18.S097 Introduction to Proofs IAP 2015 Homework 4 Due: Wednesday, Jan. 14, 2015

Problem 1. Define the function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = x$$
 for $x \in \mathbb{Q}$

and

$$f(x) = x^2 \quad for \ x \in \mathbb{R} \setminus \mathbb{Q}.$$

Show that f is continuous at 1 and is not continuous at 2.

Hint: Recall that the statement that f is not continuous at 2 means (since it is the negation of the statement that f is continuous at 2) that the following condition is satisfied: there exists $\epsilon > 0$ such that, for all $\delta > 0$, there exists $x \in \mathbb{R}$ with $|x-2| < \delta$ and $|f(x) - f(2)| = |f(x) - 2| > \epsilon$.