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1. Introduction

The goal for this course is to provide a quick, and hopefully somewhat gentle,
introduction to the task of formulating and writing mathematical proofs. We begin
by discussing some basic ideas of logic and sets which form the basic ingredients
in our mathematical language, and conclude our discussion for the day with a few
examples.

2. Propositions and sets

2.1. Elements of logic and overview of proof techniques. To formulate some
basic language for our discussion, we begin with a light treatment of some ideas
of propositional logic, which describes how we can manipulate mathematical state-
ments. Suppose that p and q are two mathematical statements, which can each
be true or false. We can form new statements out of p and q by several logical
operations:

• The statement “p and q” (written as p ∧ q) holds whenever both p and q
are true.

• The statement “p or q” (p ∨ q) holds whenever at least one of p, q are true
(inclusive or).

• The statement “not(p)” holds whenever p is not true.
• The statement “p implies q” (p⇒ q) holds whenever “not(p) or q” is true.

It is clear that the operation of “and” and “or” are commutative – the order of
p and q does not matter. We immediately see that the implication “p implies q” is
equivalent to the contrapositive

“not(q) implies not(p).′′

On the other hand, the implication “p implies q” is not equivalent to “q implies p”
(this second statement is known as the converse to the first).

The negation operation combines with “and” and “or” in the following way (De
Morgan’s laws):

• The statement “not(p and q)” is equivalent to “not(p) or not(q).”
• The statement “not(p or q)” is equivalent to “not(p) and not(q).”

Roughly speaking, we can identify several strategies to prove implications of the
form “p implies q”:

• Direct proof: Suppose that p holds, and show how to obtain q.
• Proof by contrapositive: Provide a direct proof of not(q)⇒ not(p).
• Proof by contradiction: Suppose that p holds and q fails, and derive a

contradiction.
• Proof by induction: Divide the proposition into smaller claims of the form
pn for each positive integer n. Establish the base case p1. Then show that
the implication “pn implies pn+1” holds for every positive integer n.
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Common Task 2.1 (Showing p if and only if q). The statement “p if and only if q”
holds if both of the implications “p implies q” and “q implies p” are true. To prove
this type of statement it is usually best to divide the proof into two parts, one for
each of these implications.

Common Task 2.2 (Showing that several statements are equivalent). Another com-
mon task is to prove that several statements, say p1, p2, p3 and p4 are equivalent.
Often the most efficient way to do this is by showing a series of implications:

• “p1 implies p2,”
• “p2 implies p3,”
• “p3 implies p4,”
• “p4 implies p1.”

Remark 2.3. When discovering and writing proofs, it is often good to keep a few
points in mind:

• Formulate your arguments in complete (and grammatically consistent) sen-
tences.
• It is usually best to avoid “shorthand” notation such as ∨, ∧, ⇒, “iff,” etc.

in presenting your arguments – the idea can almost always be formulated
as a complete sentence, and this is beneficial both to avoid mistakes and
for the reader’s comprehension (an exception might occur in a single step
of a proof, for instance when explaining how to manipulate a particularly
intricate combination of operations).
• When possible, it is often helpful to find direct proofs (including proof by

contrapositive), rather than proofs by contradiction. In many settings, it
is possible to “translate” a proof by contradiction into a direct proof – we
will see examples of this as we proceed further.

These are not necessarily rigid rules, but merely guidelines in order to help arrive
at the most clear (and clearly explained!) proofs.

2.2. Elementary theory of sets. We often say that set theory is the “language
of modern mathematics.” Putting aside the delicate question of giving a precise
description of sets (on which we will comment briefly in a remark below), we may
informally say that a set A is a collection of elements, and use the notation

x ∈ A

to indicate that the object x is an element belonging to the set A. To be somewhat
more specific, we recall the following familiar sets, the existence and basic properties
of which we can take for granted in our day-to-day work:

• The set of natural numbers,

N = {0, 1, 2, 3, · · · }.
There is some inconsistency in notation here – some authors use N to denote
the set {1, 2, 3, · · · }. This is not a major issue and the meaning is almost
always clear from context or easy to determine.
• The set of integers,

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }
= N ∪ {−n : n ∈ N}.



3

• The set of rational numbers,

Q =

{
m

n
: m,n ∈ Z, n 6= 0

}
.

• The set of real numbers

R = (−∞,∞).

Note that the first task in a rigorous analyis course is often to give a thor-
ough discussion of the existence and basic properties of the set of real
numbers. We will gloss over this point

A number of basic set operations allow us to form new sets out of those that we
already have. We begin with some notation: given a set A, one can define

B := {a ∈ A : the proposition p(a) holds},

where p(a) is a (suitably well-defined) property of the object a. The set B is then
a subset of A, written

B ⊂ A.

Let X be a set and let A,B ⊂ X be given. Our elementary set operations then
include:

• Union:

A ∪B = {x ∈ X : x ∈ A or x ∈ B}
• Intersection:

A ∩B = {x ∈ X : x ∈ A and x ∈ B}
• Complement:

Ac = {x ∈ X : x does not belong to A}

Note the analogy with the logical operations of “or,” “and,” and “not” that we
introduced earlier. We also have two additional notions

• Set difference:

A \B = A ∩Bc = {x ∈ A : x 6∈ B}
• Symmetric difference:

A∆B = (A \B) ∪ (B \A).

Remark 2.4. Some care is required in formulating a “good” notion of set here. We
highlight a famous paradox:

• Let C be the “set” of all sets which do not contain themselves. Does C
belong to C? If so, then C does not contain itself, giving a contradiction.
If not, then C does contain itself, giving a contradiction once again. This
is known as Russell’s paradox – roughly speaking, the resolution is to be
very careful to avoid self-reference in forming “sets of sets” (for this reason,
when we use constructions involving groups of sets, we often prefer to speak
of “collections of sets”).

From a practical standpoint, these issues do not arise so often and we will not
discuss them further in these notes.
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2.3. Quantifiers and negation. To broaden the range of propositions we can con-
sider, we now consider two “quantifying” operations: given a set X and a collection
of propositions {p(x) : x ∈ X}, one can form the statements

• “p(x) holds for every x ∈ X,” and
• “there exists x ∈ X such that p(x) holds,”

with the obvious interpretations. The words “for every” and “there exists” can be
abbreviated as ∀ and ∃, respectively, with the provision given above that it is not
usually best to use such shorthand in the sentences of a proof; rather, these symbols
often serve to compress the expression of the logical relationships when performing
manipulations.

Note that when quantifiers are combined in sequence, the order is important:
the statement

“for all x ∈ X there exists y ∈ Y such that p(x, y) holds′′

is distinct from

“there exists y ∈ Y such that for all x ∈ X such that p(x, y) holds.′′

In the first statement, y may depend on x, while in the second statement the same
y must work for all x.

The negation operator interchanges the quantifiers ∀ and ∃. More precisely:

• the statement “not(for every x ∈ X, p(x) holds)” (that is, not(∀x ∈
X, p(x))) is equivalent to

there exists x ∈ X such that not(p(x)),

that is, ∃x ∈ X s.t. not(p(x)), and
• the statement “not(∃x ∈ X s.t. p(x))” is equivalent to

∀x ∈ X, not(p(x)).

This pair of quantifiers also allows us to give a slightly more general notion of
set union and intersection. If An is a sequence of subsets of a set X, we can define
the union of the sets An as⋃

n∈N
An = {x ∈ X : ∃n ∈ N s.t. x ∈ An},

and the intersection as⋂
n∈N

An = {x ∈ X : ∀n ∈ N, x ∈ An}.

Common Task 2.5 (Showing that one set is contained in another). Given a set X
with two subsets A,B ⊂ X, we often have to show the inclusion

A ⊂ B.

The best way to show this is usually to show that for every a ∈ A, one has a ∈ B;
that is, we reduce the claim to the implication “a ∈ A implies a ∈ B.” Proofs of
this type often begin “Let a ∈ A be given. ...” and proceed to demonstrate that a
belongs to the set B.
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Common Task 2.6 (Showing that two sets are equal). With A,B,X as above, the
most efficient (and clear) way to show the set equality A = B is to establish the
two inclusions A ⊂ B and B ⊂ A individually.

2.4. Functions. Given two sets A,B, a function f : A → B is a rule assigning
each x ∈ A to a value f(x) ∈ B. The set A is referred to as the domain and the set
B is referred to as the “co-domain”.

The image of A under f is then the set

f(A) = {f(x) : x ∈ A},
while for every B1 ⊂ B, the preimage of B1 is the set

f−1(B1) = {x ∈ A : f(x) ∈ B1}.

Common Task 2.7. Showing that a function is injective (one-to-one). We say that
f is injective if for every b ∈ f(A), the set f−1({b}) consists of a single element
(it is non-empty by construction). Equivalently, f is injective if the implication
“f(x) = f(y) implies x = y” holds for all x, y ∈ A.

The usual approach is to establish this latter implication; the argument would
typically take the form: “Let x, y ∈ A be given such that f(x) = f(y). (...) We
therefore conclude that x = y; since x and y were arbitrary, we conclude that f
is injective as desired.” (Here “(...)” contains an argument establishing the claim
x = y).

Common Task 2.8. Showing that a function is surjective (onto). We say that f is
surjective if f(A) = B. The inclusion f(A) ⊂ B follows from the definition of f .
We are left with showing B ⊂ f(A). For this, we usually let b ∈ B be given, and
construct x ∈ A such that f(x) = b.

Common Task 2.9. Showing that a function is bijective (one-to-one and onto). We
say that f is bijective if it is both injective and surjective. To demonstrate, we
usually separate the argument into the proof of each of these claims.

3. Example: working with sets

Example 3.1. Let X,Y be sets, and let f : X → Y be a given function. Show that

f−1(A ∪B) = f−1(A) ∪ f−1(B)

for all A,B ⊂ Y .

Proof. Let A,B ⊂ Y be given.

We begin by showing f−1(A ∪ B) ⊂ f−1(A) ∪ f−1(B). Let x ∈ f−1(A ∪ B)
be given. Then f(x) ∈ A ∪ B, so that we have either f(x) ∈ A or f(x) ∈ B.
Suppose first that f(x) ∈ A holds. Then x ∈ f−1(A) ⊂ f−1(A) ∪ f−1(B) as
desired. Alternatively, suppose f(x) ∈ B. Then x ∈ f−1(B) ⊂ f−1(A) ∪ f−1(B).
Thus, in either case, we have

x ∈ f−1(A) ∪ f−1(B).

Since x ∈ f−1(A ∪B) was arbitrary, we have established the desired inclusion.

It remains to show f−1(A) ∪ f−1(B) ⊂ f−1(A ∪ B). Let x ∈ f−1(A) ∪ f−1(B)
be given. We then have either x ∈ f−1(A) or x ∈ f−1(B). Suppose first that
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x ∈ f−1(A); it follows from this that f(x) ∈ A ⊂ A ∪ B, so that x ∈ f−1(A ∪ B).
Similarly, if x ∈ f−1(B), we have f(x) ∈ B ⊂ A∪B and thus x ∈ f−1(A∪B) in this
case as well. Since we have obtained the desired conclusion in both possible cases,
and x ∈ f−1(A) ∪ f−1(B) was arbitrary, we conclude that the desired inclusion
holds.

Since we have shown both set inclusions, we have established the desired set
equality. �

Remark 3.2. We make two remarks on the above proof

• In the first part of the proof, we came to a situation where we knew that
the statement “f(x) ∈ A or f(x) ∈ B” was true. From here we know that
we are in at least one of the following situations: Case 1: f(x) ∈ A or
Case 2: f(x) ∈ B. Note that both conditions may be valid – by showing
that the desired conclusion is true in either case, we conclude that it is true
regardless of which case we are in (Case 1 only, Case 2 only, or both). A
similar situation occurs in the second part of the proof.
• Recall that to show the equality of two sets U and V , it suffices to show
U ⊂ V (every element of U is also an element of V ) and V ⊂ U (there are no
other elements of V ). We demonstrate these two inclusions independently
– note that the proof contains two different variables named x: one in the
second paragraph of the proof “Let x ∈ f−1(A ∪B) be given.”, and one in
the third paragraph “Let x ∈ f−1(A) ∪ f−1(B) be given.”
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