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1. Overview

We continue to develop our study of methods of proof by examining several
examples of arguments dealing with properties of the integers. We give several
examples of proofs of rationality for particular real numbers, and conclude with an
introduction to mathematical induction and combinatorial reasoning.

2. Working with integers

2.1. Using quantifiers to construct familiar collections of integers. Apply-
ing the set constructor notation and the concept of quantifiers discussed in Lecture
Notes 1, we may write down formal descriptions of the set of (non-negative) even
integers as

{n ∈ N : n is even} = {m ∈ N : there exists k ∈ N such that m = 2k}
= {2n : n ∈ N}.

These sets are equal to one another, and membership in either set each may be
taken as a definition for what it means for an integer to be even. Similarly, we can
define the (non-negative) odd integers as

{n ∈ N : n is odd} = {m ∈ N : there exists k ∈ N such that m = 2k + 1}
= {2n + 1 : n ∈ N}.

Making further use of the quantifiers “for every” and “there exists”, we can
define many familiar mathematical objects. The importance of this idea is that
once we have written down precise definitions (often in the language of sets), we
can reason about these objects using many of the logical tools we described in the
previous lecture notes.

As an example, let us write down a definition of the set of prime numbers. For
this we will need to introduce a few auxiliary concepts along the way (which will
also be useful for the discussion in the following sections):

We say that a natural number n ∈ N is divisible by another natural
number r ∈ N (also written as r|n) if there exists k ∈ N with
n = rk.
The set of divisors of a natural number n ∈ N is then the set

D(n) := {r ∈ N : r|n}
= {r ∈ N : there exists k ∈ N s.t. n = rk}.

Here, the symbol “:=” indicates that the term on the left – in this
case, D(n) – is defined by the expression on the right side. Moreover,
the abbreviation “s.t.” stands for “such that”.
The set of prime numbers is then the set

P := {p ∈ N : D(p) = {1, p}}.
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Exercise 2.1. Show that for any n ∈ N, the set D(n) has finitely many elements.
(Hint: Can you identify an inequality satisfied by r for all r ∈ D(n)?)

Exercise 2.2. Show that P := {p ∈ N : |D(p)| = 2}, where |D(p)| denotes the
number of elements in the (finite) set D(p).

2.2. Rational numbers and proofs of irrationality. Recall that a rational
number q ∈ Q ⊂ R is a real number of the form

q =
m

n

for two integers m,n ∈ Z, with n 6= 0. An irrational number is then an element of
R \Q. In this section, we continue to develop our discussion of various methods of
proof by examining a variety of proofs of irrationality for certain real numbers.

Example 2.3. There is no rational number x ∈ Q such that x2 = 2.

Proof. Suppose for contradiction that we could find m,n ∈ Z with n 6= 0 and(m
n

)2
= 2.

Choose m′, n′ ∈ Z with n′ 6= 0 such that

m

n
=

m′

n′

and the integers m′ and n′ share no common factor (for instance, write the prime
factorizations

m = pα1
1 pα2

2 · · · p
αi
i

and

n = qβ1

1 qβ2

2 · · · q
βj

j

and let d be the product of all factors appearing in both m and n; now, set m′ = m/d
and n′ = n/d).

We then have

(m′)2 = 2(n′)2, (1)

so that (m′)2 is divisible by 2. It follows that m′ = 2` for some ` ∈ Z. We therefore
have

(m′)2 = 4`2. (2)

Combining (1) and (2), we obtain (n′)2 = 2`2 and therefore conclude that n′ is
divisible by 2. This contradicts the construction that m′ and n′ have no common
factors. �

Remark 2.4. It follows from the intermediate value theorem of calculus (which we
will briefly discuss when we begin to work with arguments involving the set of real
numbers) that there exists x ∈ R with f(x) = x2 − 2 = 0.

Example 2.5. Show that e =
∑∞
k=0

1
k! is irrational.
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Proof. Suppose for contradiction that there existed m,n ∈ Z with n 6= 0 and e = m
n .

We then have

ne = m, and thus k!ne = k!m

for every k ∈ N. Fix k ∈ N, to be determined later in the proof. Expanding k!ne
using our definition of e gives

k!ne = k!n

(
1 +

1

1!
+

1

2!
+ · · ·+ 1

k!

)
+ k!n

(
1

(k + 1)!
+

1

(k + 2)!
+ · · ·

)
. (3)

The first term on the right-hand size is then an integer, while the second term is
bounded from below by n

k+1 and from above by n
k (to see this, write

k!n

(
1

(k + 1)!
+ · · ·

)
= n

(
1

k + 1
+

1

(k + 1)(k + 2)
+

1

(k + 1)(k + 2)(k + 3)
+ · · ·

)
≤ n

(
1

k + 1
+

1

(k + 1)2
+

1

(k + 1)3
+ · · ·

)
=

n

k
where to obtain the last inequality we have used the formula for the sum of a
geometric series,

∑
k≥1 a

k = a
1−a for a ∈ {a ∈ R : |a| < 1}). For k sufficiently large,

the second term in (3) is therefore strictly between 0 and 1, so that k!ne not an
integer for any such k.

On the other hand, the quantity k!m (which, by assumption, is equal to k!ne) is
clearly an integer. This gives the desired contradiction. �

Remark 2.6. We have (a bit loosely) used some properties of limits of sequences in
the above proof – we postpone discussion of these notions.

Example 2.7. Show that there exist x, y ∈ R \Q with xy ∈ Q.

Remark 2.8. Before proceeding, we need to give a meaning to xy when x and y are
possibly irrational. This can be done by setting

xy := exp(y log(x))

for x > 0, y ∈ R. By standard properties of the exponential and logarithm func-
tions, this definition is consistent with all the familiar algebra rules for exponents
(provided that one works in the setting of positive real numbers).

Proof. Recall that by Example 2.3 above,
√

2 is irrational. Consider two cases:

Case 1:
√

2
√
2 ∈ Q. In this case the result is immediate with x, y =

√
2.

Case 2:
√

2
√
2 ∈ R \Q. Take x =

√
2
√
2

and y =
√

2. We then have

xy = (
√

2

√
2
)
√
2 = (

√
2)2 = 2

which is clearly rational. The result therefore holds in this case as well.

Since the result holds in both cases, the desired claim follows. �
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