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Solutions to in-class problems for day 3

Problem 4. Use induction to show that the identity

1− an

1− a
=

n−1∑
k=0

ak

holds for every a ∈ R \ {1} and all n ∈ N.

Proof. Let a ∈ R \ {1} be given. We show the claim by induction on n ∈ N.

(Base cases, n = 0 and n = 1): In the case n = 0, the claim becomes 0 = 0 (in
view of the identity 1− a0 = 1− 1 = 0, and since there are no terms contributing

to the sum on the right-hand side). In the case n = 1, we have 1−a1

1−a = 1, so that

the claim becomes 1 = a0, which is again immediately true.

(Inductive step): Suppose that the claim holds for some n ≥ 1.1 We want to
show that it is also valid with n replaced by n + 1, i.e. that the identity

1− an+1

1− a
=

n∑
k=0

ak (1)

holds. Note that, in view of the induction hypothesis, we have

n∑
k=0

ak =

( n−1∑
k=0

ak
)

+ an =
1− an

1− a
+ an.

To conclude our argument, we now observe that the right hand side is equal to

1− an + an(1− a)

1− a
=

1− an+1

1− a
.

This gives the equality (4) as desired. �

Problem 5. Show that for every n ∈ N, if 2n − 1 is prime, then n is prime.

Hint: Use the result of Problem 4 above.

Proof. We show the contrapositive, that if m ∈ N is not prime, then 2m − 1 is not
prime. We therefore let m ∈ N be given such that m is not a prime number. We
can then find two integers r, s ∈ N with 1 < r < m and 1 < s < m such that
m = rs.

On the other hand, invoking the result of Problem 4 (with a = 2r and n = s),
we have

2m − 1

2r − 1
=

(2r)s − 1

2r − 1
=

s−1∑
k=0

2rk,

and thus

2m − 1 = (2r − 1)

( s−1∑
k=0

2rk
)
.

1This is our induction hypothesis.
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Since the expressions 2r − 1 and
∑s−1

k=0 2rk are each integers, to conclude that
2m− 1 is not prime, it suffices to show 2r − 1 > 1 and 2r − 1 < 2m− 1. The first of
these inequalities follows by observing that r > 1 implies 2r > 2, and thus 2r−1 > 1
holds, while the second follows by noting that r < m implies 2r − 1 < 2m − 1 as
desired. �

Problem 6. We showed in class that e :=
∑∞

k=0
1
k! is irrational. Prove the stronger

result that e2 is irrational by using the series

1

e
=

∞∑
k=0

(−1)k

k!
.

Question: Why do we say that this is a “stronger” result?

Hint: If e2 = a
b , write be = a

e .

Proof. Following the hint, suppose for contradiction that we have

e2 =
a

b

for some (positive) integers a and b, and write

be =
a

e
.

Repeating the argument used in the proof of [Example 2.5, Lecture Notes 2], for
all k ∈ N with k > 2b we have

k!be = b

( k∑
`=0

k!

`!

)
+ k!b

( ∞∑
`=k+1

1

`!

)
=: (B)1 + (B)2,

with
(B)1 ∈ Z

and

0 < (B)2 <
1

2
. (2)

Similarly, we have, for all k ∈ N,

k!a

e
= a

( k∑
`=0

(−1)`k!

`!

)
+ k!a

( ∞∑
`=k+1

(−1)`

`!

)
=: (A)1 + (A)2.

with
(A)1 ∈ Z

and (using the triangle inequality)

|(A)2| ≤ k!a

∞∑
`=k+1

1

`!
≤

∞∑
`=k+1

a

(k + 1)`−k
=

a

k
,

so that for k > 2a we have

0 ≤ |(A)2| <
1

2
. (3)

Moreover, if k is even, we obtain

(A)2 = − a

k + 1
+

∞∑
`=k+2

(−1)`k!a

`!
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≤ − a

k + 1
+

∞∑
`=k+2

k!a

`!

≤ − a

k + 1
+

∞∑
`=k+2

a

(k + 1)`−k
. (4)

Evaluating the geometric series appearing on the right-hand side of (4) gives

(A)2 ≤ −
a

k + 1
+

a

(k + 1)2

(
1

1− 1
(k+1)

)

= −a(k − 1)

k(k + 1)

< 0.

Recalling that

(B)1 + (B)2 = (A)1 + (A)2

holds for all k ∈ N by construction, we conclude that for all even k ∈ N with
k > max{2a, 2b}, we have

0 < (B)2 − (A)2 < 1

(since, (B)2 − (A)2 ≤ |(B)2| + |(A)2| ≤ 1
2 + 1

2 follows from (2) and (3)). On the
other hand, we also have

(B)2 − (A)2 = (A)1 − (B)1 ∈ Z

for all such k. Since we cannot simultaneously have (B)2 − (A)2 ∈ (0, 1) and
(B)2 − (A)2 ∈ Z, this gives the desired contradiction. Thus, no choice of a and b
as stated above is possible, and we conclude that e2 is irrational as desired. �

Remark. As in our discussion of Example 2.5 in Lecture Notes 2, we have (again,
somewhat loosely) used several properties of convergent (and absolutely convergent)
series in the proof. We postpone further discussion of this point.


