18.S097 Introduction to Proofs IAP 2015 Homework 5 Due: Friday, Jan. 16, 2015

Choose and complete **one** of the following problems (you only have to do one!):

Problem 1. Show that a function $f : \mathbb{R} \to \mathbb{R}$ is continuous if and only if for every open set $U \subset \mathbb{R}$, the set

$$f^{-1}(U) = \{x \in \mathbb{R} : f(x) \in U\}$$

is also open.

Problem 2. Let $(q_n)_{n\geq 1}$ be an enumeration of $\mathbb{Q} \cap (0,1)$ (so that $q_n \in \mathbb{Q} \cap (0,1)$) for each $n \geq 1$, and $\{q_n : n \geq 1\} = \mathbb{Q} \cap (0,1)$). Define

$$A := \bigcup_{n \ge 1} \left(q_n - \frac{1}{2^{n+2}}, q_n + \frac{1}{2^{n+2}} \right).$$

Show that $A^c := (0,1) \setminus A$ is not a set of measure zero.