18.S097 Introduction to Proofs IAP 2015 Homework 2 Due: Friday, Jan. 9, 2015

Problem 1. In this problem, we examine a second proof of the fact that there is no rational $x \in \mathbb{Q}$ such that $x^2 = 2$.

(1) Suppose that the claim failed, i.e. that there exists $x \in \mathbb{Q}$ with $x^2 = 2$, and choose $\tilde{x} = |x|$ (so that $\tilde{x}^2 = 2$). Show that there exists $q \in \mathbb{N} \setminus \{0\}$ such that

 $(\tilde{x}-1)q$ is a non-negative integer. (1)

(2) Choose $q_* \in \mathbb{N} \setminus \{0\}$ as the smallest positive integer such that (1) holds, and define $q' = (\tilde{x} - 1)q_*$.

Show that:

- (a) The inequalities $0 < q' < q_*$ hold (that is, show each of the inequalities q' > 0 and $q' < q_*$).
- (b) The quantity $(\tilde{x} 1)q'$ is a non-negative integer.

Observe that since this contradicts the minimality of q_* , no such $x \in \mathbb{Q}$ exists.