Introduction to Proofs IAP 2015 In-class problems for day 6

Problem 9. Let $f: (0,1) \to \mathbb{R}$ be given and suppose that $x \mapsto f(x)$ has a limit as $x \to c$ for some $c \in (0,1)$. Show that the limit is unique – that is, suppose that a, b are limits of f as $x \to c$ and show that a = b.

Proof. Let $a, b \in \mathbb{R}$ be given such that both a and b are limits of f as $x \to c$. Then for each $\epsilon > 0$, we may choose $\delta > 0$ and $\delta' > 0$ such that, for every $y, y' \in (0, 1)$ with $0 < |y - c| < \delta$ and $0 < |y' - c| < \delta$, we have

$$|f(y) - a| < \epsilon$$

and

$$|f(y') - b| < \epsilon.$$

Fix $\epsilon > 0$ to be determined later in the argument, and let δ, δ' be chosen as described above. Then for every $y'' \in (0, 1)$ with

$$0 < |y'' - c| < \min\{\delta, \delta'\}$$

we have

$$|a - b| \le |a - f(y'')| + |f(y'') - b| < 2\epsilon.$$
(1)

In particular, since the set of y'' satisfying these conditions is nonempty, we have

$$|a-b| < 2\epsilon$$

for every $\epsilon > 0$.

Letting ϵ tend to zero, we obtain $|a - b| \le 0$; since $|a - b| \ge 0$ holds trivially, we conclude a = b as desired.

Remark 0.1. The first inequality in (1) follows from the triangle inequality,

$$|a+b| \le |a|+|b|, \quad a,b \in \mathbb{R}$$

Another useful form of this inequality often appears as

$$|a| = |(a - b) + b| \le |a - b| + |b|,$$

for $a, b \in \mathbb{R}$, which can be rewritten as

$$|a| - |b| \le |a - b|.$$

Since a and b are interchangable, we in fact have

$$||a| - |b|| \le |a - b|, \quad a, b \in \mathbb{R}.$$