Let Ω be a set of orthogonal, short, simple roots. Let $s = |\Omega|$.
 Let n_Ω be nilradical of the parabolic subalgebra attached to Ω.
- Let O_Ω be the Richardson orbit in n_Ω.
 These orbits were considered by Broer in Kostant 65th volume.
 For $s = 1$, we get the subregular orbit. For $s = 0$, we get principal nilpotent orbit.
- Let r be dimension of zero weight space of V_ϕ, which is the number of short simple roots, and order the generalized exponents for V_ϕ by $m_1^\phi \leq \cdots \leq m_r^\phi$.

Theorem (Johnson, S-)

The ideal for O_Ω is minimally generated by:

\[a \text{ copy of } V_\phi \text{ in either degree } m_{r + s - 1}^\phi \text{ or } m_{\lfloor r/2 \rfloor}^\phi. \]

\[(\text{sometimes}) \text{ a copy of } V_\phi \text{ is degree } m_{r + s - 2}^\phi. \]

\[r - s \text{ of the basic invariants } \]
Main result

- Let Ω be a set of orthogonal, short, simple roots. Let $s = |\Omega|$.
 - Let n_Ω be nilradical of the parabolic subalgebra attached to Ω.
- Let O_Ω be the Richardson orbit in n_Ω.
 - These orbits were considered by Broer in Kostant 65th volume.
 - For $s = 1$, we get the subregular orbit. For $s = 0$, we get principal nilpotent orbit.
- Let r be dimension of zero weight space of V_ϕ, which is the number of short simple roots, and order the generalized exponents for V_ϕ by $m_1^\phi \leq \cdots \leq m_r^\phi$.

Theorem (Johnson, S-)

The ideal for O_Ω is minimally generated by:

- a copy of V_ϕ in either degree m_{r-s+1}^ϕ or $m_{\lfloor \frac{r}{2} \rfloor}^\phi$.
- (sometimes) a copy of V_ϕ is degree m_{r-s+2}^ϕ.
- $r - s$ of the basic invariants
Main result

Theorem (Johnson, S-, arXiv:1706.04820)

The ideal for O_{Ω} is minimally generated by:

- a copy of V_ϕ in either degree m^{ϕ}_{r-s+1} or $m^{\phi}_{\lfloor \frac{r}{2} \rfloor}$.
- (sometimes) a copy of V_ϕ is degree m^{ϕ}_{r-s+2}.
- $r - s$ of the basic invariants

![Diagram of studied nilpotent varieties](image)
Pick a basis \(\{ x_i \} \) of \(\mathfrak{g} \) and a dual basis \(\{ y_i \} \) with respect to the Killing form \((\cdot, \cdot)\).

Let \(p \) and \(q \) be two homogeneous invariants of degree \(a + 1 \) and \(b + 1 \), respectively. Then

\[
p \circ q := \sum_i \frac{\partial p}{\partial x_i} \frac{\partial q}{\partial y_i}
\]

is again an invariant.

Homogeneous of degree \(a + b \).

Saito’s flat basis, first considered in a paper by Saito, Yano, Sekiguchi: unique basis (up to scalars) with

\(u_i \circ u_j \in \mathbb{C}[u_1, \ldots, u_{\ell-1}] + cu_\ell \), where \(c \) is a constant.

De Concini, Papi, Procesi:

\(u_i \circ u_j \) a generator of the invariants when \(u_i \circ u_j \) is the degree of some \(u_k \).

A weaker statement is true in type \(D_{2k} \).
Containment of ideals

- Consider the copy of the adjoint representation V_{u_i} determined by u_i by taking derivatives.
- Take its ideal (V_{u_i}) in $\mathbb{C}[\mathcal{N}]$.

Theorem (Johnson, S-)

The following are equivalent:

- **Containment**: $V_{u_j} \subset (V_{u_i})$
- There exists an invariant p such that $p \circ u_i = u_j$ modulo expressions in lower degree invariants.

Hence, by DPP result, containment question, outside of D_{2k}, is equivalent to $(m_j + 1) - m_i$ is an exponent. This helps us find minimal generators.

For example, in E_7, adjoint rep in degree 13 is not in the ideal generated by copy in degree 11, but it is in ideal generated by copy in degree 9, since 3 is not an exponent, but 5 is.
Next we search for a set of generators. Let $P = P_\Omega$. Consider the Springer type map:

$$G \times^P n_\Omega \to O_\Omega$$

If this is a resolution,

$$\mathbb{C}[O_\Omega] = \mathbb{C}[G \times^P n_\Omega] = H^0(G/P, S^\bullet n^*_\Omega)$$

For $\Omega = \emptyset$, O_Ω is regular nilpotent orbit.

$$\mathbb{C}[\mathcal{N}] = \mathbb{C}[O_{\text{reg}}] = \mathbb{C}[G \times^B n] = H^0(G/B, S^\bullet n^*)$$

Paper by R. Brylinski (Twisted Ideals paper):

- thinking about ideals in $\mathbb{C}[\mathcal{N}]$ coming from cohomology
- subregular ideal
Twisted ideals

Higher vanishing

\[H^i(G/B, S^\bullet n^* \otimes \mathbb{C}_\mu) = 0 \text{ for } i > 0 \text{ when} \]

- \(\mu = 0 \) (Borho-Kraft, Hesselink)
- \(\mu \text{ dominant} \) (Broer)
- \(\mu \text{ slightly not dominant} \) (Broer)

To compute the occurrences of \(V_\lambda \) in \(H^0 \), compute Euler characteristic \(\sum (-1)^i H^i \), and thus replace \(S^\bullet n^* \) by a sum of one-dimensional representations and then use Bott-Borel-Weil:

Bott-Borel-Weil

\[H^i(G/B, \mathbb{C}_\lambda) = 0 \text{ except if } w \cdot \lambda \text{ is dominant and } i = \ell(w), \text{ in which case it is } V_{w \cdot \lambda}. \text{ Here, } w \in W, \text{ the Weyl group, is unique.} \]

Conclude: \(H^0(G/B, S^\bullet n^* \otimes \mathbb{C}_\mu) \) is computable in terms of Lusztig’s \(q \)-analog of Kostant weight multiplicity.
Hence, multiplicity of V_λ in $H^0(G/B, S^\bullet u^* \otimes \mathbb{C}_\mu)$ is the dimension of the μ-weight space in V_λ.

The graded version is an affine Kazhdan-Lusztig polynomial (Lusztig).

If $\mu = 0$, get a formula for generalized exponents and also get another way of seeing that their number is dimension of the zero weight space of V_λ.

For μ dominant:

$$H^0(G/B, S^\bullet u^* \otimes \mathbb{C}_\mu)$$

will identify with an ideal in

$$\mathbb{C}[\mathcal{N}]$$

and the unique copy of V_μ in lowest degree generates the ideal.
Let $\Omega = \{\alpha_1, \alpha_3\}$. Consider parabolic and nilradical for subregular: n_{α_3}. Take Koszul resolution:

$$0 \to S^{n-1} n_{\alpha_3}^* \otimes \mathbb{C}_{\alpha_1} \to S^n n_{\alpha_3}^* \to S^n n_{\alpha_1, \alpha_3}^* \to 0.$$

Take cohomology over G/B:

$$0 \to H^0(S^{n-1} n_{\alpha_3}^* \otimes \mathbb{C}_{\alpha_1}) \to H^0(S^n n_{\alpha_3}^*)$$

$$\to H^0(S^n n_{\alpha_1, \alpha_3}^*) \to H^1(S^{n-1} n_{\alpha_3}^* \otimes \mathbb{C}_{\alpha_1}) \to \ldots.$$

Key facts are that H^1 vanishes and

$$H^0(S^{n-1} n_{\alpha_3}^* \otimes \mathbb{C}_{\alpha_1}) \simeq H^0(S^{n-2} n_{\alpha_2}^* \otimes \mathbb{C}_\phi).$$

This is a generalization of Broer's result for n when weights are slightly not dominant (see next slide).

Hence, the ideal of the orbit is cut out by a copy of V_ϕ in degree 2 in the closure of the subregular orbit. General case uses this kind of induction.
Let n_m be the nilradical for the maximal parabolic in type A_l with simple root α_m not in the Levi subalgebra.

Theorem (S-)

Let r be in the range $-|l + 1 - 2m| - 1 \leq r \leq 0$. Then there is a G-module isomorphism:

$$H^i(S^n n_m^* \otimes r \varpi_m) \cong H^i(S^{n+rm} n_{l+1-m}^* \otimes -r \varpi_{l+1-m})$$

for all $i, n \geq 0$.

This is always an isomorphism for H^0 when $r < 0$.

Type A_2

$$H^i(S^n n_1^* \otimes -\varpi_1) \cong H^i(S^{n-1} n_2^* \otimes \varpi_2)$$

Can use this A_2 result in any bigger Lie algebra. In A_3 it says

$$H^i(S^n n_3^* \otimes \alpha_1) \cong H^i(S^{n-1} n_2^* \otimes (\alpha_1 + \alpha_2 + \alpha_3))$$

since α_1 has inner product -1 with α_2 and 0 with α_3. This was the key fact on the previous slide.