Abstract:

A topological graph is called k-quasi-planar, if it does not contain k pairwise crossing edges. It is conjectured that for every fixed k the maximum number of edges in a k-quasi-planar graph on n vertices is $O(n)$. We provide, for the first time, an affirmative answer to the case $k = 4$. We also give the simplest proof and the best upper bound known, for the maximum number of edges in 3-quasi-planar graphs on n vertices. Moreover, we show a tight upper bound for 3-quasi-planar graphs in which every pair of edges meet at most once.

Joint work with Gabor Tardos.